用户名: 密码: 验证码:
黑莓花色苷降解与辅色及抗氧化活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黑莓果实富含花色苷,具有抑制质脂过氧化及清除自由基活性、降低血清胆固醇及中性脂肪、抗变异及抗肿瘤作用、改善肝功能及改善视力等诸多医疗和保健功能,在食品、药品、化妆品等领域应用前景广阔。本文以黑莓为试材,研究了果胶酶和果浆复合酶联合酶解制备黑莓澄清汁;解析了黑莓花色苷结构,研究了黑莓汁花色苷热稳定性,分析了黑莓花色苷单体降解规律;比较了有机酸对水体系中黑莓花色苷辅色效果,以及对黑莓花色苷热稳定性、色泽及抗氧化活性影响,研究辅色前后黑莓花色苷变化规律;在明确黑莓花色苷结构基础上,研究了黑莓花色苷体外清除自由基能力、黑莓花色苷对血管内皮细胞H202诱导损伤的保护作用。研究结果如下:
     1.采用果胶酶和果浆复合酶联合处理黑莓,通过响应面分析法对黑莓澄清汁制备工艺进行了优化。结果表明:加酶量对黑莓出汁率影响极显著,加酶量和温度交互作用极显著(P<0.01)。温度和时间、加酶量和时间的交互作用不显著。在果胶酶与果浆复合酶的酶活比为1:1、加酶量0.13%、温度43℃、时间酶解2.5h的条件下,黑莓出汁率达到79.5%,比对照提高75.8%。
     2.采用不同类型树脂分离黑莓汁中花色苷,用凝胶柱层析进一步纯化黑莓花色苷,利用HPLC-ESI-MS对纯化组分进行结构解析。结果表明:大孔树脂AB-8分离黑莓花色苷效果好,最佳分离条件为:温度为25℃、吸附平衡时间为4h、解吸平衡时间为3h;解吸时宜选用体积分数75%乙醇溶液;上样速率为2BV/h,上样体积1100m1粗提液,3BV体积分数为75%乙醇,以1BV/h洗脱速率洗脱。此条件下花色苷得率为1.22%、回收率75.45%、纯度86.50%。
     Sephadex LH-20纯化黑莓花色苷时,用流速0.6ml/mim为40%、60%和80%乙醇(含0.01%HCl)分步洗脱,得到2个混合花色苷组分。HPLC-ESI-MS分析表明,组分2主要成分为矢车菊-3-O-葡萄糖苷和矢车菊-3-0-阿拉伯糖苷、矢车菊3-0-丙二酸酐酰葡萄糖苷、矢车菊-3-O-草酸酐酰葡萄糖苷,组分1中还检测到1种矢车菊衍生物。
     3.黑莓汁花色苷及单体花色苷降解规律及其抗氧化活性的研究结果表明:在温度70~90℃和pH2.0~4.0下黑莓花色苷降解遵循一级反应动力学方程,花色苷的降解速率随温度和pH升高而增加。黑莓花色苷在pH2.0、3.0和4.0时的活化能(Ea)分别为40.09、28.80和28.71kJ mol-1, pH2.0时的半衰期(T1/2)分别为6.19h、4.28h和2.97h,提示低温和低pH有利于保持黑莓花色苷的稳定性。
     黑莓中4种花色苷单体的降解均遵循一级反应动力学方程,Ea、T1/2和反应速率常数(k)不同,且差异显著(P<0.05)。在温度70、80和90℃时,矢车菊-3-O-草酸酐酰葡萄糖苷的T1/2分别为9.48、6.83和3.54h,矢车菊-3-O-葡萄糖苷的T1/2分别为9.04、6.62和3.09h。矢车菊-3-O-丙二酸酐酰葡萄糖苷的T1/2与矢车菊-3-O-阿拉伯糖苷接近,提示花色苷的结构影响其稳定性。相同条件下,矢车菊色素衍生物浓度随温度升高呈上升趋势,表明降解后的花色苷与有机酸反应生成了衍生物。温度对黑莓花色苷显著影响抗氧化性,花色苷降解与抗氧化活性高度相关。
     4.研究了有机酸对黑莓花色苷纯化物在水体系中的热稳定性、色泽及抗氧化活性的影响。结果表明:苹果酸、丙二酸和草酸显著增加黑莓花色苷吸光度(P<0.05),并具有浓度效应,其中以草酸增色效果最为显著,其次是丙二酸和苹果酸,阿魏酸、咖啡酸和单宁酸对黑莓花色苷的增色效果不显著。黑莓花色苷溶液经苹果酸、丙二酸和草酸辅色后L*值随酸浓度增大而减小,a*、b*和h值随苹果酸、丙二酸和草酸浓度的增大而增加,辅色剂浓度达到0.09mol/L时辅色效果最佳。
