用户名: 密码: 验证码:
广东圆珠顶斑岩型铜钼矿床成岩成矿作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
圆珠顶斑岩型铜钼矿床(资源量Cu-0.98Mt, Mo-0.26Mt)位于广东省封开县境内,大地构造位置位于钦杭成矿带西南端,扬子板块和华夏板块的结合部位。作为近年来发现的一个大型斑岩铜钼矿床,圆珠顶矿床受到国内外众多矿床学家的关注,对圆珠顶矿床的深入研究,有助于完善区域成矿理论和指导找矿工作。
     本文在对圆珠顶矿床地质特征详细调查的基础上,开展了矿物学、岩石学、岩石地球化学、锆石U-Pb测年、锆石Hf同位素测试分析以及H、O、S、Pb等同位素地球化学和及包裹体岩相学、包裹体温压测试及单个包裹体成分分析的综合研究,对圆珠顶斑岩型铜铝矿床的岩石成因、成矿物质来源、流体演化过程和成矿机制以及成矿动力学背景进行了深入的讨论,并建立了矿床模型。
     野外钻孔及详细的镜下工作鉴定出与圆珠顶矿床成矿有关的岩石类型为二长花岗斑岩,岩石类型较为单一。圆珠顶矿床矿体主要赋存于围岩(寒武系变质砂岩)中,矿体形态具有平面上呈环状,垂向上成筒状,围绕斑岩体分布,而且表现出内钼外铜的特征。同时由于受热液活动的影响,圆珠顶矿床蚀变分带明显,由岩体中心向外,分别为绢英岩化带-钾硅酸盐化带-黄铁绢英岩化+碳酸盐化带,并与成矿分带良好吻合。
     锆石U-Pb测年结果表明,圆珠顶二长花岗斑岩成岩年龄为153.4±1.6Ma,成岩时代属于中生代中晚侏罗世。根据二长花岗斑岩主微量测试结果,斑岩具有轻稀土富集,重稀土亏损,σEu弱负异常,富集大离子亲石元素,亏损高场强元素,Ta-Nb-Ti负异常等特征,推测斑岩体物质源区为含石榴子石角闪岩,斑岩体属钙碱性岩石系列,具磁铁矿系列花岗岩特征。锆石Hf同位素研究进一步表明,斑岩体形成过程中有较多地幔组分的参与,并在上升过程中受到一定程度陆壳物质的混染,岩石成因类型为壳幔混合成因。根据斑岩体成岩时代、岩石类型和地球化学特征等因素,结合区域已有的研究资料,推测斑岩体形成的动力学背景为古太平洋板块(Izanagi板块)在中晚侏罗世向欧亚板块之下斜向俯冲,俯冲过程中发生的板片撕裂和局部熔融。
     矿石S、Pb同位素研究表明,矿石金属硫化物δ34S值分布于-4.3%o~3.99‰之间,硫主要来源于岩浆岩;矿石铅同位素组成稳定,为正常普通铅,成矿物质来源同样受俯冲洋壳局部熔融的控制,其中俯冲洋壳上覆沉积物是成矿物质的重要源区。
     通过包裹体岩相学研究,圆珠顶矿床缺乏斑岩型矿床常见的沸腾包裹体组合,包裹体类型以气液两相包裹体为主,沸腾作用和流体不混溶可能不是导致圆珠顶金属矿物沉淀的主要机制。各阶段石英脉H、O同位素组成和流体包裹体温度、盐度测试结果表明,圆珠顶成矿流体属于中低温、中低盐度的NaCl-H2O体系,成矿流体主要为岩浆热液,并有少量大气降水混合。圆珠顶矿区地层中构造裂隙发育,有利于大气降水的渗透和循环,因此,大气降水与圆珠顶成矿岩浆自身演化形成的含矿岩浆热液相混合,使热液体系的物理化学条件(如温度、盐度等)发生改变,可能是造成金属矿物在有利的构造部位富集沉淀的主要机制。圆珠顶矿床矿化分带与蚀变分带关系密切,圆珠顶矿床的热液蚀变作用,可能是导致金属矿物沉淀的另一原因。
     圆珠顶斑岩型铜钼矿床的发现,丰富了钦杭成矿带西南段矿产组合类型,矿床成因对比研究进一步表明,圆珠顶矿床与沿钦杭成矿带分布的其它斑岩型-矽卡岩型铜钼铅锌银矿床具有一致的动力学背景,这一研究结果为区域上寻找同类型矿床提供了理论依据。
The Yuanzhuding Cu-Mo porphyry deposit with a Cu and Mo resources of0.98Mt and0.26Mt, is located at Fengkai County of Guangdong Province and occupies the southwest of the Qin-Hang metallogenic belt in the connection between the Yangtze and Cathaysian plates. As one of the newly discovered large-scale Cu-Mo porphyry deposits in recent years, the Yuanzhuding deposit attracts much attention of the domestic and overseas brilliant ore experts, on which the thorough studies will contribute a lot to improve and perfect the regional metallogenic theory and to guide the future ore prospecting.
     After detailed dissecting of geological features to the Yuanzhuding deposit, this thesis resorts to methods of mineralogy, petrology, geochemical geology, isotopic geochronology, radioative and stable isotopic geochemistry, and inclusion studies, focus on petrogenesis, ore-forming material origin, fluid evolution, and metallogenic mechanism and geodynamic setting, and aims at establishing of metallogenic model.
     With the methods of field drilling data and microscope observation, the rock type that related to the Yuanzhuding ore deposit is limited to monzogranite porphyry. The ore body of the deposit is mainly in the Cambrian meta-sandstones and with a ring shape on the map, and vertically like a cylinder around the porphyry that distributed the Mo interiorly and Cu exteriorly. Due to the influence of hydrothermal fluid, alteration zoning of the deposit is very clear. For instance, the phyllic alteration zone, potassium silicated zone, phyllic-pyrite-silicate zone appear outward from inner of the porphyry and coincide well with the metallogenic zoning.
