用户名: 密码: 验证码:
基于智能理论斜拉桥EMD系统主动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以国际桥梁界地震激励振动控制的Emerson Memorial斜拉桥Benchmark模型为研究对象,尝试以电磁驱动主动质量阻尼器(Electromagnet-drived active mass damper,简称EMD)作为主动控制装置,运用模糊逻辑推理、人工神经网络、模糊神经网络、遗传算法等多种智能理论,建立EMD主动控制系统的智能模型;优化EMD主动控制装置的系统参数;对斜拉桥结构系统模型动力特性进行非参数辨识;设计若干控制指标,比较地震荷载作用下基于智能理论的斜拉桥结构振动控制效果;以及对EMD系统线圈输入电压的在线控制进行了研究。主要研究成果如下:
     1)利用模糊神经网络理论的非线性处理能力,以试验数据作为网络训练及验证数据,对电磁驱动AMD振动控制系统建模,建立更为宽泛的条件下系统输入输出变量之间的关系,从而有效改善现有力电关系模型的计算效果。
     2)利用遗传算法理论的非线性寻优能力,针对电磁驱动主动质量阻尼器的系统参数优化问题,以控制效果一定时作动器作功最小为目标函数,找出斜拉桥EMD控制系统在地震荷载作用下的最优控制器参数。
     3)利用人工神经网络理论的自学习、非线性逼近能力,建立桥梁结构非参数系统辨识模型,可以辨识桥梁结构的非线性特性,真实反映桥梁结构在无控及有控条件下的动力特性,通过对Emerson Memorial斜拉桥仿真实例验证了该方法的有效性。
     4)建立斜拉桥EMD系统的力电计算模型,根据大跨桥梁抗震设计特点,提出基于遗传-BP神经网络的斜拉桥EMD系统输入电压的在线控制方法,由传感器采集到的结构状态信号和外界地震激励信号瞬时做出系统输入电压选择,解决传统振动控制计算量繁重、运行慢导致时滞等问题,实现对桥梁结构在线较为精确的振动控制。
     5)利用模糊逻辑推理理论易于形成专家知识和经验,有较强鲁棒性,简单实用的特性,对斜拉桥EMD系统实施智能主动控制,使得桥梁结构能够在每一时刻根据结构状态和所受外荷载情况选择最优主动控制力,并通过EMD控制装置施加到结构中,达到减小结构动力响应的目的,通过对Emerson Memorial斜拉桥仿真实例验证了该方法的有效性。
     6)利用模糊神经网络理论的学习能力与聚类归纳能力,对斜拉桥EMD系统实施智能主动控制,使得桥梁结构能够在每一时刻能够根据结构状态和所受外荷载情况选择最优主动控制力,并通过EMD控制装置施加到结构中,达到减小结构动力响应的目的,对比基于模糊逻辑推理理论的桥梁结构智能主动控制,证明该方法减振效果更加明显有效。
Benchmark bridge of Emerson Memorial was taken as the research object in the thesis. The electromagnet-drived active mass dampers (EMD) were selected as the active control devices. Intelligent theories such as fuzzy logic theory, artificial neural network, fuzzy neural network, genetic algorithm and so on, were applied to model the behavior of EMD system, find the optimal controller parameters, and identify the bridge structural dynamical characteristics. A set of evaluation criteria was designed to study the control effectiveness based on different intelligent theory. And online control method of EMD's input voltage was studied. Main contents of the thesis are as follows.
     1. Using non-linearity handling ability of the fuzzy neural network, take the test data as the training and checking data of FNN, establishes the relations between the input variable and the output variable under the generalized condition, builds an intelligent model of EMD vibration control system, thus computation effect of the existing force electricity relations for electromagnet-drived AMD vibration control system can be improved effectively.
     2. A control parameter optimization method based on genetic algorithm was presented. To the electromagnet-drived active mass damper's parameter design in bridge structural control, the optimal controller parameter under seismic excitation was found by the strong nonlinear optimization ability of genetic algorithm.
