用户名: 密码: 验证码:
斜拉索随机最优主动/半主动控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先研究动拉索面内振动的最优边界控制问题。将拉索面内振动方程通过Galerkin方法离散为两个自由度的运动,应用拟不可积Hamilton系统随机平均法和随机动态规划原理,建立动态规划方程。由性能指标最小,得到随机最优控制策略,并与双线性控制进行了对比,结果表明随机最优控制策略有较好的控制效果和较高的控制效率。然后研究了拉索面内面外的耦合振动,用类似方法得到最优控制策略,结果表明随机控制策略对面内-面外耦合的振动也有很好的控制性能。而线性化面内振动,通过拟可积Hamilton系统随机平均法和动态规划原理的结合,得到了关于面内多模态振动的随机最优主动控制,与双线性控制进行对比,并研究了系统参数对控制效果和控制效率的影响。最后,研究应用MR阻尼器实现对拉索的振动控制,MR阻尼器采用Bingham模型,将控制力分为被动力和主动力。被动力并入到系统的阻尼中,应用拟可积Hamilton随机平均法与随机动态规划原理,得到随机最优控制策略,说明MR能始终执行最优控制,比Bang-bang控制具有更好控制性能。
A stochastic optimal control strategy for a slightly sagged cable using support motion in the cable axial direction is first proposed. The nonlinear equation of cable motion in plane is derived and reduced to the equations for the first two modes of the cable vibration by using the Galerkin method. The partially averaged Ito equation for controlled system energy is further derived by applying the stochastic averaging method for quasi non-integrable Hamiltonian systems. The dynamical programming equation for the controlled system energy with a performance index is established by applying the stochastic dynamical programming principle and a stochastic optimal control law is obtained through solving the dynamical programming equation. A bilinear controller by using the direct method of Lyapunov is also introduced and a comparison between the two controllers shows that the proposed stochastic optimal control strategy is superior to the bilinear control strategy in the sense of higher control effectiveness and efficiency. The same procedure is carried out for the controlled motion in-plane and out-of-plane to show the superiority of the stochastic optimal control strategy. The motions in plane can be further reduced to linear equations with active motion control at the boundary. By applying the stochastic averaging method for quasi integrable Hamiltonian systems and the stochastic dynamical programming principle, a stochastic optimal control law is obtained through solving the dynamical programming equation. Extensive parameter studies are carried out for indicating the features of the proposed control strategy. Finally, the stochastic optimal semi-active control for stay cable multi-mode vibration attenuation by using magneto-reheological (MR) damper is developed. The Bingham model for MR damper is used. The force produced by an MR damper is split into passive and active parts. The passive part is combined with structural damping forces into effective damping forces. The stochastic averaging method for quasi integrable Hamiltonian systems and the stochastic dynamic principle are applied and a stochastic optimal semi-active control law is obtained through solving the dynamical programming equation. For controlled modal energies with an index not involving control force, bang-bang control law is obtained without solving dynamical programming equation. A comparison between the two control laws shows that the stochastic optimal semi-active control strategy is superior to the bang-bang control strategy in the sense of higher control effectiveness and efficiency and less chattering.
引文
[1]Irvine, H.M., Cable structures. Cambridge:MIT Press,1981.
    [2]沈世钊,徐崇宝,赵臣,武岳,悬索结构设计.北京:中国建筑工业出版社,2006.
    [3]严国敏,现代斜拉桥.成都:西南交通大学出版社,1996.
    [4]Michel Virlogeux, Recent evolution of cable-stayed bridges. Engineering Structures 1999 (21) 737-755.
    [5]Packheco B.M., Fujino Y., Keeping cables calm. ASCE Civil Engineering Magazine 1993,63(10):56-58.
    [6]Mastsumoto M., Saitoh T., Kitazawa M., Shirato H., Nishizaki T., Response characteristics of rain-wind induced vibration of stay-cables of cable-stayed bridges. Journal of Wind Engineering and Industrial Aerodynamics 1995,57: 323-333.
    [7]Poston R.W., Cable-stay conundrum. ASCE Civil Engineering 1998,68(8): 58-61.
    [8]李国豪,桥梁结构稳定与振动(修订版).北京:中国铁道出版社,1996.
    [9]项海帆等,现代桥梁抗风理论与实践.北京:人民交通出版社,2005.
    [10]邬喆华,陈勇.磁流变阻尼器对斜拉索的振动控制.北京:科学出版社,2007.
    [11]陈政清,桥梁风工程.北京:人民交通出版社,2005.
    [12]Simiu Emil, Scanlan Robert H著,刘尚培,项海帆,谢霁明译.风对结构的作用:风工程导论(第二版).上海:同济大学出版社,1992.
    [13]黄本才,汪丛军,结构抗风分析原理及应用(第二版).上海:同济大学出版社,2008.
    [14]Cai Y., Chen S.S., Dynamic response of a stack/cable system subjected to vortex induced vibration. Journal of Sound and Vibration 1996,196(3):337-349.
    [15]Hover F.S., Miller S.N., Triantafyllou M.S., Vortex-induced oscillations in inclined cables. Journal of Wind Engineering and Industrial Aerodynamics 1997, 69-71:203-211.
    [16]Kim W.J., Perkins N.C., Two-dimensional vortex-induced vibration of cable suspensions. Journal of Fluids and Structures 2002,16(2):229-245.
    [17]Matsumoto M., Yagi T., Shigemura Y., Tsushima D., Vortex-induced cable vibration of cable-stayed bridges at high reduced wind velocity. Journal of Wind Engineering and Industrial Aerodynamics 2001,89:633-647.
    [18]Studnickova M., Induced vibrations of leeward ropes. A practical example. Journal of Wind Engineering and Industrial Aerodynamics 1996,65:179-188.