     Zircon U-Pb geochronology result shows that forming age of the Yuanzhuding monzogranite porphyry is153.4±1.6Ma, belonging to Mesozoic Middle-Late Jurassic. According to major and trace elements analysis results, the porphyry is enriched in LREE and HFSE and is depleted in HREE and LILE with a little Eu and Ta-Nb-Ti negative anomaly, from which the source of the porphyry is referred to garnet-bearing amphibolite and orogenic calc-alkaline series and magnetite series granite. Furthermore, zircon Hf isotope study indicates that the porphyry contains more mantle material and contaminated by continental crust during ascending and formed form a crust-mantle mixed origin. Considering forming age, rock types, geochemistry and preexist regional study data, it is inferred that the porphyry was formed under the geodynamics setting of slab window and partial-melting which is triggered by oblique subduction of paleo-Pacific plate, or Izanagi plate underneath to the Euroasian plate at Middle-Late Jurassic.
     The study of S and Pb isotopic geochemistry of the ore minerals show that sulfur comes mainly from the ore-forming magma and634S values of sulfide in the ore distribute in a range between-4.3‰~3.9‰. The ore-forming material source is controlled by partial-melting of subduction as well, in which the overlying sediments of the oceanic crust are the major source for the metallogenic material.
     Inclusion study shows that the common boiling fluid inclusion assemblage in porphyry deposit is absent in the Yuanzhuding deposit, and gaseous and liquid inclusions are the main types of the inclusions, denying the boiling and fluid immiscible formation mechanism for deposition of metal minerals in the deposit. H and O isotopes composition and fluid inclusions forming temperature and salinity analysis of quartz vein for each stage suggests that ore-forming fluid of the Yuanzhuding deposit is composed of a NaCl-H20system with medium to low level of temperature and salinity, and the magma hydrothermal fluid is the major material of metallogenic fluid with minor mixing of precipitation. That mixing betweent precipitation and hydrothermal ore-bearing magma is the key factor that caused the Yuanzhuding metallic minerals precipitated out of the ore-forming fluids.
     Consequently, discovery of the Yuanzhuding Cu-Mo porphyry deposit enriches the ore deposit association in the southwest of the Qin-Hang metallogenic belt. Further genesis comparison among the other porphyry-skarn Cu-Mo-Pb-Zn-Ag deposits that distributed along the same belt gives a coincident geodynamic setting, which provides a theoretical clue for prospecting the similar type of deposit in the area.
引文
Ahmad, S. N., Rose, A. W.1980. Fluid inclusions in porphyry and skarn ore at Santa Rita, New Mexico. Econ. Geol.,
    Ambrus, W. J.1977. Geology of the El Abra porphyry copper deposit, Chile. Econ. Geol., 72:1065-1085.
    Andersen T.2002.Correction of common Pb in U-Pb analyses that do not reprt 204Pb. Chemical Geology,192:59-79
    Batchelder, J.1977. Light stable isotope and fluid inclusion study of the porphyry copper deposit at copper canyon, Nevada Econ. Geol.,72:60-70.
    Beane, R. E.1974. Biotite stability in a porphyry copper environment. Econ. Geol.,69:241-256.
    Beane, R. E., Titley, S. R.,1981. Porphyry copper deposits:hydrothermal alteration and mineralization. Econ Geol.,75
    Beane, R.E., and Bodnar, R.J.,1995, Hydrothermal fluids and hydrothermal alteration in porphyry copper deposits, in wahl,
    Brimhall, G. H. Jr.1980 Deep dypogene oxidation of porphyry copper potassium-.silicate protore at Butte, Montana:a
    Burnham C W., Ohmoto H.1980. Late-stage Processes of felsic magmatism. Mining Geol.SPec. Issue,8:1-11.
    Cai M H,Zhan M G,Peng S B,et al.2002.Study of Mesozoic Metallogenic Geological Setting and Dynamic Mechanism in Yuankai Area. Mineral Deposits.21(3):264-269. (in Chinese with English abstract)
    Camus, F.1975. Geology of the El Teniente orebody with emphysis on wallrock alteration Econ. Geol.,70:1342-1372.
    Candela, P. A., Holland, H. D.1986. A mass transfer model for copper and molybdenum in magmatic hydrothermal
    Chen J F,Jahn B M.1998.Crustal evolution of southeastern China:Nd and Sr isotopic evidence.Tectonophysics,284:101-133
    Clark, A. H.1993. Are outsize porphyry copper deposits either anatomically or environmentally distinct? In Giant ore deposits,
    Cline, J. S., Bodnar, R. J.1991. Can economic prophyry copper mineralization be generated by a typical calc-alkaline
    Cooke D R, Hollings P, Walshe J L.2005. Giant Porphyry Deposits:Charaeteristics, distribution, and tectonic controls. Eeon. Geol.,100:801-818.
    copper deposit, Nevada:a 6km vertical reconstruction. Econ. Geol.87:m1963-2001.
    Dilles, J. H., Einaudi, M. T.1992. Wall-rock alteration and hydrothermal flowpaths about the Ann-Mason porphyry
    Dilles, J.. H.1987. Petrology of thd Yerington batholith, Nevada:evidence for evolution of porphyry copper ore fluids.
    Doe. B.R. The application of the lead isotopes to the problems of ore genesis and ore prospect evaluation:A review. Economic Geology,1974,69:757-776.
    Eastoe, C. J.1978. A fluid inclusion study of the panguna porphyry copper deposit, Bouganinville, Papua New Guinea.Econ. Geol.,73:721-748.
    Einandi, M. T.1982. Description of skams associaled with porphyry copper plutons. In Titley, S. R., ed., Advances in
    Einaudi, M. T., Meinert, L. D., Newberry, R. J.1981. Skarn deposits. Econ Geol.75th Anniv vol., 317-391.
    Ford, J. H.,1978.. A Chemical study of alteration of the panguna porphyry copper deposit, Bougainville, Papua New Guinea. Econ. Geol.,73:701-720.
    Gilmour, P.1982. Grades and tonages of porphyry copper deposits. In Titley, S. R., ed., Advacnces in geology of the porphyry copper deposits, Southwestern North America. Univ Arizona press, Tucson,7-36.