     3. A bridge structural system identification method based on artificial neural network was presented. Utilizing the strong learning and nonlinear approaches ability of the artificial neural network, the weakness of the traditional system identification such as bad weak tolerant ability and nonlinear identification was overcame. The method can identify the dynamic characteristics of the bridge under uncontrolled and controlled effectively. Through the numerical simulation example, validity and usability of the method was confirmed.
     4. The force electricity relation of electromagnet-drived active mass damper working for long span bridge was established based on the electromagnetic theory. According to the earthquake resistance design characteristic of long span bridge, online control method of EMD's input voltage based on GA-BP network was presented. The input voltage can be instantly chosen as soon as the dynamic response and earthquake acceleration are gathered by the sensors. The big slow computation and time delay problem are both resolved. Thus, the online vibration control of the long span bridge can be realized precisely.
     5. Intelligent active vibration control online of the bridge structure based on fuzzy logic theory was presented. Utilizing the characteristics of fuzzy logic theory such as the easiness forming the expert knowledge and experience, strong robustness, simple but practical. The active force can be instantly chosen as soon as the dynamic response and earthquake acceleration are gathered by the sensors. The force can be exerted in the bridge structure by the EMD, and then, the dynamic response of the bridge can be reduced effectively.
     6. Intelligent active vibration control online of the bridge structure based on fuzzy neural network was presented. Utilizing the strong learning and clustering ability of the fuzzy neural network, the active force can be instantly chosen as soon as the dynamic response and earthquake acceleration are gathered by the sensors. The force can be exerted in the bridge structure by the EMD, and then, the dynamic response of the bridge can be reduced greatly.
引文
[1]李国豪.桥梁结构稳定与振动[M].北京:中国铁道出版社,2003,482-593.
    [2]范立础,李建中,王君杰.高架桥梁抗震设计[M].北京:人民交通出版社,2001,1-17.
    [3]M.J.N.普瑞斯特雷,F.塞勃勒,K.M.卡尔维著,袁万城,胡勃等译.桥梁抗震设计与加固[M].北京:人民交通出版社,2001,1-39.
    [4]范立础,胡世德,叶爱君.大跨度桥梁抗震设计[M].人民交通出版社,2001,1-42.
    [5]G.W.Houser.Structural control:Past,present,and future[J].Joumal of Engineering Mechanics,1997,123(9):897-971.
    [6]欧进萍.结构振动控制—主动、半主动与智能控制[M].北京:科学出版社,2003,1.55.
    [7]李宏男,李忠献等.结构振动与控制[M].北京:中国建筑工业出版社,2005,352-366.
    [8]J.T.P.Yao.Concept of structure control[J].J.Struct.Div.,1972,98:1567-1574.
    [9]Y.Ackire,A.Preumout.Active tendon control of cable-stayed bridges[J].Earthquake Engineering and Structural Dynamics,1996,25(6):585-597.
    [10]张俊平,李新平,周福霖.桥梁结构振动控制发展及存在的问题[J].世界地震工程,1998,14(2):9-16.
    [11]刘保东.桥梁抗震主动控制的稳定性研究[J].中国安全科学学报,2002,12(3):67-70.
    [12]周明华,葛宝翔.公路桥梁橡胶支座的使用寿命与应用对策[J].土木工程学报,2005,38(6):92-96.
    [13]范立础,袁万城.桥梁橡胶支座减,隔震性能研究[J].同济大学学报,1989,17(4):447-455.
    [14]张俊平,廖蜀樵等.桥梁隔震体系振动试验研究(Ⅰ)—试验意义与模型设计[J].地震工程与工程振动,2001,21(4):128-134.
    [15]张俊平,闫维明等.桥梁隔震体系振动试验研究(Ⅱ)—主要测试结果介绍[J].地震工程与工程振动,2002,22(1):101-108.
    [16]张俊平,廖蜀樵等.桥梁隔震体系振动试验研究(Ⅲ)—测试结果分析[J].地震工程与工程振动,2002,22(2):136-142.
