用户名: 密码: 验证码:
巨型冷却塔群的风效应及其风洞试验方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国电力事业的发展,我国冷却塔高度即将突破200m,远远超过我国现行冷却塔设计规范165m的高度限值,也将创造新的世界纪录。为保证此类超大型冷却塔的安全性与经济性,同时也为我国规范的修订提供依据,本文采用风洞试验、CFD数值模拟和有限元响应分析等手段对200m高超大型冷却塔的风荷载、响应特性和风致干扰进行研究。本文主要研究内容和成果有:
     (1)通过CFD数值模拟对刚性模型内表面测压风洞试验存在的不足进行了分析,表明风洞试验得到的结果仍然可靠。风洞试验结果表明,冷却塔内表面风压受塔内雷诺数、风向角影响较小,而受十字挡风挡板和填料层透风率影响较大;总的来说,内压沿环向、高度基本不变。
     (2)分析了粗糙条各参数对风压分布的影响,发现粗糙度系数k/s是描述粗糙度大小的重要参数,风压分布与之密切相关;给出了根据k/s估算风压的计算公式和粗糙度雷诺数ReR与最小风压系数Cpmin之间的函数关系式,据此可较精确的预测待模拟目标曲线所需的粗糙度和试验风速大小。
     (3)对单塔外、内表面风压的三维绕流特性和设计取值简化进行了研究,发现冷却塔外表面风荷载三维效应显著,内压也并非严格的沿环向、高度均匀分布;证明了冷却塔变形以壳体的局部变形为主,响应大小与外表面风压分布特征密切相关,而与阻力系数大小并无绝对关系;外、内表面风压设计取值分别简化为“代表性曲线”和常数-0.50可保证结构的安全性。
     (4)通过理论推导和有限元方法证明了气动弹性连续壳体模型能同时满足冷却塔壳体、人字柱的各项刚度相似要求,并能实现质量、刚度的连续分布;发明了一套精度较高的冷却塔气动弹性连续壳体模型制作工艺,并利用高精度激光位移计对它的风振响应进行了深入分析,结果表明良态气候下冷却塔的风致响应不大,动力放大效应不明显。
     (5)基于刚性模型同步测压风洞试验对双塔干扰效应进行了研究,发现风致干扰对风压分布形态影响较大,并以串列时的下游塔最为严重;不同荷载参数得到的干扰因子差别较大,即使是同一荷载参数,由不同特征值得到的干扰因子也有差异;模型表面粗糙度对风荷载干扰因子影响较小。
     (6)利用气弹模型对双塔风致干扰效应进行了研究,发现动力响应特性受干扰影响较小,而风振系数略有增大;由反映荷载大小的力系数得到的干扰因子并不能真实反映干扰效应对响应的影响,冷却塔的风致干扰效应大小应以风致响应来考察;风致响应干扰因子受表面粗糙度影响较小。
With the development of Chinese electrical utility, the height of the coolingtower is going to surpass the level of200m, with breaking through the world record,which is far exceed the limit height of165m in our current cooling tower designspecifications. In order to ensure the security and economy of such large coolingtower, as well as to provide reference for our specification revision, the wind load,response characteristics and wind-induced interference for200m high super largecooling tower are studied by wind tunnel tests, CFD simulations and finite elementanalysis of response in the present work. The main contents and conclusions aresummarized as follows:
     (1) The shortcomings of the rigidity model manometric experiment for innersurface pressure were analyzed by CFD simulations. The results show that the windtunnel test is still reliable. The wind tunnel test results indicate that the wind pressureof inner surface is less affected by Reynolds number and wind direction, while theventilation ratios of stuffing layers and cross baffle significant ly impact the internalwind pressure. In general, the internal pressure along hoop and meridional arebasically the same.