    Gow, P., Walshe, J.L.,2005, The role of Preexisting geologic architecture in the formation of giant porphyry related Cu±Au deposits:Examples from New Guinea and Chile:Eeon.Geol., 100:819-833.
    Guilbert, J. M., Park, C. F. Jr.1986. The geology of the ore deposits. New York W. H. Freeman, 985.
    Gustafson, L. B.1978. Some major factors of porphyry copper genesis Econ. Geol.,73:600-607.
    Gustafson, L. B., Hunt, J. R.1975. The porphyry copper deposit at El Salvador, Chile Econ. Geol., 70:857-912.
    Gustafson, L. B., Orgrera, W., Mewilliams, M., et al.2001. Multiple centers of mineralization in the Indio Muerto district, El Salvador, Chile. Econ. Geol.,96:325-350.
    Gustafson, L. B., Quiroga, G. J.1995. Patterns of minerlization and alteration below the porphyry copper orebody at El Salvador, Clile Econ. Geol.,90:2-16.
    Haynes, F. M, Titley, S. R.1980. The evolution of fracture-related permeability within the Ruby Star granodiorite, Sierrita porphyry copper copper deposit, Pima county, Arizona. Econ. Geol.,5:673-683.
    Hedenquist, J. W., Richards, J. P.1998. The influence of geochemical techniques on the development of genetic models for porphyry copper deposits. Reviews in Econ. Geol., 10:235-256.
    Heidrick, T. L., Titley, S. R.1982. Fracture and dike patterns in laramide plutons and their structural and
    Heinrich, C. A., Ryan, C. G., Mernagh, T. P., al et.1992. Segregation of ore metals between magmatic brines and vapor:a fluid inclusion study using PIXE mincroanalysis. Econ. Geol., 87:1566-1563.
    Hollister, V. F.1987. Geology of the porphyry copper deposits of the western Hemisphere. New York, AIMF,219. Ilton, E. S., Veblen, D. R.1993. Origin and mode of copper enrichment in biotite from rocks associated with porphyry copper deposits:a transminssion electron microscopy investigation. Econ. Geol.,88:885-900.
    Holmes A. A revised estimate of the age of the Earth[J].Nature,1947,159(4030):127-128.
    Holmes A. An estimate of the age of the Earth[J]. Nature,1946,157(3995):680-684.
    Hong P W,Xie X L,Zhang J S.I 998.Isotope geochemistry of granitoids in South China and their metallogeny. Resource Geology,48:251-264.
    Hsu K J, Sun S, Li J L, Chen H H, Pen H P, Sengor A M C.1988. M esozoic overthrust tect onics in South China. Geology,16:418-421.
    Hsu K J.1981. Thin-skinned plate tectonic model for collision-type orogenesis. Science in China (A),24(1):100-110.
    Ionov DA and A W Hofmann.1995.Nb-Ta-rich mantle amphiboles and micas:Implications for Subduction-related metasomatic trace-element fractionations. Earth and Planetary Science Letters,131(3-4):341-356
    Jacobs, D. C., parry, W. T.1979. Geochemistry of biotite in the Santa Rita copper deposit, New Mexico. Econ. Geol.,74:860-887.
    James, A. H.1971. Hypothetical diagrams of several porphyry copper deposits. Econ. Geol., 66:43-47.
    Jorham, T. E., Isacks, B. L., Allmendinger, R. W., al et.1983. Andean tectonic related to geometry of subducted Nazca plate. Geol. Soc. America. Bull.,94:341-361.
    Kay S M,M Podozis C,Coira B.Neogenem magamatism,tectonnism,and mineral deposits of the central Andes(22°to 33°S Latitude).Soc ECON Geol Spec Pub 7,1999.7:27-59.
    Kay S M,M Podozis C.Central Andean ore deposits linked to evolved thickening Curst.GSA Today,2001,11:4-9.
    Keith J D, Christiansen E H, Carten R B, et al., The genesis of giant porphyry molybdenum deposits. In:Whiting B H, Hodgson C J and Mason R, ed. Giant ore deposits Ⅱ. Ottawa: Lancaster Press.1992,285-316.
    Kerrivh, R., Goldfarb, R., Groves, D., Garwin, S.,2000, The geodynamics of world-class gold deposits:Characteristics, space-time distributions, and origins:Reviews in Economic Geology,13:501-551.
    Kirkham. R. V.1971. Intermineral intrusive and their bearing on the origin of porphyry copper and molybdenum deposits. Econ. Geol.,66:1204-1249.
    Lowell, J. D., Guilbert, J. M. Lateral and Vertical alteration-mineralization zoning in porphyry ore deposits[J]. Economic Geology,1970,63:373-408.
    Ludwig R K.2008. User's manual for Isoplot 3.70.Berkeley Geochronoligy Center Special Publication, (4):1-76
    Mao, J. W., Cheng, Y. B., Chen, M. H., et al. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings. Miner Deposita. Miner Deposita,,2013,48:267-294
    Masterman, G., Berry, R., Cooke, D.R., Walshe, J.L.,2005, Fluid chemistry, structural setting, and emplacement histoy of the Rosario Cu-Mo Porphyry and Cu-Ag-Au epithermal veins, Collahuasi district, northern Chile:Eeon.Gcol.,100:835-862.
    MeClay, K., Skanneta, J., Bertens, A.,2002, Structural controls on Porphyry copper deposits in northern Chile:New models and implications for Cu-Mo mineralization in subduction orogens[abs.]:Australian Institute of Geosciences Bulletin 36, P.127.melt? Journal of Geophysical Research,96:8113-8186.
    Misra K C.2000. Understanding mineral deposits. Kluwer Academic Publishers,353-413.
    Nelson D R.1992.Isotopic characteristics of Potassic rock:Evidence for the involvement of subducted sediments in magma gensis. Lithos,28:403-420
    Ohmoto H, Rye R O. Isotopes of sulfur and carbon [M]//Barnes H L. Geochemistry of Hydrothermal Ore Deposits. New York:John Wiley & Sons,1979:509-567.
    Ohmoto H. Stable isotope geochemistry of ore deposits. Reviews in Mineralogy,1986,16(1): 491-559.