    [19]Cigada A., Diana G., Falco M., Vortex shedding and wake-induced vibrations in single and bundle cables. Journal of Wind Engineering and Industrial Aerodynamics 1997,72:253-263.
    [20]Tokoro S., Komatsu H., Nakasu M., Mizuguchi K., Kasuga A., A study on wake-galloping employing full aeroelatic twin cable model. Journal of Wind Engineering and Industrial Aerodynamics 2000,88:247-261.
    [21]Bartoli G., Cluni F., Gusella V., Procino L., Dynamics of cable under wind action:Wind tunnel experimental analysis. Journal of Wind Engineering and Industrial Aerodynamics 2006,94:259-273.
    [22]Poulin S., Larsen A., Drag loading of circular cylinders inclined in the along-wind direction. Journal of Wind Engineering and Industrial Aerodynamics 2007,95:1350-1363.
    [23]Gattulli V., Martinelli L., Perotti F., Vestroni F., Dynamics of suspended cables under turbulence loading:Reduced models of wind field and mechanical system. Journal of Wind Engineering and Industrial Aerodynamics 2007,95:183-207.
    [24]Cluni F., Gusella V, Ubertini F., A parametric investigation of wind-induced cable fatigue. Engineering Structures 2007,29:3094-3105.
    [25]Carassale L., Piccardo G., Non-linear discrete models for the stochastic analysis of cables in turbulent wind. International Journal of Non-Linear Mechanics 2010, 45:219-231.
    [26]Hikami Y., Shiraishi N.S., Rain-wind induced vibration of cables of cable-stayed bridge. Journal of Wind Engineering and Industrial Aerodynamics 1988,29: 409-418.
    [27]Flamand O., Rain-wind induced vibration of cables. Journal of Wind Engineering and Industrial Aerodynamics 1995,57:353-362.
    [28]Matsumoto M., Yagi T., Goto M., Sakai S., Rain-wind-induced vibration of inclined cables at limited high reduced wind velocity region. Journal of Wind Engineering and Industrial Aerodynamics 2003,91:1-12.
    [29]王修勇.斜拉桥拉索振动控制新技术研究.中南大学博士学位论文2002.
    [30]Ni Y.Q., Wang X.Y., Chen Z.Q., Ko J.M., Field observations of rain-wind-induced cable vibration in cable-stayed Dongting Lake Bridge. Journal of Wind Engineering and Industrial Aerodynamics 2007,95:303-328.
    [31]Zuo D., Jones N.P., Main J.A., Field observation of vortex-and rain-wind-induced stay-cable vibrations in a three-dimensional environment. Journal of Wind Engineering and Industrial Aerodynamics 2008,96:1124-1133.
    [32]Verwiebe C., Ruscheweyh H., Recent research results concerning the exciting mechanisms of rain-wind-induced vibrations. Journal of Wind Engineering and Industrial Aerodynamics 1998,74-76:1005-1013.
    [33]Matsumoto M., Saitoh T., Kitazawa M., Shirato H., Nishizaki T., Response characteristics of rain-wind induced vibration of stay-cables of cable-stayed bridges. Journal of Wind Engineering and Industrial Aerodynamics 1995,57: 323-333.
    [34]Gu M., Du X., Experimental investigation of rain-wind-induced vibration of cables in cable-stayed bridges and its mitigation. Journal of Wind Engineering and Industrial Aerodynamics 2005,93:79-95.
    [35]Gu M., Huang L., Theoretical and experimental studies on the aerodynamic instability of a two-dimensional circular cylinder with a moving attachment. Journal of Fluids and Structures 2008,24:200-211.
    [36]Gu M., Du X.Q., Li S.Y., Experimental and theoretical simulations on wind-rain-induced vibration of 3-D rigid stay cables. Journal of Sound and Vibration 2009,320:184-200.
    [37]Wang Z.J., Zhou Y, Huang J.F., Xu Y.L., Fluid dynamics around an inclined cylinder with running water rivulets. Journal of Fluids and Structures 2005,21: 49-64.
    [38]Zhan S., Xu Y.L., Zhou H.J., Shum K.M., Experimental study of wind-rain-induced cable vibration using a new model setup scheme. Journal of Wind Engineering and Industrial Aerodynamics 2008,96:2438-2451.
    [39]Yamaguchi H., Analytical study on growth mechanism of rain vibration of cables. Journal of Wind Engineering and Industrial Aerodynamics 1990,33:73-80.
    [40]Wilde K., Witkowski W., Simple model of rain-wind-induced vibrations of stayed cables. Journal of Wind Engineering and Industrial Aerodynamics 2003,91: 873-891.
    [41]van der Burgh A.H.P., Hartono, Rain-wind-induced vibrations of a simple oscillator. International Journal of Non-Linear Mechanics 2004,39:93-100.
    [42]Xu Y.L., Wang L.Y., Analytical study of wind-rain-induced cable vibration: SDOF model. Journal of Wind Engineering and Industrial Aerodynamics 2003, 91:27-40.
    [43]van der Burgh A.H.P., Hartono, Abramian A.K., A new model for the study of rain-wind-induced vibrations of a simple oscillator. International Journal of Non-Linear Mechanics 2006,41:345-358.
    [44]Wang L.Y., Xu Y.L., Wind-rain-induced vibration of cable:an analytical model (1). International Journal of Solids and Structures 2003,40:1265-1280.
    [45]Zhou H. J., Xu Y L., Wind-rain-induced vibration and control of stay cables in a cable-stayed bridge. Structural Control and Health Monitoring 2007,14: 1013-1033.
    [46]Cao D.Q., Tucker R.W., Wang C, A stochastic approach to cable dynamics with moving rivulets. Journal of Sound and Vibration 2003,268:291-304.