     (2) The influence of various parameters for rough strips on pressure distributionwere analyzed. It was found that roughness coefficient k/s is an important parameterto describe the roughness size, which closely affect the pressure distribution.Meanwhile, the estimation method of pressure according to k/s and the relationshipbetween roughness Reynolds numberRe Rand minimum pressure coefficient Cpminare obtained, according to which the test wind speed and roughness could beaccurately predicted for the simulation of target curve.
     (3) Wind loads characteristic and their design value of both outer and innersurface were investigated. It is shown that the wind loads on outer surface of thecooling tower behaved the remarkable three-dimensional effect, and the internalpressure is also not strictly uniformly distributed along the hoop and meridional. It isproved that local deformation of cooling tower play a major role in the total response,and the wind-induced response is closely associated with the distributioncharacteristics of wind pressure, while there is no clear description on relationshipbetween wind-induced response and the value of drag coefficient. It was also found that the design value of outer and inner surface could be simplified by representativecurve and constant-0.50respectively, which are proved to be sufficient safe for thestructure.
     (4) Similarity relations for full aero-elastic model of cooling tower were derivedand verified by finite element method, which show that full aeroelastic model cansatisfy the similar relationship of both cooling tower shell and column, and canachieve a successive distribution for mass and stiffness. A full aero-elastic model wasdesigned and processed with sufficient accuracy, and it’s wind-induced response wasmeasured by high-precision laser displacement meter and the data was carefullyanalyzed. The results show that the wind-induced response and dynamic amplificationof cooling tower is not obvious in normal climate.
     (5) Wind tunnel tests were carried out to study wind-induced interference effecton two200m high adjacent super large cooling towers based on rigidity modelsynchronization manometry wind tunnel tests. The results show that wind-inducedinterference affected the distribution of wind pressure significantly, particularly forthe downstream tower in the tandem configuration. Meanwhile, it is found thatinterference factors calculated by different load parameters are different, even for thesame load parameter, different eigenvalues could result in different values. Inaddition, test result show that surface roughness has less effects on the wind loadinterference factor.