    Ohmoto H. Stable isotope geochemistry of ore deposits. Reviews in Mineralogy.16:491-559.
    Ohmoto H. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Economic Geology,1972,67(5):551-578.
    P.W., and Bolm, J. G., eds., porphyry copper deposits of the American Cordillera Juscon:A2, Arizena Geological Society,
    Pearce N J G,Perkins W T,Westgate J A,et al.1997.A Compilation of new and published major and trace element data for NIST SRM610 and NIST SRM612 glass reference materials. Geostandards Newsletters,21(1):114-115
    Pei X Z,Ding S P,Zhang G W,et al..2007.Zircons LA-ICP-MS U-Pb dating of Neoproterozoic granitoid gneisses in the North margin of West Qinling and geological implication. Acta Geologica Sinica,81(6):772-786.(in Chinese with English abstract)
    Reich M,Parada M A,Palaciosc,et al.A dakite-like signature of Late Mioceno intrusions at the Los Pelambers giant Porphyry Copper deposit in the Andes of Central Chile:metallogenic implications.Mineralium Deposita,2003,38:876-885.
    Richards J P.2003.Tectono-magmatic Precursors for Porphyry Cu-(Mo-Au) deposit formation.Economic Geology,98:1515-1533.
    Rogers N W,James D and Kelley S P,1998.The generation of Potassic lava from he eastern Virung a Province,R w and a.J.Petrol.,39:1223-1247
    Sheppard SMF. Characterization and isotopic variations in natural waters. Reviews in Mineralogy.1986,
    Shui T, Xu B T, Liang R H, Qiu Y S.1986. Shaoxing-Jiangshan deep-seated fault zone, Zhejiang Province. Chinese Science Bulletin,31(18):1250-1255.
    Shui T.1988. Tectonic framework of the continent albasement of southeast China. Science in China (Seri es B),31 (7):885-896.
    Sillitoe R H.,1998. Major regional factors favoring larges size, high hypogene grade, elevated gold content and supergene oxidation and enrichment of Porphyry copper deposits, inporter, T.M., ed., porphyry and hydrothermal copper and gold deposits:A Global Perspective, Perth, 1998, Conference Proceedings:Glenside, South Australia, Australian Mineral Foundation, 21-34.
    Simon M.F., Sheppard. Characterization and isotopic variations in natural waters. Reviews in Mineralogy,1986,16(1):165-183.
    Singer, D.A., Berger, V.I., Menzie, W.D., et al. Porphyry copper deposit density. Economic Geology,2005,100:491-514.
    Solomon, M.,1990, Subduction, arc reversal, and the Origin of porphyry copper-gold deposits in island arcs. Geology,18:630-633.
    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[M].In:Saunders A D, Norry M J, eds. Magmatism in the Ocean Basins. Geological Society, London, Special Publications.1989,42:313-345
    Taylor H P.1979,Oxygen and hydrogen isotope relationships in hydrothermal mineral deposit. Geochemistry of Hydrothermal Ore Deposit.236-277
    tectonicimplication. In Titley, S. R., ed., Advances in geology of the prophyry copper deposits, western North America. Univ Arizona press, Tucson,73-92.th Anniv. Vol,235-269.
    Titley S R., Beane R E.1981. Porphyry copper deposit:Part1. Geologic settings, petrology, and tecinogenesis. Economic Geology 75th Anniversary Volume,214-234.
    Turner S.Arnaud N.Liu J.1996.Post-collision.shoshonitic Volcanism on the Tibetan plateau:Implications for convective thinning of the Lithosphere and the source of Ocean island basalts. Journal of Petrology,37(1):45-71
    Vavra G,Gebauer D,Schmid R.1996.Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metam or phism in granulites of the Ivrea zone(Southern Alps):An ion microprobe(SHRIMP)study. Contribution to Mineralogy and Petrology,122(4):337-358.
    Vavra G,Schmid R and Gebauer D.1998.Internal morphology habit and U-Th-Pb microanalysis of amphibole to granulite facies zircon:Geochronology of the Ivren Zone(South Alps). Contributions to Mineralogy and Petrology,134(4):380-404
    Vinogradov AP.1962. Average content of chemical element in the chief types of igneous rocks of the crust of the earth.Geokhimia,(7):555-571(in Russian with English abstract)
    Whiting, B. H., Hodgson, C. J., Mason, R., society of economic geologists Special pubication, (2): 213-283.
    Wu Y B and Zheng Y F.2004.Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin,49(15):1554-1569
    Wu Y B,Chan D G,Xia Q K.2003. In-situ trace element analyses and U-Pb dating of zircons in granulite from Huangtuling,Dabieshan by LA-1CP-Ms. Science in China(series D),46(11):1161-1170
    Wu Y B,Chen D G,Xia Q K.2002.In-situ trace element analyses of zircons from Dabieshan Huangzhen eclogite:Trace element Characteristics of eclogite-facies metamorphic zircon. Chinese Science Bulletin,47(16):1398-1401
    Yuan H L,Gao S and Dai M N.2008.Simultaneous determinations of U-Pb age,Hf iotopes and trace element compositions of zircon by excimer laser ablation quadrupole and multriple collector ICP-MS. Chemical Geology,247:100-117
    Yuan H L,Gao S,Liu H M.2004.Accurate U-Pb age and trace element determinations of Zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards and Geoanalytical Research,28(3):353-370
    Yuan H L,Wu F Y,Gao S.2003 Determination of U-Pb age and rare earth element concentration of zircons from Cenozoic intrusions in northeastern China by laser ablation ICP-MS. Chinese Science Bulletin,48(22):241-244
    Zhong L F,Xia B,LI L W.2010.Metallogenic geochronology of Yuanzhuding Cu-Mo deposit in western Guangdong-eastern Guangxi metallogenic belt and its geological significance. Mineral Deposits.29(3):395-404. (in Chinese with English abstract)
    Zhou qing, Jiang Yaohui, Zhao Peng, Liao Shiyong, Jin Guodong,2011.Origin of the Dexing Ore-bearing Porphyries, South China:Elemental and Sr-Nd-Pb-Hf Isotopic Constraints.International Geology Review,http://dx.doi.org/10.1080/00206814.2010.548119.
