用户名: 密码: 验证码:
二向应力状态下早龄期C20混凝土的破坏准则和本构关系试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
早龄期混凝土材料的破坏准则和本构关系是施工期混凝土结构非线性分析和计算的基础,但是由于目前其理论研究的严重滞后,造成了早龄期混凝土结构计算分析时先进算法和粗略理论的不匹配,甚至根本找不到适合的破坏准则和本构关系可以依据,从而严重的制约了模板早拆等先进施工技术的发展和应用。因此,进行早龄期混凝土材料的破坏准则和本构关系的研究,具有着重要的实用价值和理论意义。
     为了给最不利条件下模板早拆施工技术研究中早龄期混凝土结构的非线性计算分析提供理论依据,进行了二向应力状态下早龄期混凝土材料的强度与变形特性试验。在试验基础上,首先建立了早龄期混凝土材料的破坏准则和初始屈服准则,然后依据二者关系建立了基于非均匀等向强化法则的后继屈服准则,最后根据这三个强度准则的特性,建立了早龄期混凝土材料的弹塑性本构关系。本文的主要研究成果如下:
     1、通过早龄期混凝土材料的强度试验测定了立方体抗压强度、棱柱体抗压强度、轴心抗拉强度以及静力受压弹性模量,并对测试数据进行了研究分析,得到了各强度指标在试验龄期范围的最佳数学回归方程,从而为早龄期混凝土结构计算中力学参数的选取提供了理论依据;
     2、在早龄期混凝土单轴受压强度与变形特性试验基础上,对比分析了早龄期混凝土和普通混凝土单轴受压应力-应变全曲线的差异,并进一步通过数学方法建立了早龄期混凝土单轴受压应力-应变标准全曲线方程,从而为早龄期混凝土结构或构件在单轴受力状态下的非线性分析提供了理论依据;
     3、基于二向应力状态下早龄期混凝土材料强度试验数据在八面体应力空间中的分布特点,通过回归分析和数学推导,建立了八面体应力空间的早龄期混凝土材料的破坏准则、初始屈服准则和后继屈服准则,并在破坏准则基础上进一步建立了以主应力形式表达的早龄期混凝土的二轴强度包络图,从而为早龄期混凝土材料在单轴和双轴受力状态下的强度分析提供了理论依据;
     4、借鉴弹塑性本构理论,根据早龄期混凝土材料的破坏包络面、初始屈服包络面以及参照面对八面体应力空间的划分状况,依据被划分区域和两个强度包络面及参照面在应力空间中的相对位置关系,分别给出了各划分区域的本构模型,进而得到了早龄期混凝土材料一般形式的弹塑性本构关系,从而为早龄期混凝土结构或构件在双轴受力状态下的非线性分析提供了理论依据。
The failure criterion and constitutive relation of the early-age concrete is the basis of the nonlinear analysis on the concrete structure in the construction. However, due to the lagging theoretical research, the impreciese theory can not match the advanced algorithms in the nonlinear analysis, even there are not the ture failure criterion and constitutive relation, which will have a serious effect on the application and development of the advanced technology such as the early dismantling formwork construction. As a result, the research on the failure criterion and constitutive relation have important practical value and theoretical significance.
     In order to give theoretical basis for the non-linear analysis of the early-age C20 concrete structure in the most-unfavorable diathesis-based early dismantling formwork construction technology, the test of the concrete strength and deformation was carried out under the biaxial stress state. On an experimental results, firstly the failure criterion and the initial yield criterion of early-age C20 concrete materials are established, and then the subsequent yield criterion can be derived based on the non-uniform isotropic strengthening criterion, finally elastic-plastic constitutive relation is established according to the three criteria. The main research results are as follows:
     1. The cube compressive strength, prism compressive strength, axial tensile strength and static elastic modulus of compression can be set out in the early-age C20 concrete strength test. According to the test data, the best mathematical regression equation of the strength indicators in the test age range can be made, which will provide the theoretical basis for the mechanical parameters of the calculation.
     2. In the experimental basis, the difference of uniaxial compression stress-strain curve between early-age C20 concrete materials and conventional concrete materials is analyzed, and the more precise uniaxial compression stress-strain standard curve equation can be established through mathematical method, so as to provide the theoretical basis for non-linear analysis of early-age C20 concrete structures or structural members under the uniaxial state.