     (6) Wind tunnel tests were carried out to study wind-induced interference effecton two200m high adjacent super large cooling towers based on full aero-elasticmodel. The test results indicate that interference effect has less effect on dynamicresponse characteristics, while gust loading factor increases slightly. Also,interference factor result from wind loads does not represent the effect of interferenceon the response, wind-induced interference effects of cooling tower should beexamined by wind-induced response. In addition, interference factor calculated bywind-induced response are less affected by surface roughness.
引文
[1]赵振国.冷却塔.北京:中国水利水电出版社,1981,1-5
    [2]艾汉佩著,胡贤章译.冷却塔.北京:电力工业出版社,1980,22-46
    [3]鲍侃袁.大型双曲冷却塔的风荷载和风致响应理论分析与试验研究:[浙江大学博士学位论文].杭州:浙江大学,2009,3-5
    [4] CEGB. Report of the committee of inquiry into the collapse of cooling towers atFerrybridge on November7,1965. UK: Central Electricity Generating Board,1965
    [5] ICI. Report of the committee of inquiry into the collapse of the tower at ArdeerNylon Works, Ayrshire, on Thursday September27,1973. UK: Imperial ChemicalIndustries(Petrochemical Division),1974
    [6] Croll J G A, Kaleli F, Kemp K O. Meridionally imperfect cooling towers. Journalof Engineering Mechanics, ASCE,1979,105(EM5):761-777
    [7] Godoy L A. On the collapse of cooling towers with structural imperfections.Proceedings of the Institution of Civil Engineers,1984,57:419-427
    [8] Bamu P, Zingoni A. Damage, deterioration and the long-term structuralperformance of cooling-tower shells: A survey of developments over the past50years. Journal of Engineering Structures,2005,27(12):1794-1800
    [9] Viladkar M. Static soil-structure interaction response of hyperbolic cooling towershells with stiffening rings. Journal of Engineering Structures,2006,28(9):1236-1251
    [10] CEGB. Report on Fiddlers Ferry power station cooling tower collapse on January13,1984. UK: Central Electricity Generating Board, l984
    [11]中华人民共和国建设部,工业循环水冷却设计规范.北京:中国电力出版社,2003,17-19
    [12]中华人民共和国国家发展和改革委员会,火力发电厂水工设计技术规定.北京:中国电力出版社,2006,109-111
    [13] BS4485-4Code of Practice for Structural Design and Construction-WaterCooling Towers. British,1996,11-13
    [14] Technical Guideline for the Structural Design, Computation and Execution ofCooling Towers. Structural Design of Cooling Towers(VGB-R610Ue). German,2005,22-23
    [15] Farell C, Maisch F E. External roughness effects on the mean wind pressuredistribution on hyperbolic cooling towers. Iowa City, Iowa, USA: The Universityof Iowa,1974,68-77
    [16] Propper H, Welsch J. Wind pressure on cooling tower shells. In: Proc eedings ofthe5thInternational Conference on Wind Engineering,1979,465-478
    [17] Abu-Sitta S H, Hashish M G. Dynamic wind stresses in hyperbolic cooling towers.Journal of the Structural Division,1973,99(9):1823-1835
    [18] Hashish M G, Abu-Sitta S H. Response of hyperbolic cooling towers to turbulentwind. Journal of Structural Engineering,1974,100(ST5):1037-1051
    [19] Kasperski M, Niemann H J. On the correlation of dynamic wind loads andstructural response of natural-draught cooling towers. Jouranl of WindEngineering and Industrial Aerodynamics,1988,30:67-75
    [20] Ruscheweyh H. Wind loadings on hyperbolic natural draught cooling towers.Jouranl of Wind Engineering and Industrial Aerodynamics,1975,1:335-340