    [17]张俊平,廖蜀樵等.桥梁隔震体系振动试验研究(Ⅳ)—隔震桥梁的设计方法[J].地震工程与工程振动,2002,22(3):149-153.
    [18]陈海泉,李忠献等.应用SMA复合橡胶支座的桥梁隔震[J].地震工程与工程振动, 2002,22(2):143-148.
    [19]程更人.考虑参数不确定性及多模态气动耦合的桥梁风致振动控制系统的研究[D].同济大学,2000.
    [20]顾明,吴炜,项海帆.大跨桥梁颤振控制的试验研究[J].同济大学学报,1996,24(2):124-129.
    [21]曾宪武,韩大建.考虑多模态气动耦合效应桥梁颤振TMD控制参数分析[J].振动与冲击,2005,24(3):32-35.
    [22]曾宪武,韩大建.基于多模态耦合颤振理论桥梁颤振MTMD控制鲁棒性分析[J].工程力学,2005,22(4):74-78.
    [23]陈新,史家钧,石志源.黄山太平湖大桥索塔振动控制研究[J].桥梁建设.1998(2):19-22.
    [24]黄维平,强士中.大跨度悬索桥的双向TMD振动控制[J].桥梁建设,2000(4):4-6.
    [25]J.N.Yang,et al.Active control of two-cable-stayed bridge[J].Journal of the EngineeringMechanics,1979,EM4;677-694.
    [26]R.Betti,et al.Vibration and damage control for long-span bridges[J].Smart material and structures,1995,4:91-100.
    [27]Frédéric Bossens.Active tendon control of cable-stayed bridges:a large-scale demonstration[J].Earthquake Engineering and Structural Dynamics,2001,30(7):961-979.
    [28]Achkire,Y.and Preumont,A.,Active tendon control of cable-stayed bridges[J].Earthquake Engineering and Structural Dynamics,1996,25:585-597.
    [29]Magana,M.E.and Rodellar,J.,Nonlinear decentralized active tendon control of cable-stayed bridges[J].Journal of Structural Control,1998,5:45-62.
    [30]王克海,朱唏.斜拉桥结构基于模态分析的线性二次最优化减震控制的研究[J].铁道学报.2000,22(1):67-71.
    [31]王克海,朱唏.斜拉桥基于模态分析的滑动状态减震控制研究[J].桥梁建设,2001,(6):1-3.
    [32]蔡婧,李小珍等.斜拉桥地震反应的主动控制研究[J].桥梁建设,2002,(3):10-13.
    [33]Schemmann,A.G.and Smith,H.A.,Vibration control of cable-stayed bridges.Part 1:Modeling issues.Part 2:Control analyses[J].Earthquake Engineering and Structural Dynamics,1998,27:811-843.
    [34]张春巍,欧进萍.结构振动的电磁驱动AMD系统控制策略与试验[J].噪声与振动控制,2006,26(5):9-13,40.
    [35]张春巍,欧进萍.电磁驱动AMD系统控制结构地震响应的振动台试验[J].地震工程与工程振动,2006,26(2):104-110.
    [36]张春巍,欧进萍.电磁式惯性型作动器与结构耦合系统建模与试验研究[J].振动工程学报,2006,19(3):289-295.
    [37]欧进萍,张春巍.新型电磁驱动AMD控制系统的建模与性能试验[J].高技术通讯,2007,17(4):382-388.
    [38]张春巍.结构振动的电磁驱动AMD控制系统及其相关理论与试验研究[D].哈尔滨工业大学,2005.
    [39]刘季,孙作玉等.结构可变阻尼半主动控制[J].地震工程与工程振动,1997,17(2):92-97.
    [40]陈水生.高架桥梁地震响应磁流变阻尼器(MR)半主动控制[J].长安大学学报,2003,23(6):40-43.
    [41]陈水生.斜拉桥拉索的MR半主动控制研究[J].中国公路学报,2004,17(2):50-54.