    [47]Burton D., Cao D.Q., Tucker R.W., Wang C., On the stability of stay cables under light wind and rain conditions. Journal of Sound and Vibration 2005,279: 89-117.
    [48]Lemaitre C., Alam M.M., Hemon P., de Langre E., Zhou Y, Rainwater rivulets on a cable subject to wind. Comptes Rendus Mecanique 2006,334:158-163.
    [49]Lemaitre C., Hemon P., de Langre E., Thin water film around a cable subject to wind. Journal of Wind Engineering and Industrial Aerodynamics 2007,95: 1259-1271.
    [50]Rocchi D., Zasso A., Vortex shedding from a circular cylinder in a smooth and wired configuration:Comparison between 3D LES simulation and experiment analysis. Journal of Wind Engineering and Industrial Aerodynamics 2002,90: 475-489.
    [51]李寿英,顾明.带固定人工水线拉索绕流的数值模拟.同济大学学报 2004,32(10):1334-1338.
    [52]奈弗A.H.,穆克D.T.,非线性振动.北京:高等教育出版社,1990.
    [53]Uhrig R., On kinetic response of cables of cable-stayed bridges due to combined parametric and forced excitation. Journal of Sound and Vibration 1993,165(1): 185-192.
    [54]Takahashi K., Herath C.R, Hanada H., Nonlinear dynamic response of cable subjected to support excitation. Asia-Pacific Vibration Conference '97,9-13, 1997, Kyongju, Korea.
    [55]Baker J.R., Smith S.W., Simulation of parametric response of bridge stay cables Proceedings of IMAC-XX:A Conference on Structural Dynamics Los Angeles, California,2002.
    [56]Takahashi K., Dynamic stability of cables subjected to an axial periodic load, Journal of Sound and vibration 1991,144(2):323-330.
    [57]Cai Y., Chen S.S., Dynamics of elastic cables under parametric and external resonances. ASCE Journal of Engineering Mechanics 1994,120(8):1786-1802.
    [58]Zhang W., Tang Y., Global dynamics of the cable under combined parametrical and external excitations. International Journal of Non-Linear Mechanics 2002, 37:505-526.
    [59]Zhang Q.L., Peil U., Dynamic behavior of cables in parametrically unstable zones. Computers and Structures 1999,73:437-443.
    [60]Perkins N.C., Modal interactions in the non-linear response of elastic cables under parametric/external excitation. International Journal of Non-Linear Mechanics 1992,27(2):233-250.
    [61]El-Attar M., Ghobarah A., Aziz T.S., Non-linear cable response to multiple support periodic excitation. Engineering Structures 2000,22:1301-1312.
    [62]Pinto da Costa A., Martins J.A.C., Branco F., Lilinen J.L., Oscillations of bridge stay cables induced by periodic motions of deck and/or towers. ASCE Journal of Engineering Mechanics 1996,122(7):613-622.
    [63]Georgakis C.T., Taylor C.A., Nonlinear dynamics of cable stays. Part 1: sinusoidal cable support excitation. Journal of Sound and Vibration 2005,281: 537-564.
    [64]Georgakis C.T., Taylor C.A., Nonlinear dynamics of cable stays. Part 2: stochastic cable support excitation. Journal of Sound and Vibration 2005,281: 565-591.
    [65]Benedettini F., Rega G., Alaggio R., Non-linear oscillations of a four-degree-of-freedom model of a suspended cable under multiple internal resonance conditions. Journal of Sound and Vibration 1995,182(5):775-798.
    [66]Pilipchuk V.N., Ibrahim, R.A., Non-linear modal interaction in shallow suspended cables. Journal of Sound and Vibration 1999,227(1):1-28.
    [67]Lin H.P., Perkins N.C., Free vibration of complex cable/mass systems:theory and experiment. Journal of Sound and Vibration 1995,179(1):131-149.
    [68]Srinil N., Rega G., Chucheepsakul S., Large amplitude three-dimensional free vibrations of inclined sagged elastic cables. Nonlinear Dynamics 2003,33: 129-154.
    [69]Arafat H.N., Nayfeh A.H., Non-linear responses of suspended cables to primary resonance excitations. Journal of Sound and Vibration 2003,266:325-354.
    [70]Rega G., Alaggio R., Benedettini F., Experimental investigation of the nonlinear response of a hanging cable. Part I:Local analysis. Nonlinear Dynamics 1997,14: 89-117.
    [71]Rega G, Lacarbonara W., Nayfeh A.H., Chin, C.M., Multiple resonances in suspended cables:direct versus reduced-order models. International Journal of Non-Linear Mechanics 1999,34:901-924.
    [72]Nielsen S.R.K., Kirkegaard P.H., Super and combinatorial harmonic response of flexible elastic cables with small sag. Journal of Sound and Vibration 2002, 251(1):79-102.
    [73]Srinil N., Rega G., Chucheepsakul S., Three-dimensional non-linear coupling and dynamic tension in the large-amplitude free vibrations of arbitrarily sagged cables. Journal of Sound and Vibration 2004,269:823-852.
    [74]Ricciardi G., Saitta F., A continuous vibration analysis model for cables with sag and bending stiffness. Engineering Structures 2008,30:1459-1472.
    [75]Gattulli V., Martinelli L., Perotti F., Vestroni F., Nonlinear oscillations of cables under harmonic loading using analytical and finite element models. Computer Methods in Applied Mechanics and Engineering 2004,193:63-85.
    [76]袁行飞,董石麟.二节点曲线索单元非线性分析.工程力学 1999,16(4):59-64.
    [77]张其林,预应力结构非线性分析的索单元理论.工程力学 1993,10(4):93-101.