     经苹果酸、丙二酸和草酸辅色后的黑莓花色苷活化能Ea(P<0.05)均得到显著提高,其中草酸显著提高黑莓花色苷的热稳定性,Ea提高86%。经苹果酸、丙二酸和草酸对黑莓花色苷辅色后T1/2显著高于对照(P<0.05)。在70℃、80和90℃条件下,经草酸辅色的T1/2分别为34.15、18.48和10.12h,显著高于对照组的19.04、14.87和9.89h。黑莓花色苷辅色后的L*值随加热温度的升高和时间的延长呈上升趋势,a*值呈下降趋势,显著高于对照组(P<0.05)。辅色剂可显著减缓黑莓花色苷色泽的降解速率,其中草酸辅色效果最好。经草酸辅色的黑莓花色苷成分与辅色前相比,未发生变化,推测草酸与黑莓花色苷的辅色作用为分子间非共价键辅色。
     在三种抗氧化体系中,黑莓花色苷的总抗氧化力随草酸辅色时间的延长呈先降后升的趋势,清除超氧阴离子能力和清除羟自由基能力则随时间的延长而增加。浓度为0.04mol/L草酸辅色2h,黑莓花色苷的总抗氧化能力达到最大值(68.72U/m1);浓度为0.08mol/L草酸辅色3h,黑莓花色苷清除羟自由基和超氧阴离子能力分别达到22.37U/ml和446.13U/L,显著高于辅色前的15.32U/ml和350U/L(P<0.05)。
     5.比较了黑莓花色苷体外清除自由基活性的能力,研究其对血管内皮细胞形态、存活率和MDA含量的影响,对抗氧化酶系的调节与细胞凋亡的调控作用,探讨黑莓花色苷的抗氧化作用机理。结果表明,在20-100μg/ml浓度范围内,黑莓花色苷清除DPPH能力与浓度呈显著正相关,但低于同浓度的抗坏血酸,而抑制羟自由基能力显著高于后者。
     细胞形态学研究发现,H202损伤的血管内皮细胞出现收缩、变圆、体积变小,细胞间隙增宽,大部分细胞破碎、脱落,用不同剂量的黑莓花色苷预处理均对血管内皮细胞有不同程度的保护作用,细胞形态比损伤组有所改善。采用MTT法考察了黑莓花色苷预处理对细胞存活率的影响。浓度为50-200μg/ml黑莓花色苷处理12h时,用1.0mmol/L的H202处理12h,细胞存活率由106%升至157%,显著降低H202对细胞增殖的抑制作用(P<0.01);抗坏血酸保护血管内皮细胞免受损伤的效果不显著。随着黑莓花色苷浓度的增加,细胞MDA水平显著降低(P<0.05)且呈现浓度依赖关系;抗坏血酸处理组与H202损伤组之间差异不显著。用黑莓花色苷预处理可提高细胞POD、SOD和GSH-ST活性,且随浓度增加而升高,其中200μg/ml处理组的POD提高80%。用50-200μg/ml黑莓花色苷预处理时,细胞早期凋亡率由70.58%降为11.26%,晚期凋亡率由7.53%到2.01%。这表明黑莓花色苷通过降低脂质过氧化产物、提高细胞抗氧化酶活性、维持细胞内氧化还原平衡和抑制细胞凋亡,对导致的血管内皮细胞损伤起到保护作用。
Blackberries have been recently reported as a good source of anthocyanins, which were shown to have potential health benefits, including inhibition of qualitative lipid peroxidation and free radical scavenging activity, lower serum cholesterol and neutral fat, have anti-mutation and anti-tumor effects and improve liver function and vision. Blackberry anthocyanins exhibit broad application prospects in the food, pharmaceutical, cosmetics and other fields.