    [21] Niemann H J. Zur stationaren Windbelastung rotationssymmetrischer Bauwerkeim Bereich transkritischer Reynoldszahlen. Mitt. Nr.71-2, Tech.-wissensch. Mitt,Institut fur Konstr. Ing.-ban, Ruhr-Universitat Bochum, West Germany,1971
    [22] Niemann H J. Wind pressure measurements on cooling towers. Jouranl of WindEngineering and Industrial Aerodynamics,1973,1:265-281
    [23] Niemann H J, Pr pper H. Some properties of fluctuating wind pressures on afull-scale cooling tower. Journal of Wind Engineering and IndustrialAerodynamics,1975,1:349-359
    [24] Sollenberger N J, Scanlan R H. Pressure-difference measurements across the shellof a full-scale natural draft cooling tower. In: Proceedings of the Symposium onFull-Scale Measurements of Wind Effects, University of Western Ontario, Canada,1974,373-382
    [25] Scanlan R H, Leonard J F. Turbulent winds and pressure effects around a roughcylinder at high Reynolds number. Jouranl of Wind Engineering and IndustrialAerodynamics,1982,9:207-236
    [26] Steinmetz R L, Billington D P, Abel J F. Hyperbolic cooling tower dynamicresponse to wind. Journal of the Structural Division, ASCE,1978,104(ST1):35-53
    [27] Pirner M. Wind pressure fluctuations on a cooling tower. Journal of WindEngineering and Industrial Aerodynamics,1982,10:343-360
    [28]黄志龙.大型冷却塔结构分析的若干问题.力学与实践,2012,34(5):1-5
    [29] Sun Tian-feng, Zhou Liang-mao. Wind pressure distribution around a riblesshyperbolic cooling tower. Journal of Wind Engineering and IndustrialAerodynamics,1983,14(1-3):181-192
    [30]武际可.大型冷却塔结构分析的回顾与展望.力学与实践,1996,18(6):1-5
    [31]柯世堂.大型冷却塔结构风效应和等效风荷载研究:[同济大学博士学位论文].上海:同济大学,2011,23-38
    [32]阎文成,张彬乾,李建英.超大型双曲冷却塔风荷载特性风洞试验研究.流体力学实验与测量,2003,17:85-89
    [33]李鹏飞,赵林,葛耀君等.超大型冷却塔风荷载特性风洞试验研究.工程力学,2008,25(6):60-67
    [34]沈国辉,余关鹏,孙炳楠等.模型表面粗糙度对冷却塔风荷载的影响.工程力学,2011,28(3):86-93
    [35]柯世堂,赵林,葛耀君.大型双曲冷却塔表面脉动风压随机特性风压极值探讨.实验流体力学,2010,24(4):7-12
    [36]柯世堂,葛耀君,赵林.大型双曲冷却塔表面脉动风压随机特性非高斯特性研究.试验流体力学,2010,24(3):12-18
    [37]鲍侃袁,沈国辉,孙炳楠.大型双曲冷却塔平均风荷载的数值模拟研究.空气动力学学报,2009,27(6):650-655
    [38]董国朝,陈政清,罗建辉等.冷却塔混凝土粗糙度对平均风压系数的影响.湖南大学学报(自然科学版),2011,38(7):6-12
    [39]孙天凤,周良茂.无肋双曲线冷却塔风压分布的全尺寸测量和风洞研究.空气动力学学报,1983,4:68-76
    [40]张陈胜.大型双曲冷却塔风荷载的数值模拟研究:[浙江大学硕士学位论文].杭州:浙江大学,2008,22-36
    [41]沈国辉,张陈胜,孙炳楠等.大型双曲冷却塔内表面风荷载的数值模拟.哈尔滨工业大学学报,2011,43(4):104-108
    [42]余关鹏.大型双曲冷却塔风荷载特性和风致干扰效应研究:[浙江大学硕士学位论文].杭州:浙江大学,2010,70-80
    [43]沈国辉,余关鹏,孙炳楠等.考虑内外压共同作用的大型冷却塔风荷载分析.空气动力学报,2011,29(4):339-446
    [44] Diver M. Large cooling towers the present trend. Jouranl of Structural Engineer.1977,10(55):130-137
    [45] Sollenberger N J, Billington D P. Wind loading and response of cooling towers.Journal of the Structural Division, ASCE,1980,103(3):601-621
    [46] Kawarabata Y, Nakae S, Harada M. Some aspects of the wind design of coolingtowers. Journal of Wind Engineering and Industrial Aerodynamics,1983,14:167-180
    [47] Armitt J, Wind Loading on cooling towers. Journal of Structural Division,1980,106(ST3):623-641