    [78]杨孟刚,陈政清,两节点曲线索单元精细分析的非线性有限元法.工程力学2003,20(1):42-46.
    [79]Zheng G., Ko J.M., Ni Y.Q., Super-harmonic and internal resonances of a suspended cable with nearly commensurable natural frequencies. Nonlinear Dynamics 2002,30:55-70.
    [80]Ni Y.Q., Ko J.M., Zheng G., Dynamic analysis of large-diameter saggd cable taking into account flexural rigidity. Journal of Sound and Vibration 2002,257(2): 301-319.
    [81]Ni Y.Q., Zheng, G., Ko J.M., Nonlinear periodically forced vibration of stay cables. Journal of Vibration and Acoustics 2004,126(2):245-252.
    [82]Ni Y.Q., Lou W.J., Ko J.M., A hybrid pseudo-force/Laplace transform method for non-linear transient response of a suspended cable. Journal of Sound and Vibration 2000,238(2):189-214.
    [83]Chang W.K., Ibrahim R.A., Afaneh A.A., Planar and non-planar non-linear dynamics of suspended cables under random in-plane loading-Ⅰ. Single internal resonance. International Journal of Non-linear Mechanics 1996,31(6):837-859.
    [84]Chang W.K., Ibrahim R.A., Multiple internal resonance in suspended cables under random in-plane loading. Nonlinear Dynamics 1997,12:275-303.
    [85]Ibrahim R.A., Chang W.K., Stochastic excitation of suspended cables involving three simultaneous internal resonances using Monte Carlo simulation. Computer Methods in Applied Mechanics and Engineering 1999,168:285-304.
    [86]Larsen J.W., Nielsen S.R.K., Non-linear stochastic response of a shallow cable. International Journal of Non-linear Mechanics 2006,41:327-344.
    [87]Rega G, Nonlinear vibrations of suspended cables—Part Ⅰ:Modeling and analysis. Applied Mechanics Review 2004,57(6):443-478.
    [88]Rega G., Nonlinear vibrations of suspended cables—Part Ⅱ:Deterministic phenomena. Applied Mechanics Review 2004 57(6):479-514.
    [89]Ibrahim R.A., Nonlinear vibrations of suspended cables—Part Ⅲ:Random excitation and interaction with fluid flow. Applied Mechanics Review 2004,57(6): 515-539.
    [90]Yao J.T.P., Concept of structural control. ASCE Journal of Structural Division 1972,98:1567-1574.
    [91]Housner G.W., Bergma, L.A., Caughey T.K., Chassiakos A.G., Claus R.O., Masri S.F., Skelton R.E., Soong T.T., Spencer B.F., Yao J.T.P, Structural control:past, present, and future. ASCE Journal of Engineering Mechanics 1997,123(9): 897-971.
    [92]Wodek K. Gawronski, Dynamics and Control of Structures, Springer-Verlag New York, Inc.,1998.
    [93]Preumont A., Vibration Control of Active Structures- An Introduction,2002, Kluwer Academic Publishers.
    [94]Spencer Jr. B.F., Newmark N.M., State of the art of structural control. ASCE Journal of Structural Engineering 2003:845-856.
    [95]彭刚,张国栋,土木工程结构振动控制.武汉:武汉理工大学出版社,2002.
    [96]欧进萍,结构振动控制——主动、半主动和智能控制.北京:科学出版社,2003.
    [97]滕军,结构振动控制的理论、技术和方法.北京:科学出版社,2009.
    [98]李爱群,工程结构减振控制.北京:机械工业出版社,2007.
    [99]Dyke S.J., Spencer Jr. B.F., Quast P., Sain M.K., Role of control-structure interactions in protective system design. ASCE Journal of Engineering Mechanics 1995,121(2):322-338.
    [100]Soong T.T., Dargush G.F., Passive Energy Dissipation Systems in Structural Engineering. John Wiley & Sons Ltd.,1997.
    [101]Gluck N., Reinhorn A.M., J. Gluck, R. Levy, Design of supplemental dampers of control of structures. ASCE Journal of Structural Engineering 1996,122(12): 1394-1399.
    [102]Mead D.J., Structural damping and damped vibration. ASME Applied Mechanics Review 2002,55(6):45-54.
    [103]Kasai K., Fu Y., Watanabe A., Passive control systems for seismic damage mitigation. ASCE Journal of Structural Engineering 1998,124(5):501-512.
    [104]Murnal P., Sinha R., Earthquake resistant design of structures using the variable frequency pendulum isolator. ASCE Journal of Structural Engineering 2002, 128(7):870-880.
    [105]Pai P.F., Rommel B., Non-linear vibration absorbers using higher order internal resonances. Journal of Sound and Vibration 2000,234(5):799-817.
    [106]Mikhlin Y.V., Reshetnikova S.N., Dynamical interaction of an elastic system and essentially nonlinear absorber. Journal of Sound and Vibration 2005,283: 91-120.
    [107]Qu Z.Q., Chang W., Dynamic condensation method for viscously damped vibration systems in engineering. Engineering Structures 2000,23:1426-1432.
    [108]Adhikari S., Woodhouse J., Quantification of non-viscous damping in discrete linear systems. Journal of Sound and Vibration 2003,260:499-518.
    [109]Shukla A.K., Datta T.K., Optimal use of a viscoelastic damper in building frames for seismic force. ASCE Journal of Structural Engineering 1999,125(4): 401-409.
    [110]Main J.A., Krenk S., Efficiency and tuning of viscous dampers on discrete systems. Journal of Sound and Vibration 2005,286:97-122.
    [111]Li Z.Q., Xu Y.L., Zhou L.M., Adjustable fluid damper with SMA actuators. Smart Materials and Structures 2006,15:1483-1492.