     3. According to the distribution characteristics of strength test data in the octahedral stress space, using the method of the linear fitting and mathematical derivation, the failure criterion, the initial yield criterion and the subsequent yield criterion of early-age C20 concrete materials in the octahedral stress space are established, and then the biaxial strength envelope curve of early-age C20 concrete materials in the form of principal stress is achieved on the basis of failure criterion, so as to provide the theoretical foundation for the strength analysis of the early-age C20 concrete materials under uniaxial and biaxial stress state.
     4. Considering the elastic-plastic constitutive theory and based on the early-age C20 concrete failure envelope, the initial yield envelope and the reference surface, octahedral stress space can be divided. Based on the location relationship in stess space according to the divided region, the two intensity envelope and the reference surface, the elastic-plastic constitutive model of the divided region is established, which the general elastic-plastic constitutive relation for early-age C20 concrete materials is made. All of this can supply the theoretical basis for non-linear analysis of early-age C20 concrete structures or structural members under the biaxial state.
引文
[1]丁红岩,刘会勋,侯川,等.钢筋混凝土楼板模板早拆施工技术论证报告[R].天津:天津大学建筑工程学院土木工程施工教研室,2007.
    [2]毛建斌.模板早拆体系在施工中的应用和发展[D].天津:天津大学建筑工程学院,2007.
    [3]熊成君.建筑施工模板早拆对混凝土结构影响研究[D].天津:天津大学建筑工程学院,2007.
    [4]侯川.早拆模板施工技术研究[D].天津大学建筑工程学院,2008.
    [5]强珍生.模板早拆对混凝土梁柱节点的影响分析[D].天津:天津大学建筑工程学院,2008.
    [6]宋玉普.多种混凝土材料的本构关系和破坏准则[M].北京:中国水利水电出版社,2002.
    [7]过镇海.混凝土的强度和本构关系—原理与应用[M].北京:中国建筑工业出版社,2004.
    [8]闫光杰.200Mpa级活性粉末混凝土(RPC200)的破坏准则与本构关系研究[D].北京:北京交通大学土木建筑工程学院,2005.
    [9]过镇海.钢筋混凝土原理[M].北京:清华大学出版社,1999.
    [10] Chen W F. Plasticity in Reinforced Concrete[M]. McGraw-Hill Book Company, New York, 1992.
    [11]过镇海.混凝土的强度和变形(试验基础和本构关系)[M].北京:清华大学出版社,1997.
    [12]陈惠发著,余天庆等译.土木工程材料的本构方程(第一、二卷)[M].武汉:华中科技大学出版社,2001.
    [13] Bresler B. and Pister K. S. Strength of Concrete under Combined Stresses[J]. ACI, 1958,55(9):321-345.
    [14] Willam K. J., Warnke E. P. Constitutive Models for the Triaxial Behavior of Concrete[J]. Int. Assoc. Bridge Struct. Eng. Sem. Concr. Struc. Subjected Traixial Stresses. Bergamo,Italy. 1974, Int. Assoc. Bridge Strut. Eng. Proc. 1975(19):1-30.
    [15] Ottosen N.S. A Failure Criterion for Concrete[J]. ASCE, 1977,103(EM4): 527-535.
    [16] Hsieh S S, Ting E C, Chen W F. An Elastic-Fracture Model for Concrete[J]. Proceeding of 3rd Engineering Mechanics Division,Special Conference ASCE, Austin 1979:437-440.
    [17] Podgorski J. General Failure Criterion for Isotropic Media[J]. Proceedings of ASCE, 1985,111(EM2):188-201.
    [18]宋玉普,赵国藩.多轴应力下多种混凝土材料的通用破坏准则[J].土木工程学报,1996,29(1):25-32.
    [19]徐有邻.混凝土结构设计规范理解与应用[M].北京:中国建筑工业出版社, 2002.
    [20]俞茂宏.强度理论新体系[M].西安:西安交通大学出版社,1992.
    [21] Bazant .Z.P. Slip-Dilatancy Model for Cracked Reinforced Concrete[J]. ASCE, 1980,106(ST9):1947-1966.
    [22] Hsieh S.S. An Elastic-Fracture Model for Concrete[J]. Proceeding of 3rd Eng. Mech. Div. Spec. Conf. ASCE. Austin, Tex., 1979:437-440.
    [23]谢和平.岩石、混凝土损伤力学[M].徐州:中国矿业大学出版社,1990.