    [42]陈水生.高架桥地震响应模糊半主动控制[J].地震工程与工程振动,2005,25(6):165-171.
    [43]陈水生.斜拉索振动的模糊半主动控制研究[J].计算力学学报,2006,23(6):733-736,742.
    [44]王代华,黄尚廉.斜拉桥横向振动的半主动筋腱控制[J].应用力学学报,2000,17(2):12-18.
    [45]M.D.Symans,S.W.Kelly.Fuzzy logic control of bridges structures using intelligent semi-active seismic isolation systems[J].Earthquake Engineering and Structural Dynamics,1999,28:37-60.
    [46]邬喆华,陈勇,楼文娟等.磁流变阻尼器对斜拉索减振效果的试验研究[J].振动工程学报,2004,17(2):102-107.
    [47]邬拮华,楼文娟,朱瑶宏等.MR阻尼器控制算法对斜拉索的减振效果[J].功能材料,2006,37(5):833-836.
    [48]邬喆华,楼文娟,陈勇等.MR阻尼器对斜拉索减振控制的数值仿真试验[J].中国公路学报,2006,34(10):1309-1314.
    [49]邬喆华,楼文娟,陈勇等.斜拉索采用MR阻尼器半主动控制的研究[J].同济大学学报,2006,19(1):62-66.
    [50]邬喆华.磁流变阻尼器对斜拉索振动控制的研究[D].浙江大学,2003.
    [51]亓兴军,李小军,周国良.行波效应对大跨刚构连续桥梁半主动控制影响分析[J].应用力学学报,2006,28(2):190-196.
    [52]亓兴军,李小军,肖俊华.桥梁减震半主动控制算法比较与分析[J].振动与冲击,2006,25(6):71-75.
    [53]亓兴军,李小军,李亚琦.桩-土动力相互作用对连续梁桥半主动控制的影响研究[J].振动与冲击,2006,25(5):81-84.
    [54]亓兴军,李小军,周国良.桥梁地震响应半主动控制的加速度放大效应[J].中国铁道学报,2007,28(4):45-49.
    [55]亓兴军,李小军.大跨漂浮体系斜拉桥减震控制研究[J].振动与冲击,2007,26(3):79-82.
    [56]亓兴军,李小军,卢涛.行波效应对桥梁不同振动控制方法减震效果的影响分析[J].地震工程与工程振动,2006,26(5):201-207.
    [57]蔡国平,孙峰.建筑结构振动优化混合控制[J].工程力学,2000,17(2):129-133,128.
    [58]辛宇翔,楼梦麟,陈根达.结构混合耗能控制研究[J].同济大学学报,2004,32(3):286-290.
    [59]邹立华,赵人达.组合隔震结构的振动控制研究[J].振动与冲击,2005,24(2):80-83.
    [60]张延年,刘斌等.MRD与LRB相混合的结构振动控制[J].东北大学学报,2006,27(1):95-98.
    [61]宗刚,楼梦麟.混合被动控制优化设计及性能研究[J].地震工程与工程振动,2007,27(4):127-132.
    [62]杨大智,魏中国.智能材料-材料科学发展新趋势[J].物理,1997,26(1):6-11.
    [63]瞿伟廉,李卓球等.智能材料-结构系统在土木工程中的应用[J].地震工程与工程振动,1999,19(3):87-95.
    [64]李宏男,李军,宋钢兵.采用压电智能材料的土木工程结构控制研究进展[J].建筑结构学报,2005,26(3):1-8,29.
    [65]王丹生,朱宏平,陈晓强等.利用压电自传感驱动器进行裂纹钢梁损伤识别的试验研究[J].振动与冲击,2006,25(6):139-142.
    [66]丁根芳,王建国,覃艳.自感知压电层合梁的数值分析与数值模拟[J].工程力学,2006,23(2):131-136.