     The enzymatic hydrolysis technology of blackberry juice was investigated using the mixture of pectinase and multiplexed pectinase in this paper. Blackberry anthocyanins were separated and purified using macroporous resin and gel column chromatography and their structures were analyzed. Thermal stability of blackberry anthocyanins was investigated to explore their degradation mechanism. Copigmentation effects on the blackberry anthocyanins were compared by organic acids including the stability and antioxidant ability. Copigmentation effects of adding different organic acids on the blackberry anthocyanins in the water system were compared. The changes of blackberry anthocyanins before and after co-pigmentation were analyzed. The protective effects of blackberry anthocyanins on human endothelial cell damage induced by H2O2were investigated to illustrate their antioxidant mechanism. Results were shown below:
     1. To prepare clarified blackberry juice, blackberries were hydrolyzed by the mixture of pectinase and multiplexed pectinase. The clarification effects of the two enzymes was studied. Taking the juice yield as indexes, the conditions of enzymatic reaction were determined and optimized using response surface methodology(RSM). The results showed that the optimum conditions were:the ratio of two enzyme's activity was1:1, the enzyme additive amount was0.13%, the temperature was43℃and the time was2.5h. Under these conditions, the blackberry juice yield was79.5%. Compared with no enzymatic processing, the blackberry juice yield was increased75.8%and its quality and stability was improved remarkably.
     2. To obtain highly purified anthocyanins from blackberry, the adsorption and desorption characteristics of6kinds of macroporous resins were carefully compared. Furthermore, the characteristics of static adsorption dynamics, dynamic adsorption and elution dynamics were investigated. The results showed that AB-8macroporous resins exhibited the best performing resin to obtain highly concentrated extracts. The time of absorption and desorption equilibrium was4h and3h at25℃, respectively.75%ethanol solution is the optimum solution for desorption of blackberry anthocyanins. The optimal purification conditions were as following:2BV/h,75%ethanol of5BV as elution phase, and the elution rate1BV/h. Under these conditions, sample yield was1.22%, anthocyanins recovery yield was75.45%and its purity was86.50%. The purification conditions of Sephadex LH-20were as following:the sample flow rate0.6M1/mim,40%,60%and80%ethanol containing0.01%hydrochloric acid as elution liquid. Then the sample was analyzed by HPLC-ESI/MS and the results showed that five anthocyanins were identified, including cyanidin(Cy)-3-O-glucoside, Cy-3-O-arabinoside, Cy-3-O-malonyl-glucoside, Cy-3-O-dioxalyl-glucoside and Cy derivative.3. The effects of pH and temperature on the stability and antioxidant activity of anthocyanins in blackberry juice were studied at selected temperatures (70℃,80℃and90℃) at pH2.0, pH3.0, pH4.0, respectively. Degradation parameters such as half-lives (T1/2), degradation constant (k) and activity energy (Ea)values were determined. Analysis of kinetic data indicated that the thermal degradation of anthocyanins followed first-order reaction kinetics. The values of k, T1/2and Ea decreased obviously with pH and temperature increasing. The Ea of blackberry anthocyanins at pH2.0,3.0and4.0was40.09%28.80and28.71kJ mol-1.and T1/2of blackberry anthocyanins was6.19h,4.28h and2.97h, which indicated their are more stable that lower temperature and pH.
     Four individual anthocyanin degradation followed first-order reaction kinetics. Their k, T1/2and Ea values were significantly differed from one another (P<0.05). Maximum of the T1/2values were observed with Cy-3-O-dioxalyl-glucoside, which T1/2values was9.48,6.83and3.54h at70,80and90℃. Meanwhile, the T1/2values of Cy-3-O-glucoside was9.04,6.62and3.09h. However, T1/2values of Cy-3-O-arabinoside was similar with Cy-3-O-malonyl-glucoside. Under the same conditions, the amount of the Cy derivative was observed to slightly increase with temperature increased, which showed that anthocyanins derivative formed.The antioxidant capacity of blackberry juice, measured by DPPH assays, was decreased after thermal treatment, indicating that antioxidant activities in the samples was highly correlated with anthocyanins degradation.