    [112]Liu W., Tong M., Lee G.C., Optimization methodology for damper configuration based on building performance indices. ASCE Journal of Structural Engineering 2005,131(11):1746-1756.
    [113]Krenk S., Complex modes and frequencies in damped structural vibrations. Journal of Sound and Vibration 2004,270:981-996.
    [114]Ibrahim R.A., Recent advances in nonlinear passive vibration isolators. Journal of Sound and Vibration 2008,314:371-452
    [115]Chen J.C., Response of large structures with stiffness control. Journal of Spacecraft 1984,21(5):463-467.
    [116]Ankireddi S., Yang H.T.Y., Multiple objective LQG control of wind-excited building. ASCE Journal of Structural Engineering 1997,123(7):943-951.
    [117]Wu Z., Soong T.T., Modified bang-bang control law for structural control implementation. ASCE Journal of Engineering Mechanics 1995,122(8):771-777.
    [118]Dimentberg M.F., Iourtchenkoa, D.V. Bratus A.S., Optimal bounded control of steady-state random vibrations. Probabilistic Engineering Mechanics 2000,15: 381-386.
    [119]Singh S.P., Pruthi H.S., Agarwal V.P., Efficient modal control strategies for active control of vibrations. Journal of Sound and Vibration 2003,262:563-575.
    [120]Yang J.N., Wu J.C., Agrawal, A.K., Sliding mode control for nonlinear and hysteretic structures. ASCE Journal of Engineering Mechanics 1995,121(12): 1330-1339.
    [121]Sha D., Bajic V.B., Yang H., New model and sliding mode control of hydraulic elevator velocity tracking system. Simulation Practice and Theory 2002,9: 365-385.
    [122]Lee S.H., Min K.W., Lee Y.C., Modified sliding mode control using a target derivative of the Lyapunov function. Engineering Structures 2005,27:49-59.
    [123]Chen X., Adaptive sliding mode control for discrete-time multi-input multi-output systems. Automatica 2006,42:427-435.
    [124]Gasimov R.N., Karamancioglu A., Yazici A., A nonlinear programming approach for the sliding mode control design Applied Mathematical Modelling 2005,29: 1135-1148.
    [125]Brown A.S., Yang H.T.Y., Neural networks for multiobjective adaptive structural control. ASCE Journal of Structural Engineering 2001,127(2):203-210.
    [126]Inaudi J.A., Modulated homogeneous friction:a semi-active damping strategy. Earthquake Engineering and Structural Dynamics 1997,26:361-376.
    [127]Dupont P., Kasturi P., Stokes A., Semi-active control of friction dampers. Journal of Sound and Vibration 1997,2020(2):203-218.
    [128]He W.L., Agrawa A.K., Yang J.N., Novel semiactive friction controller for linear structures against earthquakes. ASCE Journal of Structural Engineering 2003, 129(7):941-950.
    [129]Lu L.Y., Semi-active modal control for seismic structures with variable friction dampers. Engineering Structures 2004,26:437-454.
    [130]Wang K.W., Kim Y.S., Shea D.B., Structural vibration control via electrorheological-fluid-based actuators with adaptive viscous and frictional damping. Journal of Sound and Vibration 1994,177(2):227-237.
    [131]Burton S.A., Makris N., Konstantopoulos I., Antsaklis P.J., Modeling the response of ER damper:phenomenology and emulation. ASCE Journal of Engineering Mechanics 1996,122(9):897-906.
    [132]Gavin H.P., Hanson R.D., Filisko F.E., Electrorheological dampers, Part Ⅰ: analysis and design. ASME Journal of Applied Mechanics 1996,63:669-675.
    [133]Gavin H.P., Hanson R.D., Filisko F.E., Electrorheological dampers, Part Ⅱ: testing and modeling. ASME Journal of Applied Mechanics 1996,63:676-682.
    [134]Dyke S.J., Spencer Jr B.F., Sain M.K., Carlson J.D., Modeling and control of magnetorheological dampers for seismic response reduction. Smart Materials and Structures 1996,5:565-575.
    [135]Spencer Jr. B.F., Dyke S.J., Sain M.K., Carlson J.D., Phenomenological model for magnetorheological dampers. ASCE Journal of Engineering Mechanics 1997, 123(3):230-238.
    [136]Jansen L.M., Dyke S.J., Semiactive control strategies for MR dampers: comparative study. ASCE Journal of Engineering Mechanics 2000,126(8): 795-803.
    [137]Jung H.J., Spencer Jr. B.F., Ni Y.Q., Lee I.W., State-of-the-art of semiactive control systems using MR fluid dampers in civil engineering applications. Structural Engineering and Mechanics 2004,17(3-4):493-526.
    [138]Yang G., Spencer Jr.B.F., Jung H.J., Carlson J.D., Dynamic modeling of large-Scale magnetorheological damper systems for civil engineering applications. ASCE Engineering Mechanics 2004,130(9):1107-1114.
    [139]Dominguez A., Sedaghati R., Stiharu I., A new dynamic hysteresis model for magnetorheological dampers. Smart Materials and Structures 2006,15: 1179-1189.
    [140]Ni Y.Q., Ying Z.G., Wang J.Y., Ko J.M., Spencer Jr. B.F., Stochastic optimal control of wind-excited tall buildings using semi-active MR-TLCDs. Probabilistic Engineering Mechanics 2004,19:269-277.
    [141]Wang J.Y., Ni Y.Q., Ko J.M., Spencer Jr. B.F., Magneto-rheological tuned liquid column dampers (MR-TLCDs) for vibration mitigation of tall buildings: modeling and analysis of open-loop control. Computers and Structures 2005,83: 2023-2034.
    [142]Sadek F., Mohraz B., Semiactive control algorithms of structures with variable dampers. ASCE Journal of Engineering Mechanics 1998,124(9):981-990.