    [48] Nimeann H J, Zerna W. Impact of research on development of large coolingtowers. Journal of Engineering Structures,1986,8:74-86
    [49] Niemann H J, Kopper H D. Influence of adjacent buildings on wind effects oncooling towers.4thInternational Symposium on Natural Draught Cooling Towers,Balkema, Rotterdam,1996,83-91
    [50] Orlando M. Wind-induced interference effects on two adjacent cooling towers.Journal of Engineering Structures,2001,23:979-992
    [51]周良茂,李培华.两个邻近全尺寸双曲型冷却塔风压分布的测量.气动实验与测量控制,1992,6(3):37-44
    [52] T. F. Sun, Z. F. Gu, L. M. Zhou. Full-scale measurement and wind-tunnel testingof wind loading on two neighboring cooling towers. Jouranl of Wind Engineeringand Industrial Aerodynamics,1992,41-44:2213-2224
    [53] T. F. Sun, Z. F. Gu. Interference between wind loading on group of structures.Jouranl of Wind Engineering and Industrial Aerodynamics,1995,54-55:2213-2224
    [54]顾志福,孙天风,季书弟.沙岭子电厂冷却塔群风荷载的风洞研究.力学学报,1992,24(2):129-135
    [55]顾志福,孙天风,陈强.两个相邻冷却塔风荷载的相互作用.空气动力学报,1992,10(4):519-524
    [56]张彬乾,李建英,阎文成.超大型双曲冷却塔双塔干扰的风荷载特性研究.流体力学实验与测量,2003,17(特刊):93-97
    [57]沈国辉,刘若斐,孙炳楠.双塔情况下冷却塔风荷载的数值模拟.浙江大学学报,2007,41(6):1017-1022
    [58]沈国辉,余关鹏,孙炳楠等.大型冷却塔双塔干扰的风洞试验研究.振动与冲击,2011,30(3):109-114
    [59]沈国辉,鲍侃袁,孙炳楠等.单塔和双塔情况下大型冷却塔的表面风压研究.华中科技大学学报,2011,39(7):104-108
    [60]沈国辉,余关鹏,孙炳楠等.倒品字形分布三个冷却塔的风致干扰效应研究.空气动力学报,2011,29(1):107-113
    [61]沈国辉,余关鹏,孙炳楠等.大型冷却塔风致响应的干扰效应.浙江大学学报,2012,46(1):33-38
    [62]赵林,宋锦忠,高玲等.冷却塔群刚体测压试验研究.实验流体力学,2007,21(2):56-62
    [63]赵林,葛耀君,许林汕等.超大型冷却塔风致干扰效应试验研究.工程力学,2009,26(1):149-159
    [64]柯世堂,葛耀君,赵林.基于气弹试验大型冷却塔结构风致干扰特性分析.湖南大学学报,2010,37(11):18-23
    [65]张军锋,赵林,柯世堂等.大型冷却塔双塔组合表面风压干扰效应试验.哈尔滨工业大学学报,2011,43(4):81-87
    [66] Davenport A G. Gust loading factors. Journal of the Structural Division, ASCE,1967,93(3):11-34
    [67]张相庭.结构风压与风振计算.上海:同济大学出版社,1985,1-108
    [68] Kasperski M, Niemann H J. The LRC(load-response-correlation) method ageneral method of estimating unfavourable wind load distributions for linear andnon-linear structural behavior. Journal of Wind Engineering and IndustrialAerodynamics,1992,43(1-3):1753-1763
    [69] Holmes J. Effective static load distributions in wind engineeri ng. Journal of WindEngineering and Industrial Aerodynamics,2002,90(2):91-109
    [70] Holmes J. Recent developments in the specification of wind loads on transmissionlines. Journal of Wind Engineering and Industrial Aerodynamics,2008,5(1):8-18
    [71] Niemann H J. Modelling of wind loads with regard to gust effects. Journal ofStructural Engineering,1984,6:274-280
    [72]邹云峰,李寿英,牛华伟.双曲冷却塔等效静力风荷载中国规范适应性研究.振动与冲击,2013,32(11):100-105
    [73]李佳颖,任春玲,黄志龙.自然通风冷却塔的实验及有限元分析.力学季刊,2007,28(3):443-447
    [74]柯世堂,赵林,葛耀君等.大型双曲冷却塔气弹模型风洞试验和响应特性.建筑结构学报,2010,31(2):60-68
    [75]陈凯,魏庆鼎.冷却塔风致振动实验研究.见:第十一届全国结构风工程学术会议论文集.三亚,2003,177-182
    [76]赵林,李鹏飞,葛耀君等.效静风荷载下超大型冷却塔受力性能分析.工程力学.2008,25(7):79-86
    [77]沈国辉,余关鹏,孙炳楠等.考虑内外压共同作用的大型冷却塔风荷载分析.空气动力学报,2011,29(4):439-446