    [24] Romstad K.M., et al. Numerical Biaxial Characterization for Concrete[J]. ASCE, 1974,100(EM5):935-948.
    [25]宋玉普,赵国藩.应变空间混凝土的破坏准则[J].大连理工大学学报,1991,31: 455-462.
    [26]覃丽坤.高温及冻融循环后混凝土多轴强度和变形试验研究[D].大连:大连理工大学土木水利学院,2003.
    [27] HE Zhen-jun, SONG Yu-pu.Strength Regularity and Failure Criterion of Plain HSHPC under Biaxial Compression After Exposure to High Temperatures[J].Journal of Southeast University(English Edition), 2008,24(2):206-211.
    [28]卫军,周锡武,潘峤,等.高温作用对混凝土破坏准则的影响[J].铁道科学与工程学报,2008,5(5):18-20.
    [29]宋玉普,吕培印,侯景鹏.有侧压混凝土的变速率劈拉强度试验及其破坏准则研究[J].水利学报,2002,(3):1-5.
    [30]吕培印,宋玉普,侯景鹏.一向侧压混凝土在不同加载速率下的受压试验及其破坏准则[J].工程力学,2002,19(5):67-71.
    [31]侯景鹏.混凝土材料疲劳破坏准则研究[D].大连:大连理工大学土木水利学院,2001.
    [32]赵东拂.混凝土多轴疲劳破坏准则研究[D].大连:大连理工大学土木水利学院,2002.
    [33]董毓利,樊承谋,潘景龙.钢纤维混凝土双向破坏准则的研究[J].哈尔滨建筑工程学院学报,1993,26(6):69-73.
    [34]顾强生,张小平,施斌,等.柔性混凝土的抗拉特性及其破坏准则研究[J].河海大学学报,2002,30(2):30-34.
    [35]王志建.活性粉末混凝土二轴受压本构关系和破坏准则研究[D].北京:北京交通大学土木与建筑工程学院,2008.
    [36]王万祯.轻骨料混凝土破坏准则[J].甘肃科学学报,2008,20(1):119-121.
    [37]王怀亮,宋玉普.不同骨料级配混凝土的双轴压强度试验和破坏准则[J].水利学报,2008,39(12):1353-1359.
    [38]覃丽坤,宋玉普,于长江.双轴压混凝土在冻融循环后的力学性能及其破坏准则[J].工程力学,2004,21(2):188-193.
    [39]覃丽坤,宋玉普,陈浩然,等.双轴拉-压混凝土在冻融循环后的力学性能及破坏准则[J].岩石力学与工程学报,2005,24(10):1740-1745.
    [40]宋玉普,陈飞,张众,等.冻融环境下引气混凝土双轴拉-压强度和破坏准则的试验研究[J].水利学报,2006,37(8):962-937.
    [41]宋玉普,商怀帅,张众,等.冻融循环后引气混凝土双轴破坏准则研究[J].工程力学,2007,24(6):134-141.
    [42]王立成,刘汉勇,王海涛.冻融循环后轻骨料混凝土双轴拉(劈拉)压强度试验和破坏准则研究[J].岩石力学与工程学报,2006,25(2):3847-3853.
    [43]匡震邦.二非线性连续介质力学[M].西安:西安交通大学出版社,1989.
    [44]过镇海.混凝土应力-应变全曲线的试验研究[J].建筑结构学报, 1982,3(1):1-12.
    [45] Darwin D. and Pecknold D A .Nonlinear Biaxial Stress-Strain Law for Concrete[M]. ASCE, 1977,103(EM1):229-241.
    [46] Chen W. F.Plasticity in Reinforced Concrete[M]. New York: McGraw-Hill Book Company, 1982.
    [47] Green S. J., Swanson S .R. Static Constitutive Relations for Concrete[M]. Air Force Weapons Lab. Tech. Rep. AFWL-TR-72-244. Kirtland Air Force Base. Albuquerque. N. Mex. 1973.
    [48] Gerstel K.H. Simple Formulation of Biaxial Concrete Behavior[J]. ACI, 1981, 78(1):62-68.
    [49] Darwin D, Pecknold D A. Nonlinear Biaxial Stress Strain Law for Concrete[J]. Jounral of Engineering Mechanics, 1977,103(2):229-241.
    [50] Kupfer H, Gerstle K H. Behavior of Concrete under Biaxial Stresses[J]. ASCE,1973, 99(EM4):356-365.