    [143]Symans M.D., Constantinou M.C., Semi-active control systems for seismic protection of structures:a state-of-the-art review. Engineering Structures 1999,21: 469-487.
    [144]Kuehn J.L., Stalford H.L., Stability of a Lyapunov controller for a semi-active structural control system with nonlinear actuator dynamics. Journal of Mathematical Analysis and Applications 2000,251:940-957.
    [145]Xia P.Q., An inverse model of MR damper using optimal neural network and system identification Journal of Sound and Vibration 2003,266:1009-1023.
    [146]Aldemir U., Optimal control of structures with semiactive-tuned mass dampers. Journal of Sound and Vibration 2003,266:847-874.
    [147]Chang C.C., Zhou L., Neural network emulation of inverse dynamics for a magnetorheological damper. ASCE Journal of Structural Engineering 2002, 128(2):231-239.
    [148]Zhou L., Chang C.C., Wang L.X., Adaptive fuzzy control for nonlinear building-magnetorheological damper system. ASCE Journal of Structural Engineering 2003,129(7):905-913.
    [149]Xu Y.L., Qu W.L., Chen Z.H., Control of wind-excited truss tower using semiactive friction damper. ASCE Journal of Structural Engineering 2001,127(8): 861-868.
    [150]Choi S.B., Kim W.K., Vibration control of a semi-active suspension featuring electrorheological fluid dampers. Journal of Sound and Vibration 2000,234(3): 537-546.
    [151]Chatterjee S., Singha T.K., Karmakar S.K., Effect of high-frequency low-amplitude vibration on the performance of a class of semi-active base isolation systems with on-off damping. Journal of Sound and Vibration 2004,274: 893-914.
    [152]Nitta Y., Nishitani A., Spencer Jr. B.F., Semiactive control strategy for smart base isolation utilizing absolute acceleration information. Structural Control and Health Monitoring 2006,13:649-659.
    [153]Kazakevitch M., Zakora A., Cable stabilization for wind and moving load effect. Journal of Wind Engineering and Industrial Aerodynamics 1998 (74-76): 995-1003.
    [154]Macdonald J.H.G., Separation of the contributions of aerodynamic and structural damping in vibrations of inclined cables. Journal of Wind Engineering and Industrial Aerodynamics 2002,90:19-39.
    [155]Yamaguchi H., Nagahawatta H.D., Damping effects of cable cross ties in cable-stayed bridges. Journal of Wind Engineering and Industrial Aerodynamics 1995, (54/55):35-43.
    [156]Yamaguchi H., Alauddin Md., Poovarodom N., Dynamic characteristics and vibration control of a cable system with substructural interactions. Engineering Structures 2001,23:1348-1358.
    [157]Yamaguchi H., Alauddin Md., Control of cable vibrations using secondary cable with special reference to nonlinearity and interaction. Engineering Structures 2003,25:801-816.
    [158]Pacheco B.M., Fujino Y., Estimation curve for modal damping in stay cables with viscous damper. ASCE Journal of Structural Engineering 1993,119(6): 1961-1979.
    [159]Nakamura A., Kasuga A., Arai H., The effects of mechanical dampers on stay cables with high-damping rubber. Construction and Building Materials 1998, 12(2-3):115-123.
    [160]Xu Y.L, Y, Z., Vibration of inclined sag cables with oil dampers in cable-stayed bridgeds. Journal of Bridge Engineering 1998,3(4):194-203.
    [161]Xu Y.L., Yu Z., Ko J.M., Forced vibration studies of sagged cables with oil damper using a hybrid method. Engineering Mechanics 1998,20(8):692-705.
    [162]Yu Z., Xu Y.L., Mitigation of three-dimensional vibration of inclined sag cable using discrete oil damper-I. Formulation. Journal of Sound and Vibration 1998 214(4):659-675.
    [163]Xu Y.L., Yu Z., Mitigation of three-dimensional vibration of inclined sag cable using discrete oil damper-Ⅱ. Application. Journal of Sound and Vibration 1998 214(4):675-693.
    [164]Xu Y.L., Zhan S., Ko J.M., Yu Z., Experimental study of vibration mitigation of bridge stay cables. ASCE Journal of Structural Engineering 1999,125(9): 977-986.
    [165]Yu Z., Xu Y.L., Non-linear vibration of cable-damper systems Part Ⅰ:Formulation. Journal of Sound and Vibration 1999,225(3):447-463.
    [166]Xu Y.L., Yu Z., Non-linear vibration of cable-damper systems Part Ⅱ:Application and verification. Journal of Sound and Vibration 1999,225(3):465-481.
    [167]Krenk S., Vibrations of a taut cable with an external damper. ASME Journal of Applied Mechanics 2000,67:772-776.
    [168]S. Krenk, Vibrations of a taut cable with an external damper. ASME Journal of Applied Mechanics 2000,67:772-776.
    [169]Tabatabai H., Mehrabi A.B., Design of mechanical viscous dampers for stay cables. ASCE Journal of Bridge Engineering 2000,5(2):114-123.
    [170]Main J.A., Jones N.P., Evaluation of viscous damper for stay-cable vibration mitigation. ASCE Journal of Bridge Engineering 2001,6(6):385-397.
    [171]Main J.A., Jones N.P., Free vibrations of taut cable with attached damper. Ⅰ: Linear viscous damper. ASCE Journal of Engineering Mechanics 2002,128(10): 1062-1071.
    [172]Main J.A., Jones N.P., Free vibrations of taut cable with attached damper. Ⅱ: Nonlinear damper. ASCE Journal of Engineering Mechanics 2002,128(10): 1072-1081.