    [78] Isyumov N, Abu-sitta S H, Davenport A G. Approaches to the design ofhyperbolic cooling towers against the dynamic action of wind and earthquake.IASS Symposium on Hyperbolic Cooling Towers, Brussels,1971,1-20
    [79]中华人民共和国建设部.建筑结构荷载规范(GB50009-2012).北京:中国建筑工业出版社,2012,28-157
    [80]中华人民共和国建设部.建筑结构荷载规范(GB50009-2001).北京:中国建筑工业出版社,2006,24-169
    [81] Whitbread R E. Model simulation of wind effects on structures. In: Proc. Int.Conf. on Wind Effects on Buildings and Structures, London,1963,15-28
    [82] Vickery B J. Study on the aeroelastic modeling of structures in wind. In:Conference on Structures Models,1972,48-56
    [83]赵林,葛耀君,曹丰产.双曲薄壳冷却塔气弹模型的等效梁格方法和实验研究.振动工程学报,2008,21(1):31-37
    [84] ASCE. Wind tunnel models studies of buildings and structures. New York: ASCEmanuals and reports on engineering practice,1987,15-48
    [85] Winney P E. The modal properties of model and full scale cooling towers. Journalof Sound and Vibration,1978,57(1):131-148
    [86] Niemann H J, Kopper H D. Influence of adjacent buildings on wind effects oncooling towers. Journal of Engineering Structures,1998,20(10):874-880
    [87] Surry D, Djakovich D. Fluctuating pressures on models of tall buildings. Jouranlof Wind Engineering and Industrial Aerodynamics,1995,58:81-112
    [88] Irwin H J, Cooper K R, Girard R. Correction of distortion effects caused bytubing systems in measurements of fluctuating pressures. Jouranl of WindEngineering and Industrial Aerodynamics,1979,5:93-107
    [89] Bergh H, Tijdeman H. Theoretical and experimental results for the dynamicsresponse of pressure measuring systems. Narional Aero and Aeronaut icalResearch Institute, Rep. NLR-TRF,1965,238
    [90]蔡亦钢.流体传输管道动力学.杭州:浙江大学出版社,1990,1-80
    [91] Armitt. J. Eigenvector analysis of pressure fluctuaions on the West Burtoninstrumented cooling tower. London: Central Electricity Research Laboratiories(U.K.), Internal Report RD/L/N114/68,1968,114-168
    [92] Holmes J D. Analysis and synthesis of pressure fluctuations on bluff bodies usingeigenvectors. Journal of Wind Engineering and Industrial Aerodynamics,1990,33:219-230
    [93] Tamura Y, Suganuma S, Kikuchi H, et a1. Proper orthogonal decomposition ofrandom wind pressure field. Journal of Fluids and Structures,1999,13:1069-1095
    [94] B. Bienkiewicz, Y. Tamura, H.J. Ham, et al. Proper orthogonal decomposition andreconstruction of multi-channel roof pressure. Journal of Wind Engineering andAerodynamics,1995,54-55:369-381
    [95] Y. Tamura, S. Suganuma, H. Kikuchi, et al. Proper orthogonal decomposition ofrandom wind pressure field. J. Journal of Fluids and Structures,1999,13:1069-1095
    [96] Loeve M. Probability Theory. New York: Springer-Verlag New York INC,1978
    [97]翟志强,朱克勤,符松.横风向对自然通风干式冷却塔空气流场影响的模型实验研究.实验力学,1997,12(2):306-311
    [98]赵振国,石金玲,魏庆鼎等.自然风对空冷塔的不利影响及其改善措施.应用科学学报,1998,16(1):112-120
    [99]翟志强,符松,朱克勤.横风下空冷塔单塔与双塔流场特性及相关改进方案的实验比较研究.空气动力学报,1999,17(1):30-38
    [100]张晓东,王清照.侧风对自然通风空冷塔冷却性能的影响.中国电力,1999,6(32):34-37
    [101]赵元宾,孙奉仲,王凯等.十字隔墙湿式冷却塔冷却特性的数值研究.中国电机工程学报,2009,29(8):6-13.