    [67]王建国,丁根芳,覃艳.基于遗传算法和梯度算法压电层合结构的最优形状控制[J].固体力学学报,2008,29(1):59-65.
    [68]王建国,丁根芳,覃艳.层状压电智能梁板结构的形状最优控制研究[J].应用力学学报,2008,(01):118-123,187.
    [69]孙增圻,张再兴.智能控制理论与技术[J].控制与决策,1996,11(1):1-8.
    [70]蔡自兴.人工智能控制[M].北京:化学工业出版社,2005,1-21.
    [71]Hideo Fujitani,etal.Seismic response control tests and simulations by fuzzy optimal logic of building structures[J].Engineering Structures,1998,20(3):164-175.
    [72]Akinori tani,etal.Intelligent fuzzy optimal control of building structures[J].Engineefing Structures,1998,20(3):184-192.
    [73]阎石,林皋等.相邻建筑结构的模糊振动控制[J].地震工程与工程振动,2000,20(2):39-43.
    [74]王刚,欧进萍.结构振动的模糊建模与模糊控制规则提取[J].地震工程与工程振动,2001,21(2):130-135.
    [75]Aldawod,M.,Samali,B.,etal.Active Control of Along Wind Response of Tall Building Using a Fuzzy Controller[J].Engineering Structure,2001,23:1512:1522.
    [76]翟东武.抑制桥梁结构横向振动的半主动控制方法[J].中国公路学报,2002,1(1):61-66.
    [77]卞永明,孙长磊,石来德.结构主动抗振参数敏感度分析及模糊在线修正[J].振动.测试与诊断,2004,24(4):310-313.
    [78]张微敬,欧进萍.基于粗糙集理论的结构振动模糊控制[J].振动工程学报,2005,18(4):406-411.
    [79]李忠献,岳福青,周莉.城市隔震高架桥梁地震反应的半主动控制[J].土木工程学报,2007,40(1):42-48.
    [80]Jamshid Ghaboussi,etal.Active control of structures using neural networks[J].Joumal of Engineering Mechanics,1995,121(4):555-566.
    [81]Khaldoon bani-hani,etal.Neural networks for structural control of a benchmark problem,active tendon system[J].Earthquake engineering and structural dynamics,1998,27:1225-1245.
    [82]Khaldoon bani-hani,etal.Nonlinear structural control using neural networks[J].Journal of Engineering Mechanics,1998,124,(3):319-327.
    [83]Khaldoon bani-hani,etal.Experimental study of identification and control of structures using neural network part 1:identification[J].Earthquake engineering and structural dynamics,1999,28:995-1018.
    [84]S.F.Masri,etal.Application of neural networks for detection of changes in nonlinear systems[J].Journal of Engineering Mechanics,2000,126(7):666-676.
    [85]孙作玉.基于动态递归神经网络的半主动控制结构响应预测[J].振动工程学报,2000,13(3):443-448.
    [86]徐赵东,沈亚鹏,郭迎庆.神经网络对结构地震反应的预测及试验研究[J].振动与冲击,2003,22(2):8-11.
    [87]陈勇,孙炳楠,楼文娟等.基于降阶模型的斜拉索振动的半主动神经网络控制[J].控制理论与应用,2004,21(2):211-216.
    [88]黄永安,邓子辰.基于瞬时最优控制神经网络的建筑结构主动控制研究[J].振动与冲击2005,24(2):5-8.
    [89]樊剑,张艳成,魏俊杰.基于神经网络的滑移隔震结构智能半主动控制[J].地震工程与工程振动,2007,27(1):130-135.
    [90]颜桂云,陈福全,孙炳楠.模糊神经网络在高层建筑横风向振动控制中的应用研究[J].振动与冲击,2007,26(1):69-72,76.
    [91]Shimoda K,Obata T,etal.Study of efficiency of fuzzy active control by using genetic algorithm[J].Structural Engineering,1997,43A:685-92.
    [92]Kim,Y.J.and Ghaboussi J.A new method reduced order feedback control using genetic algorithms[J].Earthquake Engineering & Structural Dynamics,1999,28(3):235-254.