    [173]Wang X.Y., Ni Y.Q., Ko J.M., Chen Z.Q., Optimal design of viscous dampers for multi-mode vibration control of bridge cables. Engineering Structures 2005,27: 792-800.
    [174]Sauter D., Hagedorn P., On the hysteresis of wire cables in Stockbridge dampers. International Journal of Non-Linear Mechanics 2002,37:1453-1459.
    [175]Nielsen S.R.K., Krenk S., Whirling motion of a shallow cable with viscous dampers. Journal of Sound and Vibration 2003,265:417-435.
    [176]Abdel-Rohman M., Spencer Jr.B.F., Control of wind-induced nonlinear oscillations in suspended cables. Nonlinear Dynamics 2004,37:341-355.
    [177]Shuma, K.M., Xu Y.L., Guo W.H., Wind-induced vibration control of long span cable-stayed bridges using multiple pressurized tuned liquid column dampers. Journal of Wind Engineering and Industrial Aerodynamics 2008,96:166-192.
    [178]Fischer O., Wind-excited vibrations—Solution by passive dynamic vibration absorbers of different types. Journal of Wind Engineering and Industrial Aerodynamics 2007,95:1028-1039.
    [179]Tan C.A., Ying S., Active wave control of the axially moving string:theory and experiment. Journal of Sound and Vibration 2000,236(5):861-880.
    [180]Krenk S., Hφgsberg J.R., Damping of cables by a transverse force. ASCE Journal of Engineering Mechanics 2005,131(4):340-348.
    [181]Baicu C.F., Rahn C.D., Nibali B.D., Active boundary control of elastic cables: theory and experiment. Journal of Sound and Vibration 1996,198(1):17-26.
    [182]Canbolat H., Dawson D., Rahn C., Nagarkatti S., Boundary control of a flexible cable with actuator dynamics. Proceedings of the American Control Conference, Albuquerque, New Mexico 1997,3547-3551.
    [183]Canbolat H, Dawson D.M., Rahn C., Nagarkatti S., Adaptive boundary control of out-of-plane cable vibration. ASME Journal of Applied Mechanics 1998,65: 963-969.
    [184]Fujino Y., Warnitcha, P., Pachec, B.M., Active stiffness control of cable vibration. ASME Journal of Applied Mechanics 1993,60:948-953.
    [185]Fujino, Y., Susumpow, T., Active control of cables by axial support motion, Smart Material and Structures 1995 (4):41-51.
    [186]Susumpow, T., Fujino, Y, Active control of multimodal cable vibration by axial support motion. Journal of Engineering Mechanics 1995 (121):964-972.
    [187]Bossens F., Preumont A., Active tendon control of cable-stayed bridges:a large-scale demonstration. Earthquake Engineering and Structural Dynamics 2001,30:961-979.
    [188]Gattulli, V., Pasca, M., Vestroni, F., Nonlinear oscillations of a nonresonant cable under in-plane excitation with a longitudinal control. Nonlinear Dynamics,1997, 14:139-156.
    [189]Gattulli, V., Pasca, M., Vestroni, F., Nonlinear oscillations of a nonresonant cable under in-plane excitation with a longitudinal control. Nonlinear Dynamics,1997, 14:139-156.
    [190]Gattulli V., Ghanem R., Adaptive control of flow-induced oscillations including vortex effects. International Journal of Non-Linear Mechanics 1999,34: 853-868.
    [191]Gattulli V., Ghanem R., Adaptive control of flow-induced oscillations including vortex effects. International Journal of Non-Linear Mechanics 1999,34: 853-868.
    [192]Gattulli V., Vestroni F., Nonlinear strategies for longitudinal control in the stabilization of an oscillating suspended Cable. Dynamics and Control 2000,10: 359-374.
    [193]Gehle R.W., Masri S.F., Active control of shallow, slack cable using the parametric control of end tension. Nonlinear Dynamics 1998,17:77-94.
    [194]M. Pasca, Vestroni F., Gattulli V., Active Longitudinal Control of Wind-Induced Oscillations of a Suspended Cable. Meccanica 1998,33:255-266.
    [195]Achkire Y., Bossens F., Preumont A., Active damping and flutter control of cable-stayed bridges. Journal of Wind Engineering and Industrial Aerodynamics 1998,74-76:913-921.
    [196]Wang L.Y., Xu Y.L., Active stiffness control of wind-rain-induced vibration of prototype stay cable. International Journal for Numerical Methods in Engineering 2008,74:80-100.
    [197]Sun B.N., Wang Z.G., Ko J.M., Ni Y.Q., Cable parametric oscillation and its control for cable-stayed bridges. Smart Structures and Materials 2001:Smart Systems for Bridges, Structures, and Highways, Liu S.C. (Ed), SPIE 4330: 366-376.
    [198]Park K.S., Jung H.J., Lee I.W., Hybrid control strategy for seismic protection of a benchmark cable-stayed bridge. Engineering Structures 2003,25:405-417.
    [199]Diouron T.L., Fujino Y., Abe M., Control of wind-induced self-excited oscillations by transfer of internal energy to higher modes of vibration. Ⅱ: Application to taut cables. ASCE Journal of Engineering Mechanics 2003,129(5): 526-538.
    [200]Diouron T.L., Fujino Y., Abe M., Control of wind-induced self-excited oscillations by transfer of internal energy to higher modes of vibration. Ⅰ: Analysis in two degrees of freedom. ASCE Journal of Engineering Mechanics 2003,129(5):514-525.
    [201]Wu W.J., Cai C.S., Theoretical exploration of a taut cable and a TMD system. Engineering Structures 2007,29:962-972.
    [202]Johnson E.A., Baker G.A., Spencer, Jr. B.F., Fujino Y, Mitigating stay cable oscillation using semiactive damping. Smart Structures and Materials 2000: Smart Systems for Bridges, Structures, and Highways, Liu S.C (Ed), SPIE 3988: 207-216.