     4. Copigmentation effects of adding different organic acids on thermal stability of blackberry anthocyanins in water system were investigated, as well as their color and antioxidant activity using the purified fraction2of blackberry anthocyanins.The results showed that:malonic acid, malic acid and oxalic acid enhanced the absorbance values obviously (P<0.05), which showed an increased tendency with organic acids concentration. Among the three organic acids, oxalic acid showed the best copigmentation effects, followed by malic acid and malonic acid. However, ferulic acid, caffeic acid and tannins acid of blackberry anthocyanin copigmentation effect were not significant. Organic acids significantly impacted hromatic aberration of blackberry anthocyanins solution, of which L*decreased with the increase of organic acid concentration, while a*, b*and h increased with the increase of organic acid concentration. The best effect was observed with0.09mol/L contration.
     The activation energy (Ea) of lackberry anthocyanins were improved by malic acid, malonic acid and oxalic acid (P<0.05). Oxalic could increase the Ea by86%and significantly improve thermal stability of blackberry anthocyanins. From the point of half-life, whether add organic acid or not, thermal stability blackberry anthocyanins reduced with increasing temperature. Under the conditions of70℃, T1/2values of blackberry anthocyanins after adding malic acid, malonic acid and oxalic acid, were22.07,21.46and34.15h, higher than that of the control group, which was19.04h. No anthocyanins derivatives were formed during the copigmentation. It was deduced that non-covalent copigmentation happened between oxalic acid and blackberry anthocyanins.
     In three antioxidant assay systems, the total antioxidant capacity of blackberry anthocyanins firstly decreased and then increased with co-pigmentation time extended. However, the hydroxyl radicals scavenging capacity and superoxide anion scavenging capacity of those were increased with time extended. After copigmented with0.04mol/L oxalic acid for2h, the total antioxidant capacity of blackberry anthocyanins reached the maximal value68.72U/ml. However, the hydroxyl radicals scavenging capacity and superoxide anion scavenging capacity reached maximum values of22.37U/ml and446.13U/L after copigmented with0.08mol/L oxalic acid for3h, respectively, which were higher than that before copimentation which were15.32U/ml and350U/L, respectively.
     5. The radical scavenging capacity of blackberry anthocyanins was investigated in vitro and their protective effects on human endothelial cell damage induced by H2O2were researched illustrate their antioxidant mechanism. The results showed that:DPPH radical scavenging capacity of blackberry anthocyanins were closely related to the concentration from20to100μg/ml, which were less than that of ascorbic acid. However, the hydroxyl radicals scavenging capacity of blackberry anthocyanins were higher than that of ascorbic acid at the same concentration
     Cell morphology results showed that human endothelial cell treated with H2O2became shrinked and rounded, and their size became smaller and cell gap widened. The majority of cells disrupted shedded. However, pre-treatment with different doses of blackberry anthocyanins have a different degree of protection on cell morphology than the injury group and cell morphology improved compared with damaged group.
     MTT method was used to evaluate effects of blackberry anthocyanins on the cell viability. The results showed that cell viability was increased from106%to157%after cell pretreated with blackberry anthocyanins at the concentration ranged from50to200ng/ml for12h and then with1.0mmol/L H2O2for anthother12h. However, ascorbic acid did not show protective effects on uman endothelial cell damage induced by H2O2.
     Cell malondialdehyde (MDA) levels significantly decreased with blackberry anthocyanins concentration increased. But MDA levels did not decrease after ascorbic acid treated under the same oxidative conditions induced by H2O2. Meanwhile, the peroxidase (POD), superoxide dismutase (SOD) and glutathione S-transferase (GSH-ST) activities of endothelial cells pretreated with blackberry anthocyanins were also largely promoted, of which POD was enhanced80%by200μg/ml treatment. Effects of blackberry anthocyanins on cell apoptosis were also studied. It was showed that cell early apoptosis was reduced from70.58%to11.25%and late apoptosis was from7.53%to2.01%with blackberry anthocyanins treatment of the concenration from50to200μg/ml. These results indicated that blackberry anthocyanins could protect endothelial cell damaged from H2O2through decreasing MDA, improving antioxidant enzymes to remain cell system balance and inhibiting cell apoptosis.