    [93]何玉敖,何亚东.基于Lyapunov稳定性原理和遗传算法的结构半主动控制[J].土木工程学报,2000,33(6):88-93.
    [94]Junghuai Chou,Jamshid Ghaboussi.Genetic algorithm in structural damage detection.Computers and Structures,2001,79(14):1335-1353.
    [95]何玉敖,郭婷.遗传算.神经网络结构控制系统研究[J].振动工程学报,2001,14(2):192-195.
    [96]李宏男,董松员,李宏宇.基于遗传算法优化阻尼器空间位置的结构振动控制[J].振动与冲击,2006,25(2):1-4.
    [97]何亚东.基于智能理论的建筑结构系统辨识、半主动控制及控制优化研究[D].天津大学,2001.
    [98]Schemmann,A.G.,Smith,H.A.,Bergman,L.A.,and Dyke,S.J.Feasibility Study:Control of a Cable-Stayed Bridge Model,Part Ⅰ:Problem Definition.Proceedings of the Second International Conference on Structural Control,Vol.2,John Wiley & Sons,England.,Kyoto,JAPAN,June 30-July 2.1998:975-979.
    [99]Schemmann,A.G.,Smith,H.A.Vibration control of cable-stayed bridges part 1:modeling issues[J].Earthquake Engineering and Structural Dynamics,1998,27:811~824.Schemmann,A.G.,Smith,H.A.Vibration control of cable-stayed bridges part 1:modeling issues[J].Earthquake Engineering and Structural Dynamics,1998,27:811-824.
    [100]Schemmann,A.G.,Smith,H.A.Vibration control of cable-stayed bridges part 2:control analyses[J].Earthquake Engineering and Structural Dynamics 1998,27:825-843.
    [101]Caicedo,J.M.,Dyke,S.J.,Turan,G.and Bergman,L.A.,.Comparison of Modeling Techniques for Dynamic Analysis of a Cable-Stayed Bridge.Proceedings of the Engineering Mechanics Conference,ASCE,Austin,Texas,May 21-23,2000.
    [102]Dyke,S.J.,Caicedo,J.M.,Bergman,L.A.& Turan,G.Introducing a benchmark control problem for a cable-stayed bridge subjected to seismic excitation.In Proceedings of the China-US Millennium Symposium on Earthquake Engineering,Beijing,China.2000.
    [103]Jung H J,Spencer Jr.B F,Lee I W.Benchmark control problem for seismically excited cable-stayed bridges using smart damping strategies.Conference on cable-supported bridges,seoul Korea,Serial.2001,256-267.
    [104]G(u|¨)rsoy Turan.Active control of a cable-stayed bridge against earthquake excitations[D].University of Illinois at Urbana-Champaign,2001.
    [105]Agrawal,A.,Yang,J.N.,etal.Performance Evaluation of Some Semi-active Control Systems for Benchmark Cable-Stayed Bridge.Proceedings of the Third World Conference on Structural Control,Como Italy,April 7-11,2002.
    [106]S.J.Dyke,J.M.Caicedo,etal.Phase I benchmark control problem for seismic response of cable-stayed bridges[J].Structural Engineering,2003,129(7):857-872.
    [107]Kyu-Sik Park,Hyung-Jo Jung,etal.Hybrid control strategy for seismic protection of a benchmark cable-stayed bridge[J].Engineering Structures,2003,25(4):405-417.
    [108]Hyung-Jo Jung,etal.Control of Seismically Excited Cable-Stayed Bridge Employing Magnetorheological Fluid Dampers[J].Structural Engineering,2003,129(7):873-883.
    [109]DAI Ze-bing,etal.Semi-active control of a cable-stayed bridge under multiple-support excitations[J].Journal of Zhejiang University,2004,5(3):317-325.
    [110]代泽兵.大跨度斜拉桥地震振动半主动控制应用研究[D].上海交通大学,2003.