    柏道远,陈建超,马铁球,王先辉.2005.湘南骑田岭岩体A型花岗岩的地球化学特征及其构造意义.岩石矿物学杂志,24(4):255-272.
    蔡明海,陈开旭,屈文俊,刘国庆,付建明,印建平.2006.湘南荷花坪锡多金属矿床地质特征及辉钼矿Re-Os测年.矿床地质,25(3):263-68.
    蔡明海,彭松柏,孟祥金,刘国庆.2001.桂东)粤西地区中生代成矿规律及动力学机制探讨.华南地质与矿产,(2):35-42.
    蔡明海,战明国,彭松柏.2002.云开地区中生代成矿地质背景及成矿动力学机制研究.h矿床地质,21(3)264-269
    陈富文,李华芹,王登红.2012.粤西圆珠顶斑岩型铜钼矿床成矿地质特征及成岩成矿作用年代学研究.地质学报,86(8):1298-1305.
    程裕淇.1994.中国区域地质概论.北京:地质出版社,1-520.
    邓晋福,莫宣学,赵海玲.1999.中国东部燕山期岩石圈-软流圈系统大灾变与成矿环境.矿床地质,18(4):209-315.
    地质部宜昌地质矿产研究所同位素地质研究室.铅同位素地质研究的基本问题.北京:地质出版社,1979.
    丁昕,蒋少涌,倪培,顾连兴,姜耀辉.2005.江西武山和永平铜矿含矿花岗质岩体锆石SIMS U-Pb年代学.高校地质学报,11(3):383-389
    董树文,张岳桥,龙长兴,杨振宇,季强,王涛,胡建民,陈宣华.2007.中国侏罗纪构造变革与燕山运动新诠释.地质学报,81(11):1449-1461
    董树文,张岳桥,龙长兴,杨振宇,季强,王涛,胡建民,陈宣华.2007.中国侏罗纪构造变革与燕山运动新诠释.地质学报,81(11):1449-1461
    杜灵通.2005.江西永平铜矿成矿物质来源及矿床成因分析.资源环境与工程.19(1):4-11
    杜泽忠,顾雪祥,李关清.藏南拉木由塔锑(金)矿床S、Pb同位素组成及指示意义.现代地质,2011,25(5):853-860.
    傅昌来,陈文魁.1992.广东信宜银岩斑岩锡矿床描述性模式.中国地质,1:20-23
    郭令智,施央申,马瑞士.1980.华南大地构造格架和地壳演化.第26届中际地质大会国际交流学术论文集.北京:地质出版社,109-116.
    郭令智,施央申,马瑞士.1986.江南元占代板块运动和岛弧构造的形成和演化.国际前寒武纪地壳演化讨论会议论文集(构造地质).北京:地质出版社,1:30-37.
    郭新生,陈江锋,张哭.2001.桂东南富钾岩浆杂岩体的Nd同位素组成:华南中生代地幔物质上涌事件.岩石学报,17(1):19-27.
    侯可军,袁顺达.宁芜盆地火山-次火山岩的锆石U-Pb年龄、Hf同位素组成及其地质意义.岩石学报,2010,,2(3):888-902
    胡瑞忠,毕献武,彭建堂,刘燊,钟宏,赵军红,蒋国豪.2007.华南地区中生代以来岩石圈伸展及其与铀成矿关系研究的若干问题.矿床地质,26(2):139-152
    胡瑞忠,毕献武,彭建堂,刘燊,钟宏,赵军红,蒋国豪.2007.华南地区中生代以来岩石圈伸展及其与铀成矿关系研究的若干问题.矿床地质,26(2):139-152
    胡瑞忠,毛景文,范蔚茗,华仁民,毕献武,钟宏,宋谢炎,陶琰.2010.华南陆块陆内成矿作用的一些科学问题.地学前缘,17(2):13-26
    胡升奇,周国发,彭松柏,张先进,易顺华,唐国胜.2012.广西大黎铜钼矿石英二长(斑)岩年代学、地球化学特征及其地质意义.地球学报,33(1):23-37
    华仁民,毛景文.1999.试论中国东部中生代成矿大爆发.矿床地质,18(4):300-308.
    黄崇坷,朱裕生,白冶.2001.中国铜矿床.北京:地质出版社,:1-705
    黄汲清,任纪舜,姜春发,张之孟,许志琴.1977.中国大地构造基本轮廓.地质学报,(2):117-135.
    金章东.1999.德兴铜厂斑岩铜矿床成矿流体地球化学及演化.南京:南京大学1-114
    冷成彪,张兴春,陈衍景,王守旭,苟体忠,陈伟.2007.中国斑岩铜矿与埃达克(质)岩关系探讨.地学前缘,14(5):199-210
    冷成彪,张兴春,陈衍景,王守旭,苟体忠,陈伟.2007.中国斑岩铜矿与埃达克(质)岩关系探讨.地学前缘,14(5):199-210
    李昌年.1992.火成岩微量岩石学.北京:地质出版社,34-76.
    李华芹,路远发,王登红,陈毓川,杨红梅,郭敬,谢才富,梅玉萍,马丽艳.2006.湖南骑田岭芙蓉矿田成岩成矿时代的厘定及其地质意义.地质论评,52(1):113-121
    李继亮,孙枢,许靖华,陈海泓,彭海波,王清晨.1989.南华夏造山带构造演化的新证据.地质科学,(3):217-225.
    李江海,穆剑.1999.我国境内格林威尔期造山带的存在及其对中元古代末期超大陆再造的制约.地质科学,34(3):259-272.
    李献华,王选策,李武显,李正祥.2008.华南新元古代玄武质岩石成因与构造意义:从造山 运动到陆内裂谷.地球化学,37(4):382-398.
    李献华,胡瑞忠,饶冰.1997粤北白垩纪基性岩脉的年代学与地球化学.地球化学,26(2):14-31.
    李献华.1999.华南白垩纪岩浆活动与岩石圈伸展-地质年代学与地球化学限制.北京:科学出版社,264-275.