    [203]Johnson E.A., Christenson R.E., Semiactive damping of cable with sag. Computer-Aided Civil and Infrastructure Engineering 2003,18:132-146.
    [204]Christenson R.E., Spencer Jr. B.F., Johnson E.A., Experimental verification of smart cable damping. ASCE Journal of Engineering Mechanics 2006,132(3): 268-278.
    [205]Ni Y.Q., Chen Y., Ko J.M., Cao D.Q., Neuro-control of cable vibration using semi-active magneto-rheological dampers. Engineering Structures 2002,24: 295-307.
    [206]陈勇,孙炳楠,楼文娟,倪一清,高赞明.斜拉索振动的ER-MR阻尼器半主动神经网络控制.振动工程学报 2003,16(2):224-228.
    [207]陈水生,斜拉索振动的模糊半主动控制研究.计算力学学报 2006,23(6):733-736.
    [208]Zhou Q., Nielsena S.R.K., Qu W.L., Semi-active control of three-dimensional vibrations of an inclined sag cable with magnetorheological dampers. Journal of Sound and Vibration 2006,296:1-22.
    [209]邬喆华.磁流变阻尼器对斜拉索振动控制的研究.浙江大学博士学位论文2003.
    [210]邬喆华,楼文娟,朱瑶宏,陈勇,孙炳楠,唐锦春.MR阻尼器控制算法对斜拉索的减振效果.功能材料 2006,37(5):833-837.
    [211]邬喆华,楼文娟,陈勇,倪一清,高赞明.MR阻尼器对斜拉索的减振控制的数值研究.中国公路学报 2006,19(1):62-66.
    [212]Duan Y.F., Ni Y.Q., Ko J.M., Theoretical and experimental studies on semi-active feedback control of cable vibration using MR dampers. Smart Structures and Materials 2004:Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, Liu S.C. (Ed), SPIE 5391:543-554.
    [213]Duan Y.F., Ni Y.Q., Ko J.M., Dong S.L., Design of MR dampers for open-loop vibration control of stay cables on cable supported structures. Spatial Structures 2007,13(2):58-64.
    [214]Ying Z.G., Ni Y.Q., Ko J.M., Parametrically excited instability analysis of a semi-actively controlled cable. Engineering Structures 2007,29:567-575.
    [215]Zhou Q., Nielsen S.R.K., Qu W.L., Semi-active control of shallow cables with magnetorheological dampers under harmonic axial support motion. Journal of Sound and Vibration 2008,311:683-706.
    [216]李忠献,陈海泉,李延涛.斜拉桥参数振动有限元分析与半主动控制.工程力学 2004,21(1):131-135.
    [217]Liu M., Vibration control of stay cables using magnetorheological fluid damper and superelastic shape memory alloy dampers. Ph. D Dissertation, School of Civil Engineering, Harbin Institute of Technology,2006.
    [218]Jung H.J., Spencer Jr. B.F., Lee I.W., Control of seismically excited cable-stayed bridge employing magnetorheological fluid dampers. ASCE Journal of Structural Engineering,2003,129(7):873-883.
    [219]朱位秋,随机振动.北京:科学出版社,1998.
    [220][日]星谷胜著,常宝琦译.随机振动分析.北京:地震出版社,1977.
    [221]方同,工程随机振动.北京:国防工业出版社,1995.
    [222]Calkin M.G., Lagrangian and Hamiltonian Mechanics. World Scientific Publishing Co. Pte. Ltd.,1996.
    [223]朱位秋,非线性随机动力学与控制——Hamilton理论体系框架.北京:科学出版社,2003.
    [224]Zhu W.Q., Nonlinear stochastic dynamics and control in Hamiltonian formulation. ASME Applied Mechanics Review 2006,59(1-6):230-248.
    [225]Khasminskii R.Z., On the averaging principle for stochastic differential equation. Kibernetika 1968,4:260-299.(in Russian)
    [226]Zhu W.Q., Lin Y.K., Stochastic averaging of the energy envelope. ASCE Journal of Engineering Mechanics 1991,117:1890-1905.
    [227]方洋旺,随机系统最优控制,北京:清华大学出版社,2005.
    [228]张洪钺,王青,最优控制理论与应用.北京:高等教育出版社,2006.
    [229]SUN Jian-qiao, Stochastic Dynamics and Control. Elsevier,2006.
    [230]Li Jie, Chen Jianbing, Stochastic Dynamics of Structurse. John Wiley & Sons (Asia) Pte Ltd,2009.
    [231]Zhu W. Q., Yang Y. Q., Stochastic averaging of quasi-non-integrable-Hamiltonian systems. Journal of Applied Mechanics 1997,64:157-164.
    [232]Arnold L., Stochastic differential equations:theory and applications. Wiley,1974.
    [233]Caughey T. K., Nonlinear theory of random vibrations, Advances in Applied Mechanics 1971,11:209-253.
    [234]Zhu W.Q., Huang Z.L., Yang Y.Q., Stochastic averaging of quasi integrable-Hamiltonian systems. ASME Journal of Applied Mechanics 1997,64:975-984.
    [235]Dong L., Ying Z.G., Zhu W.Q., Stochastic optimal semi-active control of nonlinear systems by using MR dampers. Advances in Structural Engineering 2004,7(6):485-494.
    [236]Ying Z.G., Ni Y.Q., Ko J.M., Semi-active optimal control of linearized systems with mult-degree of freedom and application. Journal of Sound and Vibration 2005,279:373-388.
    [237]Ying Z.G., Ni Y.Q., Ko J.M., A bounded stochastic optimal semi-active control. Journal of Sound and Vibration 2007,304:948-956.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700