    [111]代泽兵,黄金枝,王红霞.基于智能阻尼器的大跨度斜拉桥多支承激励地震振动控制[J].振动与冲击,2005,24(2):66-70.
    [112]何敏,王建国.地震激励下斜拉桥电磁驱动AMD主动控制系统的系统参数优化[J].振动与冲击,2008,27(6):118-122.
    [113]何敏,王建国.大跨桥梁结构电磁驱动AMD系统输入电压的在线控制研究[J].振动与冲击,2008,27(9):135-138.
    [114]何敏,王建国.电磁驱动主动质量阻尼器控制系统的智能模型[J].系统仿真学报(已录用).
    [115]吴晓莉,林哲辉等.MATLAB辅助模糊系统设计[M].西安:西安电子科技大学出版社,2002,130-158.
    [116]许东,吴铮.基于MATLAB6.x的系统分析与设计—神经网络[M].两安:西安电子科技大学出版社,2002,1-165.
    [117]刘金琨.智能控制[M].北京:电子工业出版社,2005,18-199.
    [118]罗均,谢少荣等.智能控制工程及其应用实例[M].北京:化学工业出版社,2005,51-116.
    [119]蔡婧.斜拉桥地震反应的主动控制研究[D].西南交通大学,2001.
    [120]雷英杰,张善文,李续武等.MATLAB遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2005,1-106.
    [121]项海帆.斜张桥在行波作用下的地震反应分析[J].同济大学学报,1983,2:1-8.
    [122]袁万城.大跨桥梁空间非线性地震反应分析[D].同济大学,1990.
    [123]Nazmy A.S.,Abdel-Ghaffar A.M.Non-Linear Earthquake Response Analysis of Long-Span Cable- Stayed Bridges:Theory[J].Earthquake Engineering and Structural Dynamics,1990,19:45-62.
    [124]Nazmy A.S.,Abdel-Ghaffar A.M.Three Dimensional Nonlinear Static Analysis of Cable-Stayed Bridges[J].Computers & Structures.,1990,34(2):257-271.
    [125]雷立宏.结构主动控制(AMD)算法和计算机模拟[D].哈尔滨建筑大学,1994.
    [126]H.Lus,etal.Identification of linear structural systems using earthquake-induced vibration data[J].Earthquake engineering and structural dynamics,1999,28:1449-1467.
    [127]马骏,曾庆华.时变参数识别方法研究[J].振动与冲击,1997,16(1):6-10,29.
    [128]Firdaus E.Udwadia,etal.A memory -matrix-based identification methodology for structural and mechanical systems[J].Earthquake engineering and structural dynamics,1999,2:1465-1481.
    [129]陈建勤,席裕庚,张钟俊.用模糊模型在线辨识非线性系统[J].自动化学报,1998,24(1):90-94.
    [130]徐赵东,郭迎庆.利用模糊控制器确定磁流变半主动控制结构的参数[J].东南大学学报,2004,34(2):244-248.
    [131]徐赵东,郭迎庆.MATLAB语言在建筑抗震工程中的应用[M].北京:科学出版社,2004,199-213.
    [132]Goto K,Kubota H,Miyakoshi J,etal.Active vibration control using fuzzy theory:Part 1 on control algorithm and control results[A].Proceeding of 1 st World Conference on Structural Control[C].Los Angeles,1994.
    [133]Yomada M,Goto K etal.Active vibration control using fuzzy theory:Part 2 optimal membership functions[A].Proceeding of 1 st World Conference on Structural Control[C].Los Angeles,1994.
    [134]M.Battaini,etal.Fuzzy control of structural vibration- an active mass system driven by a fuzzy controller[J].Earthquake Engineering and Structural Dynamics,1999,27(11):1267-1276.
    [135]Michael D.Symans,Steven W.Kelly.Fuzzy logic control of bridge structures using intelligent semi-active seismic isolation systems[J].Earthquake Engineering & Structural Dynamics,1999,28(1):37-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700