    [51] Otosen N S. Constitutive Model for Short-Time Loading of Concrete[J]. Jounral of Engineering Mechanics, 1979,105(1):127-141.
    [52]徐炎.混凝土三轴拉-压强度与变形的试验研究[D].北京:清华大学土木与水利工程学院,1991.
    [53]严宗达.塑性力学[M].天津:天津大学出版社,1988.
    [54] Chen A C T,Chen W F. Constitutive Relations for Concrete[J]. Journal of Engineering Mechanics, 1975, 101(4):465-481.
    [55] Han D J,Chen W F.A Non-uniform Hardening Plasticity Model for Concrete Materials[J]. Mechanics of Materials, 1985(4):657-668.
    [56] Han D J ,Chen W F.Constituitve Modeling in Analysis of Concrete Structures[J]. Journal of Engineering Mechanics, 1987,113(4):577-593.
    [57]许锦峰.带有知识和数据库的随动不均匀强(软)化混凝土本构模型[D].北京:清华大学土木与水利工程学院,1989.
    [58]陈惠发,韩大建.混凝土结构分析中的本构模型[R].近代固体力学系列讲座资料(三),北京大学,1985.
    [59] Han D J, Chen W F. Strain-Space Plasticity Formulation for Hardening- Softening Materials with Elastoplastic Coupling[J]. Intenrational Jounral of Solids and Structures, 1986,22(8):935-950.
    [60] Stevens D J, Liu Dajin. Strain-Based Constitutive Model with Mixed Evolution Rules for Concrete[J]. ASCE, 1992,118(EM6):867-873.
    [61] Valanis K.C. A Theory of Viscoplasticity without a Yield Surface. I: General Thoery; II:Aplication to Mechanical Behavior of Metals[J]. Arch. Mech. 1971,23(4):517-551.
    [62] Bazant Z.P. Endochronic Thoery of Inelasticity and Failure of Concrete[J]. ASCE, 1976,102(EM4):701-721.
    [63] Bazant Z P ,Shich C L .Hysteretic Fracturing Endochronic Theory for Concrete[J]. ASCE, 1980, 106(EM5):546-557.
    [64]卡恰诺夫著,杜善义等译.连续介质损伤力学引论[M].哈尔滨:哈尔滨工业大学出版社,1989.
    [65] Loland K.E. Continuous Damage Model for Load Response Estimation of Concrete[J]. Cement and Concrete Research, 1980,(10):392-492.
    [66] Krajcinovic D. ,Fonseka G.U.. Continuous Damage Thoery of Brittle Materials[J]. App. Mech. 1981(48):809-824.
    [67] Qian Ji-cheng. Coupled Elastic-Plastic Damage Analysis in Concrete. Advances in Constitutive Laws for Engneering Materials[M]. Edited by Fan Jiughong and Murakami. Int. Academic Publishers, 1989.
    [68] Li Zhao-xia, Qian Ji-cheng. Creep Damage Analysis and Its Application to Nonlinear Creep of Reinforced Concrete Beam[J]. Eng. Frac. Mech. 1989, 34(4):851-860.
    [69] Loland K. E. Continuous Damage Model for Load-Response Estimation of Concrete[J]. Cement and Concrete Research, 1980,10(3):395-402.
    [70] Resande L. A Damage Mechanics Constitutive Theory for the Inelastic Behavior of Concrete[J]. Computer Mehods in Applied Mechanics and Engineering, 1987,60: 57-93.
    [71] Karihaloo B L, Fu D. Orthotropic Damage Model for Plain Concrete in Tension[J].ACI Materials Journal, 1990,1-2.
    [72]乐运国,郑波,王安文,等.复杂应力状态下高强棍凝土的损伤本构理论及应用[J].大连理工大学学报.1997,37(增),93-97.
    [73]张盛东,樊承谋.混凝土损伤本构关系的研究[J].哈尔滨建筑大学学报.2000,33(1):68-72.
    [74]黄真.钢筋混凝土三维非线性有限元方法[D].天津:天津大学建筑工程学院,1998.
    [75]吴建营,李杰.混凝土弹塑性损伤本构关系统一模型[J].建筑科学与工程学报2005,22(4):15-21.
    [76]李杰,杨卫忠.混凝土弹塑性随机损伤本构关系研究[J].土木工程学报.2009,42(2):31-38.