引文
[1]Castaneda-Ovando, A., Pacheco-Hernandez M. L., Paez-Hernandez M. E., et al. Chemical studies of anthocyanins:A review [J]. Food Chemistry,2009,113 (4):859-871.
    [2]徐金瑞,张名位,刘兴华,等.黑大豆种皮花色苷的提取及其抗氧化作用研究[J].农业工程学报,2005,21(008):161-164.
    [3]Jackman, R. L., Yada R. Y., Tung M. A. A review:separation and chemical properties of anthocyanins used for their qualitative and quantitative analysis [J]. Journal of food biochemistry, 1987,11 (4):279-308.
    [4]肖军霞,黄国清,迟玉森.樱桃花色苷的提取及抗氧化活性研究[J].中国食品学报,2011,11(5):70-75.
    [5]贾娜,孔保华,张洪涛.黑加仑花色苷的提取及抗氧化活性研究[J].食品科学,2011,32(16):162-166.
    [6]Revilla, E., Ryan J. M., Martin-Ortega G. Comparison of several procedures used for the extraction of anthocyanins from red grapes [J]. Journal of Agricultural and Food Chemistry,1998,46 (11): 4592-4597.
    [7]赵玉红,张立钢,苗雨.酶-超声波联用提取蓝靛果果渣中花色苷的研究[J].食品工业科技,2008,(8):183-185.
    [8]杨雪飞,潘利华,罗建平.蓝莓色素的超声提取工艺及稳定性[J].食品科学,2010,31(20):
    [9]王和才,蔡健,胡秋辉,等.超声波辅助提取紫红薯色素的工艺研究[J].江苏农业科学,2009,(002):236-238.
    [10]徐建国,田呈瑞,胡青平.超声波提取桑椹红色素的工艺研究[J].山西农业大学学报:自然科学版,2006,25(4):380-382.
    [11]杨永利,郭守军,彭成圆,等.超声波辅助提取潮州柑果皮色素的工艺优化[J].食品科学,2006,27(12):487-489.
    [12]吕春茂,王新现,董文轩,等.响应面法优化越橘花色苷微波辅助提取工艺参数[J].食品科学,2011,32(06):
    [13]王丽威,郑彦山,张晓宇,等.微波辅助提取红菊芋色素及稳定性研究[J].食品与发酵工业,2011,37(3):220-224.
    [14]袁旭红,张磊,徐雅琴,等.响应面法优化微波辅助提取红树莓果实色素[J].食品工业,2011,(7):7-9.
    [15]韩晓祥,应芝,励建荣,等.微波辅助提取杨梅色素及抗氧化作用研究[J].中国粮油学报,2009,(008):147-151.
    [16]Corrales, M., Toepfl S., Butz P., et al. Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields:a comparison [J]. Innovative Food Science & Emerging Technologies,2008,9 (1):85-91.
    [17]张燕,李玉杰,胡小松,等1.高压脉冲电场(PEF)处理对红莓花色苷提取过程的影响[J].食品与发酵工业,2006,32(006):129-132.
    [18]向道丽.酶法提取越桔果渣花色苷酶解条件的研究[J].中国林副特产,2005,(006):1-3.
    [19]姜红,张坤生,任云霞.超临界CO2法分离番茄中番茄红素的研究[J].食品科学,2007,28(9):207-210.
    [20]赵晟锌,徐雅琴,李兴国.大孔吸附树脂纯化黑穗醋栗花色苷研究[J].东北农业大学学报,2010,(008):115-120.
    [21]郭庆启,张娜,付立营,等.大孔树脂法纯化树莓花色苷及初步鉴定[J].食品与发酵工业,2010,(6):171-174.