    [102] A. F. Du Preez, D. G. Kroger. The effect of the heat exchanger arrangement andwind-break walls on the performance of natural draft dry-cooling towerssubjected to cross-winds. Journal of Wind Engineering and IndustrialAerodynamics,1995,58:293-303
    [103] Al-Waked R, Behnia M. The effect of wind-break walls on the thermalperformance of natural draft dry cooling towers. Heat Transfer Engineering,2005,26(8):50-62
    [104]李加武.桥梁断面雷诺数效应及其控制研究:[同济大学博士学位论文].上海:同济大学,2003,38-54
    [105] Hui M C H, Zhou Z Y, Chen A R, et al. The effect of Reynolds numbers on thesteady state aerodynamic force coefficients of the Stonecutters Bridge decksection. Wind and Structures,2008,11(3):179-191
    [106] Larsen A, Savage M, Lafreninere A, et al. Investigation of vortex response of atwin box bridge section at high and low Re numbers. Journal of Wind Engineeringand Industrial Aerodynamics,2008,96:6-7
    [107]陈政清.桥梁风工程.北京:人民交通出版社,2005,26-30
    [108] Achenbech E. Influence of surface roughness on the cross flow around a circular.Journal of Fluid Mechanics,1971,46(2):321-335
    [109] Ribeiro J L D. Effects of surface roughness on the two-dimensional flow pastcircular cylinders Ⅰ: mean forces and pressures. Journal of Wind Engineeringand Industrial Aerodynamics,1991,37:299-309
    [110] Ribeiro J L D. Effects of surface roughness on the two-dimensional flow pastcircular cylinders Ⅱ: fluctuating forces and pressures. Journal of WindEngineering and Industrial Aerodynamics,1991,37:311-326
    [111] Niemann H J, Holscher N. A review of recent experiments on the flow pastcircular cylinders. Journal of Wind Engineering and Industrial Aerodynamics,1990,33:197-209
    [112] Maruta E, Kanda M, Sato J. Effects on surface roughness for wind pressure onglass and cladding of buildings. Journal of Wind Engineering and IndustrialAerodynamics,1998,74-76:651-663
    [113] Lawson T V. The use of roughness ro produce high Reynolds number flowsaround circular cylinders at lower Reynolds numbers. Journal of WindEngineering and Industrial Aerodynamics,1982,10:381-387
    [114] Zdravkovich M M. Conceptual overview of laminar and turbulent flows pastsmooth and rough circular cylinders. Journal of Wind Engineering and IndustrialAerodynamics,1990,33:53-62
    [115] Farell C, Guven O, Maisch F. Mean wind loading on rough-walled cooling towers.Journal of the Engineering Mechanics Division, ASCE,1976,102(6):1059-1081
    [116]孙天风,周良茂.无肋双曲线型冷却塔风压分布的全尺寸测量和风洞研究.空气动力学报,1983,12(4):68-76
    [117]赵林,宋锦忠,高玲等.冷却塔群塔刚体测压试验研究.试验流体力学,2007,21(2):56-62
    [118] Emii S, Robert H S. Wind effects on structures: fundamentals and applications todesign, Third Edition, A Wiley-Inter-Science Publication,1996,206-207
    [119] Buresti G. The effect of surface roughness on the flow regime around circularcylinders. Jouranl of Wind Engineering and Industrial Aerodynamics,1981,8:105-114
    [120] Shih W C L, Wang C, Coles D, et al. Experiments on flow past rough circularcylinders at large Reynolds numbers. Jouranl of Wind Engineering and IndustrialAerodynamics,1993,49:351-368
    [121]操金鑫,赵林,葛耀君等.双曲线圆截面建筑结构雷诺数效应模拟实践.实验流体力学,2009,25(4):46-50
    [122] Harnach R, Niemann H J. The influence of realistic mean wind loads on the staticresponse and the design of high cooling towers. Journal of Engineering Structures,1980,2:27-34