    [77]杨璐,朱浮声,沈新普.梯度依赖的混凝土弹塑性非局部损伤的本构模型[J].材料研究学报.2007,21(5):477-451.
    [78]李杰,张其云.混凝土随机损伤本构关系[J].同济大学学报,2001,29(10): 1135-1141.
    [79]李杰,卢朝辉,张其云.混凝土随机损伤本构关系-单轴受压分析[J].同济大学学报,2003,31(5):505-509.
    [80]廖骁俊.混凝土在双轴作用下随机损伤本构关系研究[D].南昌:南昌大学建筑工程学院,2005.
    [81] Bazant Z P, Kim S S. Plastic-Fracture Theory for Concrete[J]. ASCE, 1979,105(EM3):768-772.
    [82] Yazdani S, Schreyer H L. Combined Plasticity and Damage Mechanics Modelfor Plain Concrete[J].ASCE, 1990,116(EM7):856-864.
    [83] Oliver J, Oiler S and Onate E. A Plastic-Damage Model for Concrete[J]. International Journal of Solids and Structuers, 1989,25(3):114-118.
    [84]宋玉普,赵国藩.混凝土内时损伤本构模型[J].大连理工大学学报, 1990,30(5):185-190.
    [85]张研,张子明,邵建富.混凝土化学-力学损伤本构模型[J].工程力学,2006, 23(9):153-156.
    [86]刘长春,吕和祥,关萍.混凝土材料的粘塑性损伤本构模型[J].应用数学和力学, 2007,28(9):1021-1027.
    [87]刘长春,吕和祥,冯明珲.混凝土材料的粘塑性损伤统一本构模型[J].工程力学, 2008,25(7):100-105.
    [88]王怀亮,宋玉普.受侧向约束混凝土的内时损伤本构模型[J].工程力学, 2007,24(12):120-127.
    [89] Dafalias Y F .Bounding Surface Plasticity I :Mathematical Foundation and Hypoplasticity[J]. ASCE, 1996,112(EM9):546-552.
    [90] Yang B L, Dafalias Y F and Herrman L R. A Bounding Surface Plasticity Model for Concrete[J]. ASCE, 1985,111(EM3):573-582.
    [91] Bazant Z P and Oh B H .Microplane Model for Progressive Fracture of Concrete And Rock[J]. ASCE, 1985,111(EM4):624-631.
    [92] Marek Klisinski. Plasticity Theory Based on Fuzzy Sets[J]. ASCE,1988,114 (EM4):572-581.
    [93] Ghaboussi J, Garret Jr and Wu X. Knowledge Based Modeling of Material Behavior with Neutral Networks[J].ASCE, 1991,117(EM1):43-52.
    [94] SONG Yu-pu, ZHAO Guo-fan. Strengh of Lightweigh Concrete undei Triaxial Compression[J]. China Ocean Engineering, 1996,10(2):239-244.
    [95] Stevens D.J. Strain Based Constitutive Model with Mixed Evolution Rules for Concrete[J]. ASCE, 1992,118(EM6):1184-1200.
    [96] Yoder P. J., Iwan W.D.. On the Formulation of Strain-Space Plasticity with Multiple Loading Surfaces[J]. Appl. Mech. 1981,48(4):773-778.
    [97] Casey J, Naghdi P.M. On the Nonequivalence of the Stress Space and Strain Space Formulaions of Plasticity Thoery[J]. App,Mech.ASME, 1983,50(2):350-354.
    [98] Mizuno E , Hatanaka S. Compressive Softening Model for Concrete[J]. ASCE, 1992,118(EM8):1546-1563.
    [99]王怀亮,宋玉普.混凝土的弹塑性损伤双面本构模型[J].计算力学学报,2008,25(2):218-223.
    [100] Han D. J., Chen W. F.. Strain-Space Platicity Formulation for Hardening- Softening Materials with Elastoplastic Coupling[J]. Solids Structures, 1986,22(8): 935-950.
    [101] Besseling J. F. A Thoery of Elastic, Plastic and Creep Deformation of an Initially Isoropic Materal Showing Strain Hardening, Creep Recovery, and Secondary [J]. Appl. Mech. 1958,25(4):529-536.
    [102] Mroz Z. An Attempt to Describe the Behavior of Metals under Cyclic Loads Using a More General Workhardening Model[J].Acta Mechanica. 1969, 7(1):199-212.