    [22]黄思梅,张镜.阴香果实花色苷粗提物树脂纯化研究[J].食品科学,2009,30(22):
    [23]权静,李冰峰,王益明,等.大孔树脂分离纯化蓝莓花色苷研究[J].粮食与油脂,2011,(8):43-46.
    [24]李杨,韩业慧,李记明,等.葡萄皮花色苷的树脂纯化及稳定性研究[J].酿酒科技,2012,1
    [25]王湛,付钰洁,常徽,等.桑葚花色苷的提取及对人乳腺癌细胞株MDA-MB-453生长的抑制[J].第三军医大学学报,2011,33(10):988-990.
    [26]王金玲,毛凤彪,王振宇.响应面法优化红树莓色素的纳滤浓缩条件[J].中国林副特产,2011,(5):21-25.
    [27]杨小剑,沈瑞敏,王旭.膜技术纯化黑豆皮花色苷的研究[J].食品研究与开发,2012,32(11):47-49.
    [28]Pawlowska, A. M., De Leo M., Braca A. Phenolics of Arbutus unedo L.(Ericaceae) fruits: identification of anthocyanins and gallic acid derivatives [J]. Journal of Agricultural and Food Chemistry,2006,54 (26):10234-10238.
    [29]曹少谦,潘思轶,姚晓琳,等.柱层析法分离纯化血橙花色苷[J].中国农业科学,2009,42(5):1728-1736.
    [30]Zhang, Z., Xuequn P., Yang C., et al. Purification and structural analysis of anthocyanins from litchi pericarp [J]. Food Chemistry,2004,84 (4):601-604.
    [31]赵善仓,刘宾,赵领军,等.蓝,紫粒小麦籽粒花色苷组成分析[J].中国农业科学,2010,43(19):4072-4080.
    [32]Kuskoski, E. M., Vega J. M., Rios J. J., et al. Characterization of anthocyanins from the fruits of baguacu (Eugenia umbelliflora Berg) [J]. Journal of Agricultural and Food Chemistry,2003,51 (18):5450-5454.
    [33]Stintzing, F. C., Stintzing A. S., Carle R., et al. A novel zwitterionic anthocyanin from evergreen blackberry (Rubus laciniatus Willd.) [J]. Journal of Agricultural and Food Chemistry,2002,50 (2):396-399.
    [34]Degenhardt, A., Knapp H., Winterhalter P. Separation and purification of anthocyanins by high-speed countercurrent chromatography and screening for antioxidant activity [J]. Journal of Agricultural and Food Chemistry,2000,48 (2):338-343.
    [35]王小董,张德龙,耿广青,等.粉被玛利亚霉中天然色素的高速逆流色谱法分离制备及质谱分析[J].食品与发酵工业,2011,37(1):175-178.
    [36]郑允权,李泳宁,王阿万,等.高速逆流色谱法分离纯化红曲色素组分[J].食品科学,2010,31(20):192-195.
    [37]Zanatta, C. F., Cuevas E., Bobbio F. O., et al. Determination of anthocyanins from camu-camu (Myrciaria dubia) by HPLC-PDA, HPLC-MS, and NMR [J]. Journal of Agricultural and Food Chemistry,2005,53 (24):9531-9535.
    [38]Nyman, N. A., Kumpulainen J. T. Determination of anthocyanidins in berries and red wine by high-performance liquid chromatography [J]. Journal of Agricultural and Food Chemistry,2001, 49 (9):4183-4187.
    [39]汪正范,潘甦民,江炜.超高压液相色谱技术在2006年HPLC的发展中占据重要地位[J].现代仪器,2007,13(3):74-74.
    [40]Li, R., Wang P., Guo Q., et al. Anthocyanin composition and content of the Vaccinium uliginosum berry [J]. Food Chemistry,2011,125 (1):116-120.
    [41]Cerezo, A. B., Cuevas E., Winterhalter P., et al. Isolation, identification, and antioxidant activity of anthocyanin compounds in Camarosa strawberry [J]. Food Chemistry,2010,123 (3):574-582.
    [42]侯召华.黑米花色苷的制备及其对大鼠慢性酒精肝损伤保护作用的研究[D];中国农业科学院,2010.