    李晓峰,Yasushi W,华仁民,毛景文.2008.华南地区中生代Cu-(Mo)-W-Sn矿床成矿作用与洋岭/转换断层俯冲.地质学报,82(5):625-640
    李晓峰,Yasushi W,华仁民,毛景文.2008.华南地区中生代Cu-(Mo)-W-Sn矿床成矿作用与洋岭/转换断层俯冲.地质学报,82(5):625-640
    李晓峰,Yasushi W,屈文俊.2007.江西永平铜矿花岗质岩石的岩石结构、地球化学特征及其成矿意义.岩石学报,23(10):2353-2365
    李晓峰,Yasushi W,屈文俊.2007.江西永平铜矿花岗质岩石的岩石结构、地球化学特征及其成矿意义.岩石学报,23(10):2353-2365
    李晓峰,陈文,毛景文,王春增,谢桂青,冯佐海.2006.江西银山多金属矿床蚀变绢云母40Ar-39Ar年龄及其地质意义.矿床地质,25(1):17-26
    林秀广,顾锡明,王艳党.广东封开圆珠顶铜钼矿地质特征及成因初探.西部探矿工程,2011,9:208-211.
    刘宝珺,许效松,潘杏南,黄慧琼,徐强.1993.中国南方古大陆沉积、地壳演化与成矿.北京:科学出版社,1-236.
    刘珺,毛景文,叶会寿,谢桂青,杨国强,章伟。2008.江西武功山地区浒坑花岗岩的锆石U-Pb定年及元素地球化学特征.岩石学报,24(8):1813-1822.
    刘腾匕.桂东寒武系水口群岩石地球化学特征及其与金矿化关系[J].南方国十资源,1992,5(1):13-24.
    刘玄,范宏瑞,胡芳芳.2011.江西德兴斑岩铜矿的形成:新元古代残留岛弧下地壳重熔.西安:2011年岩石学与地球动力学研讨会论文摘要
    刘玄,范宏瑞,胡芳芳.2011.江西德兴斑岩铜矿的形成:新元占代残留岛弧下地壳重熔.西安:2011年岩石学与地球动力学研讨会论文摘要
    刘义茂,戴撞漠,卢焕章,晋友志,王昌烈,康卫清.1997.千里山花岗岩成岩成矿的4OAr-39Ar和Sm-Nd同位素年龄.中国科学(D)辑,27(5):425-430
    刘英俊.1984.华南花岗岩类中微量元素的地球化学特征.南京:江苏科学技术出版社,511-525.
    卢焕章,范宏瑞,倪培,等.流体包裹体[M].北京:科学出版社,2004:1-274.
    路远发,马丽艳,屈文俊,梅玉萍,陈希清.2006. 湖南宝山铜-钼多金属矿床成岩成矿的U-Pb和Re-Os同位素定年研究.岩石学报,22(10):2483-2492
    路远发,马丽艳,屈文俊,梅玉萍,陈希清.2006.湖南宝山铜-钼多金属矿床成岩成矿的U-Pb和Re-Os同位素定年研究.岩石学报,22(10):2483-2492.
    路远发,马丽艳,屈文俊,梅玉萍,陈希清.2006.湖南宝山铜-钼多金属矿床成岩成矿的U-Pb和Re-Os同位素定年研究.岩石学报,22(10):2483-2492
    马丽艳,路远发,梅玉萍,陈希清.2006.湖南水口山矿区花岗闪长岩中的锆石SHRIMPU-Pb定年及其地质意义.岩石学报,22(10):2475-2482
    马丽艳,路远发,梅玉萍,陈希清.2006.湖南水口山矿区花岗闪长岩中的锆石SHRIMPU-Pb定年及其地质意义.岩石学报,22(10):2475-2482
    马星华,陈斌.大兴安岭南段敖仑花斑岩钼(铜)矿床成矿流体来源与成矿作用:稳定同位素C、H、O、S和放射性Pb同位素约束[J].吉林大学学报(地球科学版),2011,41(6):1770-1783.
    麦广田.1990.从区域重磁资料讨论花岗岩的发育展布和定位方式.广西地质,3(1):15-23
    毛建仁,苏玉香,陈三元1990,.长江中下游中酸性侵入岩与成矿.北京:地质出版社,136-139.
    毛景文,陈懋弘,袁顺达,郭春丽.2011.华南地区钦杭成矿带地质特征和矿床时空分布规律
    毛景文,华仁民,李晓波.1999.浅议大规模成矿作用与大型矿集区预测.矿床地质,18:291-299.
    毛景文,李红艳,宋学信.1998.湖南柿竹园钨锡铋钼多金属矿床地质与地球化学.北京:地质出版社,1-215
    毛景文,李晓峰,Bernd Lehmann,陈文,蓝晓明,魏绍六.2004.湖南芙蓉锡矿床锡矿石和有关花岗岩的40Ar-39Ar年龄及其地球动力学意义.矿床地质,23(2),164-175
    毛景文,王志良.2000.中国东部大规模成矿时线及其动力学背景的初步探讨.矿床地质,19(4):289-296.
    毛景文,谢桂青,郭春丽.2007.南岭地区大规模无锡多金属成矿作用:成矿时限及地球动力学背景.岩石学报,23(10):2329-2338
    毛景文,谢桂青,郭春丽.2008.华南地区中生代主要金属矿床时空分布规律和成矿环境.高校地质学报,14(4).510-526
    裴先治,丁仨平,张国伟.2007.西秦岭北缘新元古代花岗质片麻岩的LA-ICP-MS锆石U-Pb年龄及其地质意义.地质学报,81(6):772-786
    彭建堂,胡瑞忠,毕献武,戴撞漠,李兆丽,李晓敏,双燕,袁顺达,刘世荣.2007.湖南芙蓉锡矿床40Ar/39Ar同位素年龄及其地质意义.矿床地质,26(3):237-248
    钱鹏,陆建军,姚春亮.德兴斑岩铜矿成矿流体演化与来源的流体包裹体研究.