    [123]邹云峰,陈政清,牛华伟.模型表面粗糙度对冷却塔风致响应及干扰的影响.空气动力学报,已录用
    [124] Yeung W W H. Similarity study on mean pressure distribution of cylindrical andspherical bodies. Jouranl of Wind Engineering and Industrial Aerodynamics,2007,95:253-266
    [125]董锐,赵林,葛耀君等.双曲圆截面冷却塔壁面粗糙度对其绕流动态特性影响.空气动力学学报,2013,31(2):250-259
    [126]周云龙,郭婷婷.高等流体力学.北京:中国电力出版社,2008,125-132
    [127] Basu R I. Aerodynamic forces on structures of circular crosssection part1:Model-scale data obtained under two-dimensional conditions in low-turbulencestreams. Journal of Wind Engineering and Industrial Aerodynamics,1985,21:273-294
    [128] Kareem A. Pressure and force fluctuations on isolated roughened circularcylinders of finite height in boundary layer flows. Journal of Fluids andStructures,1999,13:907-933
    [129] Niemann H J, Holscher N. A review of recent experiments on the flow pastcircular cylinders. Journal of Wind Engineering and Industrial Aerodynamics,1990,33:197-209
    [130] Bartoli G, Borri C, Zahlten W. Nonlinear dynamic analysis of cooling towersunder stochastic wind loading. Journal of Wind Engineering and IndustrialAerodynamics,1992,43(1-3):2187-2198
    [131] Gould P L, Kratzig W B. Cooling Tower Structures. Structural EngineeringHandbook, Boca Raton:CRC Press LLC,1999
    [132] Isyumov N, Abu-Sitta S H. Approaches to the design of hyperbolic cooling towersagainst the dynamic action of wind and earthquakes. Bulletin of the InternationalAssociation of Shell Structures,1972,48:3-22
    [133] Staszewski W J. Identification of damping in MDOF systems using time-scaledecomposition. Journal of Sound and Vibration,1997,203(2):283-305
    [134]滕军,朱焰煌,周峰等.基于复Morlet小波变换的大跨空间结构模态参数识别研究.振动与冲击,2009,28(8):25-29
    [135] Banfu Yan, Ayaho Miyamoto. A comparative study of modal parameteridentification based on wavelet and Hilbert-Huang transforms. Computer-Aided Civil and Infrastructure Engineering,2006,21:9-23
    [136]罗光坤. Morlet小波变换理论与应用研究及软件实现:[南京航天航空大学博士学位论文].南京:南京航天航空大学,2007,24-72
    [137] T. Kijewski, A. Kareem. Wavelet transforms for system identificationin civilengineering. Computer-Aided Civil and Infrastructure Engineering,2003,18:339-355
    [138] Lardies J, M. N. Ta, Berthiller M. Modal parameter estimation based on the wavelet transform of output data. Archive of Applied Mechanics,2004,73:718-733
    [139]张西宁,屈梁生.一种改进的随机减量信号提取方法.西安交通大学学报,2000,34(1):105-107
    [140] Emilia J, Zdenek B, Ondrej F. Vibration characteristics of a c ooling-tower shell.Jouranl of Wind Engineering and Industrial Aerodynamics,1983,12:145-154
    [141]陈凯.大气边界层模拟与冷却塔风洞试验研究:[北京大学博士学位论文].北京:北京大学,2003,54-105
    [142] Davenport A G. Gust loading factors. Journal of Structural Division,1967,93(ST3):11-34
    [143] Holmes John D. Wind loadings on structures. New York,2001,111-113
    [144] Niemann H J. Wind effects on cooling tower shells. Journal of StructuralEngineering. ASCE,1980,106(ST3):643-661
    [145]刘天成,赵林,丁志斌.圆形截面冷却塔不同表面粗糙度时绕流特性的试验研究.工业建筑,2006,36:301-304
    [146]刘松,符松.串列双圆柱绕流问题的数值模拟.计算力学学报,2000,17(3):260-266
    [147] Zhang J. F, Ge Y. J, Zhao L. Effect of latitude wind pressure distribution on theload effects of hyperboloidal cooling tower shell. In: Proceedings of13thInternational Conference on Wind Engineering. Amsterdam,2011,965-972

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700