    [43]Garzon, G., Narviez C., Riedl K., et al. Chemical composition, anthocyanins, non-anthocyanin phenolics and antioxidant activity of wild bilberry (Vaccinium meridionale Swartz) from Colombia [J]. Food Chemistry,2010,122 (4):980-986.
    [44]肖俊松,曹雁平,龚玉石,等.青蛇果原花青素分离和低聚体纯品的制备[J].食品科学,2009,30(17):113-119.
    [45]Comeskey, D. J., Montefiori M., Edwards P. J. B., et al. Isolation and structural identification of the anthocyanin components of red kiwifruit [J]. Journal of Agricultural and Food Chemistry, 2009,57 (5):2035-2039.
    [46]Cho, J., Kang J. S., Long P. H., et al. Antioxidant and memory enhancing effects of purple sweet potato anthocyanin and Cordyceps mushroom extract. [J]. Archives of Pharmacal Research (Seoul),2003,26 (10):821-825.
    [47]Sanchez-Moreno, C., Cao G., Ou B., et al. Anthocyanin and proanthocyanidin content in selected white and red wines. Oxygen radical absorbance capacity comparison with nontraditional wines obtained from highbush blueberry. [J]. Journal of Agricultural and Food Chemistry,2003,51 (17): 4889-4896.
    [48]徐金瑞,张名位,刘兴华,等.黑大豆种质抗氧化能力及其与总酚和花色苷含量的关系[J].中国农业科学,2006,39(8):1545-1552.
    [49]张芳轩,张名位,张瑞芬,等.不同黑大豆种质资源种皮花色苷组成及抗氧化活性分析[J].中国农业科学,2010,43(24):5088-5099.
    [50]李洋,钦传光,牛卫宁,等.几种天然植物花色苷体外清除自由基活性比较研究[J].食品科学,2009,(007):91-94.
    [51]Denev, P., Ciz M., Ambrozova G., et al. Solid-phase extraction of berries' anthocyanins and evaluation of their antioxidative properties [J]. Food Chemistry,2010,123 (4):1055-1061.
    [52]吕春茂,王新现,包静,等.越橘果实花色苷的体外抗氧化性[J].食品科学,2010,31(23):27-31.
    [53]Amorini, A. M., Fazzina G., Lazzarino G., et al. Activity and mechanism of the antioxidant properties of cyanidin-3-O-β-glucopyranoside [J]. Free radical research,2001,35 (6):953-966.
    [54]Youdim, K. A., Martin A., Joseph J. A. Incorporation of the elderberry anthocyanins by endothelial cells increases protection against oxidative stressl [J]. Free Radical Biology and Medicine,2000,29 (1):51-60.
    [55]Elisia, I., Kitts D. D. Anthocyanins inhibit peroxyl radical-induced apoptosis in Caco-2 cells [J]. Molecular and cellular biochemistry,2008,312 (1):139-145.
    [56]吕业春,刘翼翔,吴薇,等.蓝莓多酚对油酸诱导HepG2细胞脂肪累积的干预作用[J].食品科学,2011,32(17):308-312.
    [57]Youdim, K. A., Martin A., Joseph J. A. Incorporation of the elderberry anthocyanins by endothelial cells increases protection against oxidative stress [J]. Free Radical Biology and Medicine,2000,29(1):51-60.
    [58]Heo, H. J., Lee C. Y. Strawberry and Its Anthocyanins Reduce Oxidative Stress-Induced Apoptosis in PC 12 Cells [J]. Journal of Agricultural and Food Chemistry,2005,53 (6): 1984-1989.
    [59]易龙,陈春烨,金鑫,等.飞燕草素葡萄糖苷抑制人血管内皮细胞凋亡的作用及机制研究[J].营养学报,2011,(6):564-569.
    [60]易龙,陈春烨,金鑫,等.花色苷类植物化学物抑制血管内皮细胞氧化应激损伤作用的结构-效应关系研究[J].第三军医大学学报,2009,31(021):2046-2049.
    [61]Ling, W. H., Cheng Q. X., Ma J., et al. Red and black rice decrease atherosclerotic plaque formation and increase antioxidant status in rabbits [J]. The Journal of nutrition,2001,131 (5): 1421-1426.