    钱鹏,陆建军.2005.德兴铜矿花岗闪长斑岩物质来源的微量元素研究.地质找矿论丛,20(2):75-79,150水涛.1987.中国东南边缘大陆古基底构造演化.科技通报,3(5):32-34
    钱鹏,陆建军.2005.德兴铜矿花岗闪长斑岩物质来源的微量元素研究.地质找矿论丛,20(2):75-79,150
    丘元禧,陈焕疆.1993.云开大山及其邻区地质构造论文集.北京:地质出版社,1-74.
    曲晓明,侯增谦,黄卫.2001.冈底斯斑岩铜矿(化)带:西藏第二条“玉龙”铜矿带?矿床地质,20(4):355-366
    任纪舜,陈廷愚,牛宝贵,刘志刚,刘凤仁.1990.中国东部及邻区大陆岩石圈的构造演化与成矿.北京:科学出版社,1-230.
    芮宗瑶,黄崇轲,齐国明.中国斑岩铜(钼)矿床.北京:地质出版社,1984,171-200
    芮宗瑶,张洪涛,陈仁义,王志良,王龙生,王义天.2006.斑岩铜矿研究中若干问题探讨.矿床地质,25(4):491-501
    芮宗瑶,张洪涛,陈仁义,王志良,王龙生,王义天.2006.斑岩铜矿研究中若干问题探讨.矿床地质,25(4):491-501
    芮宗瑶,张立生,陈振宇,王龙生,刘玉琳,王义天.2004.斑岩铜矿的源岩或源区探讨.岩石学报,20(2):29-38
    芮宗瑶,张立生,陈振宇,王龙生,刘玉琳,王义天.2004.斑岩铜矿的源岩或源区探讨.岩石学报,20(2):29-38
    沈渭洲.稳定同位素地球化学.北京:原子能出版社,1987:78-83.
    舒良树,周新民,邓平,余心起.2006.南岭构造带的基本地质特征.地质论评,52(2):251-265.
    双燕,毕献武,胡瑞忠,彭建堂,苏文超,朱长生,2009.湖南芙蓉锡多金属矿床成矿流体地球化学.岩石学报.025(]0):2588-2600
    水涛,徐步台,谍如华,邱郁双.1988.中国浙闽变质基底地质.北京:科学出版社,1-85
    水涛.1986.绍兴-江山古陆对接带.科学通报,31(6):444-448.
    水涛.1987.中国东南大陆基底构造格局.中国科学(B辑),(4):414-422.
    水涛.1995.华夏碰撞造山带.浙江地质,11(2):25-32.
    水涛.1987.中国东南边缘大陆古基底构造演化.科技通报,3(5):32-34
    水涛.1995.华夏碰撞造山带.浙江地质,11(2):25-32
    孙涛,周新民,陈培荣,李惠民,周红英,王志成,沈渭洲.2003.南岭东段中生代强过铝花岗岩成因及其大地构造意义.中国科学(D辑),33(12):1209-1218
    孙涛,周新民,陈培荣,李惠民,周红英,王志成,沈渭洲.2003.南岭东段中生代强过铝花岗岩成因及其大地构造意义.中国科学(D辑),33(12):1209-1218
    孙卫东,凌明星,杨晓勇,范蔚茗,丁兴,梁华英.2010.洋脊俯冲与斑岩铜金矿成矿.中国科学(地球科学),40(2):127-137
    孙卫东,凌明星,杨晓勇,范蔚茗,丁兴,梁华英.2010.洋脊俯冲与斑岩铜金矿成矿.中国科学(地球科学),40(2):127-137
    谭克仁.1983.湖南铜山岭花岗闪长斑岩地球化学特征及其成矿作用.大地构造与成矿学,7(1):66-80
    谭克仁.1983.湖南铜山岭花岗闪长斑岩地球化学特征及其成矿作用.大地构造与成矿学,7(1):66-80
    汤加富,姚穗.2000.对安徽及邻区若干重要基础地质问题的认识.安徽地质,10(2):103-110.
    汤加富.1994.华南变质基底的组成、边界与构造演化(研究综述).安徽地质,4(1-2):104-111.
    汤中立,闫海卿,焦建刚,李小虎.2006.中国岩浆硫化物矿床新分类与小岩体成矿作用.矿床地质,25(1):1-9
    汤中立,闫海卿,焦建刚,李小虎.2006.中国岩浆硫化物矿床新分类与小岩体成矿作用.矿床地质,25(1):1-9
    田京辉,倪培,范建国.2001.永平铜矿成矿流体特征研究,地质找矿论丛.16(1):24-27
    田世洪,杨竹森,侯增谦等.青海玉树东莫扎抓铅锌矿床S、Pb、Sr-Nd同位素组成:对成矿物质来源的指示.岩石学报,2011,27(7):2173-2183.
    王登红,李华芹,秦燕,梅玉萍,陈郑辉,屈文俊,王彦斌,蔡红,龚述清,何晓平.2009.湖南瑶岗仙钨矿成岩成矿作用年代学研究.岩矿测试,28(3):201-208
    王鸿祯.1986.中国华南地区地壳构造发展的轮廓.华南地区古大陆边缘构造史.武汉:武汉地质学院出版社,1-15.
    王剑.2000.华南新元古代裂谷盆地沉积演化)))兼论与Rodinia解体的关系.北京:地质出版社,1-146.
    王强,赵振华,简平,许继峰,包志伟,马金龙.2004.德兴花岗闪长斑岩SHRIMP锆石U-Pb年代学和Nd-Sr同位素地球化学.岩石学报,20(2):315-324
    王强,赵振华,简平,许继峰,包志伟,马金龙.2004.德兴花岗闪长斑岩SHRIMP锆石U-Pb年代学和Nb-Sr同位素地球化学.岩石学报,20(2):315-324
    王强,赵振华,简平,许继峰,包志伟,马金龙.2004.德兴花岗闪长斑岩SHR1MP锆石U-Pb年代学和Nd-Sr同位素地球化学。岩石学报,20(2):315-324
    王艳娟,胡援越,申俊峰等.太行山南段北浼河铁矿S、Pb同位素组成及其对成矿物质来源的示踪[J].现代地质,2011,25(5):846-852.