    [103] Mroz Z. Hardening and Degradation Rules for Metals under Monotonic and Cyclic Loading[J]. Eng. Mat. Techn. 1983,105(2):113-118.
    [104] Dafalias Y. F., Herrman L. R. Bounding Surface Formulation of Soil Plasticcity. Soil Mechanics[J]. John Wiley and Sons, New York, 1982:253-282.
    [105] Chaboche J. L. Time-Independent Constitutive Theories for Cyclic Plasticity[J]. Int. Plasticity. 1986,2(2):149-188.
    [106] Dafalias Y. F. Bounding Surface Plasticity[J]. ASCE, 1986,112(EM9):966-987.
    [107] Valanis K. C., Lee C.F. Endochronic Thoery of Cyclic Plasticity with Application[J]. Appl. Mech. 1984,51(2):367-374.
    [108]李淑春,刁波,叶英华.反复荷载作用下的混凝土损伤本构模型[J].铁道科学与工程学报,2006,3(4):12-17.
    [109]胡时胜,王道荣.冲击载荷下混凝土材料的动态本构关系[J].爆炸与冲击, 2002,22(3):242-246.
    [110]刘海峰,宁建国.强冲击荷载作用下混凝土材料动态本构模型[J].固体力学学报,2008,29(3):231-238.
    [111]宁建国,刘海峰,商霖.强冲击荷载作用下混凝土材料动态力学特性及本构模型[J].中国科学,2008,38(6):759-772.
    [112]林峰,匡昕昕,顾祥林.冲击荷载下混凝土本构模型及损伤延迟指标的参数研究[J].振动与冲击,2008,27(3):131-135.
    [113]罗章.中应变率下钢纤维混凝土的本构关系研究[D].长沙:中南大学土木建筑学院,2004.
    [114]焦楚杰,孙伟,高培正.钢纤维高强混凝土的中应变率本构关系[J].东南大学学报,2007,37(5):892-897.
    [115]赵瑾.几种平面应变加载路径下混凝土本构关系的试验研究[D].北京:北京交通大学土木与建筑工程学院,2006.
    [116]李丽.应力及应力与应变组合加载路径下混凝土本构关系的试验研究[D].北京:北京交通大学土木与建筑工程学院,2007.
    [117]肖建庄,王平,谢猛.矿渣高性能混凝土高温后受压本构关系试验[J].同济大学学报,2003,31(2):186-190.
    [118]徐平,胡晓军,于英华.钢纤维聚合物混凝土抗压本构关系[J].材料科学与工程学报,2003,21(2):262-265.
    [119]马亚峰.活性粉末混凝土单轴受压本构关系研究[D].北京:北京交通大学土木与建筑工程学院,2006.
    [120]潘东平.橡胶混凝土的本构关系研究[D].广州:广东工业大学土木与交通工程学院,2007.
    [121]刘锋,潘东平,李丽娟,等.低强橡胶混凝土单轴受压本构关系的试验研究[J].建筑材料学报,2007,10(4):407-411.
    [122]刘永胜,王肖钧,金挺,等.钢纤维混凝土力学性能和本构关系研究[J].中国科学技术大学学报,2007,37(7):717-723.
    [123]王晓辉.引气轻集料混凝土抗冻性能及本构关系的研究[D].呼和浩特:内蒙古农业大学水利与土木建筑工程学院,2008.
    [124]徐亦冬,吴道尧,沈建生.高性能再生混凝土的单轴受压本构关系[J].建筑技术,2009,40(1):17-19.
    [125]姚明芳,李立权,杨源,等.新编混凝土强度设计与配合比速查手册[M].长沙:湖南科学技术出版社,2000.
    [126]中华人民共和国建设部.普通混凝土力学性能试验方法(GB/T50081-2002)[S].中国建筑工业出版社,2003.
    [127]中华人民共和国建设部.混凝土结构设计规范(GB 50010-2002)[S].中国建筑工业出版社,2002.
    [128]宋玉普,沈吉纳,靳国礼.多功能三轴混凝土试验系统[J].大连理工大学学报,1992,32(4):460-464.
    [129] Tasuji M E, Slate F O, Nilson A H. Stress-Strain Response and Francture of Concrete in Biaxial Loading[J]. ACI,1978,75(7):306-312.
    [130]江见鲸,陆新征,叶列平.混凝土结构有限元分析[M].北京:清华大学出版社, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700