    王永磊.2008.湘南钨锡多金属矿集区构造-岩浆-成矿作用研究.北京:中国地质科学院.1-121
    王岳军,范蔚茗,郭锋,李惠民,梁新权.2001.湘东南中生代花岗闪长岩锆石U-Pb法定年及其成因指示.中国科学(D辑),31(9):745-751
    王岳军,范蔚茗,郭锋,李惠民,梁新权.2001.湘东南中生代花岗闪长岩锆石U-Pb法定年及其成因指示.中国科学(D辑),31(9):745-751
    魏道芳,鲍征宇,付建明.2007.湖南铜山岭花岗岩体的地球化学特征及锆石SHRIMP定年.大地构造与成矿学,31(4):482-489
    魏道芳,鲍征宇,付建明.2007.湖南铜山岭花岗岩体的地球化学特征及锆石SHRIMP定年.大地构造与成矿学,31(4):482-489
    温志坚.2001.湘南大型、超大型钨、锡、铅、锌矿床成矿流体研究.北京:中国地质科学院1-49
    吴开兴,胡瑞忠,毕献武,等.矿石铅同位素示踪成矿物质来源综述.地质地球化学,2002,30(3):73-81.
    伍光英,马铁球,柏道远,李金冬,车勤建,王先辉.2005.湖南宝山花岗闪长质隐爆角砾岩的岩石学、地球化学特征及锆石SHRIMP定年.现代地质,19(2):198-204
    谢奕汉,赵瑞,李若梅,f英兰.1988.银岩斑岩锡矿成矿物理化学条件及成矿物质来源.矿床地质,7(3):42-49
    徐兴旺,蔡新平,宋保吕,张宝林,应汉龙,肖骑彬,王杰.2006.滇西北衙金矿区碱性斑岩岩石学、年代学和地球化学特征及其成因机制.岩石学报,22(3):631-642
    徐兴旺,蔡新平,宋保昌,张宝林,应汉龙,肖骑彬,王杰.2006.滇西北衙金矿区碱性斑岩岩石学、年代学和地球化学特征及其成因机制.岩石学报,22(3):631-642
    许靖华,孙枢,李继亮.1987.是华南造山带而不是华南地台.中国科学(B辑),17(10):1107-1115.
    许靖华.1980.薄壳板块构造模式与冲撞造山运动.中国科学,23(11):1081-1089.
    杨明桂,梅勇文.1997.钦-杭古板块结合带与成矿带的主要特征.华南地质与矿产,(3):52-59.
    姚军明,华仁民,林锦富.2006.湘南宝山矿床REE、Pb-S同位素地球化学及黄铁矿Rb-Sr同位素定年.地质学报,80(7):1045-1054
    余达淦,管太阳,王贵金.1993.闽、浙、赣边境晚元古代早期地层特征及与板溪群对比.东华理工学院学报(自然科学版),(4):320-333.
    张德会,张文淮,刘伟.2003.江西银山多金属矿床高盐度包裹体及其成因意义.岩石学报,19(1):173-180
    张德会.成矿流体中金属沉淀机制研究综述.地质科技情报,1997,16(3):53-58.
    张理刚.稳定同位素在地质科学中的应用.西安:陕西科学技术出版社,1985.
    张乾,潘家永,邵树勋,等.中国某些金属矿床矿石铅来源的铅同位素诠释.地球化学,2000,29(3):231-238
    张岳桥,徐先兵,贾东,舒良树.2009.华南早中生代从印支期碰撞构造体系向燕山期俯冲构造体系转换的变形记录.地学前缘,16(1):234-247.
    赵崇贺,何科昭,周正国,乐昌硕,聂泽同,邰道乾,叶枬.1996.关于华南人地构造问题的再认识.现代地质,10(4):512-517.
    赵越,徐刚,张拴宏,杨振宇,张岳桥,胡健民.2004.燕山运动与东亚构造体制的转变.地学前缘,11(3):319-328
    赵振华,包志伟,张伯友,等.2000.柿竹园超大型钨多金属矿床形成的壳幔相互作用背景中国科学(D辑).30:161-168.
    赵振华,包志伟,张伯友.1998.湘南中生代玄武岩类地球化学特征.中国科学(D辑),28(增刊):7-14.
    赵振华,熊小林,王强等.2008.铌和钽的某些地球化学问题.地球化学,37(4):304-320
    郑永飞,陈江峰.稳定同位素地球化学[M].北京:科学出版社,2000.
    钟立峰,夏斌,刘立文,李杰,林秀广,徐力峰,林良庄.2010.粤西-桂东成矿带圆珠顶铜钼矿床成矿年代学及其地质意义.矿床地质,29(3):395-404
    周新民,李显武.2002.中国东南部晚中生代花岗质火山-侵入杂岩形成的构造岩浆模式.见: 王德滋,周新民,主编.中国东南部晚中生代花岗质火山-侵入杂岩成因与地壳演化.北京:科学出版社,273-295.
    周新民.2003.对华南花岗岩研究的若干思考.高校地质学报,9(4):556-565
    周永章,曾长育,李红中,安燕飞,梁锦,吕文超,杨志军,何俊国,沈文杰.2012.钦州湾-杭州湾构造结合带(南段)地质演化和找矿方向.地质通报,31(2-3):486-491
    朱炳泉,李献华,戴橦谟,等.地球科学中同位素体系理论与应用:兼论中国大陆壳幔演化.北京:科学出版社社,1998,21:6-230.
    朱训,黄崇轲,芮宗瑶,周跃华,朱贤甲,胡淙声,梅古魁.1983.德兴斑岩铜矿.北京:地质出版社
    朱玉娣,叶锡芳,张德会,等.浙西桐村斑岩型钼(铜)矿床与德兴斑岩铜矿岩浆岩对比研究.地球科学进展,2012,27(10):1043-1053.
    左力艳,张德会,李建康,张文淮.2007.江西德兴铜厂斑岩铜矿成矿物质来源的再认识-来自流体包裹体的证据.地质学报,81(5):694-984

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700