    [62]Xia, M., Ling W. H., Ma J., et al. Supplementation of diets with the black rice pigment fraction attenuates atherosclerotic plaque formation in apolipoprotein e deficient mice [J]. The Journal of nutrition,2003,133 (3):744-751.
    [63]Tsuda, T., Horio F., Osawa T. The role of anthocyanins as an antioxidant under oxidative stress in rats [J]. Biofactors,2000,13 (1-4):133-139.
    [64]Oki, T., Masuda M., Furuta S., et al. Involvement of Anthocyanins and other Phenolic Compounds in Radical-Scavenging Activity of Purple-Fleshed Sweet Potato Cultivars [J]. Journal of Food Science,2002,67 (5):1752-1756.
    [65]Suda, I., Oki T., Masuda M., et al. Direct absorption of acylated anthocyanin in purple-fleshed sweet potato into rats [J]. Journal of Agricultural and Food Chemistry,2002,50 (6):1672-1676.
    [66]Chen, W., Lu X., Wang T. Menu suggestion:an effective way to improve dietary compliance in peritoneal dialysis patients [J]. Journal of renal nutrition,2006,16 (2):132-136.
    [67]Thomasset, S., Teller N., Cai H., et al. Do anthocyanins and anthocyanidins, cancer chemopreventive pigments in the diet, merit development as potential drugs? [J]. Cancer chemotherapy and pharmacology,2009,64 (1):201-211.
    [68]Ding, M., Feng R., Wang S. Y., et al. Cyanidin-3-glucoside, a natural product derived from blackberry, exhibits chemopreventive and chemotherapeutic activity [J]. Journal of Biological Chemistry,2006,281 (25):17359-17368.
    [69]焦岩,王振宇.蓝靛果花色苷对高脂膳食诱导肥胖大鼠脂代谢和抗氧化能力的影响[J].食品科学,2010,31(03):
    [70]Renaud, S., De Lorgeril M. Wine, alcohol, platelets, and the French paradox for coronary heart disease [J]. The Lancet,1992,339 (8808):1523-1526.
    [71]Flesch, M., Rosenkranz S., Erdmann E., et al. Alcohol and the risk of myocardial infarction [J]. Basic Research in Cardiology,2001,96 (2):128-135.
    [72]Wang, L.-S., Stoner G. D. Anthocyanins and their role in cancer prevention [J]. In Press, Corrected Proof
    [73]Jo, J. Y., De Mejia E. G., Lila M. A. Effects of grape cell culture extracts on human topoisomerase II catalytic activity and characterization of active fractions [J]. Journal of Agricultural and Food Chemistry,2005,53 (7):2489-2498.
    [74]Jing, P., Bomser J. A., Schwartz S. J., et al. Structure-function relationships of anthocyanins from various anthocyanin-rich extracts on the inhibition of colon cancer cell growth [J]. Journal of Agricultural and Food Chemistry,2008,56 (20):9391-9398.
    [75]Wang, L. S., Stoner G. D. Anthocyanins and their role in cancer prevention [J]. Cancer Letters, 2008,269 (2):281-290.
    [76]李颖畅,孟宪军,孙靖靖,等.蓝莓花色苷的降血脂和抗氧化作用[J].食品与发酵工业,2009,34(10):44-48.
    [77]Kano, M., Takayanagi T., Harada K., et al. Antioxidative activity of anthocyanins from purple sweet potato, Ipomoera batatas cultivar Ayamurasaki [J]. Bioscience, biotechnology, and biochemistry,2005,69 (5):979-988.
    [78]Jiang, S., Jiang Z., Wu T., et al. Protective effects of a synthetic soybean isoflavone against oxidative damage in chick skeletal muscle cells [J]. Food Chemistry,2007,105 (3):1086-1090.
    [79]张名位,张瑞芬,郭宝江,等.黑米皮花色苷的抗氧化与降血脂作用[J].营养学报,2006,28(5):404-408.
    [80]Zafra-Stone, S., Yasmin T., Bagchi M., et al. Berry anthocyanins as novel antioxidants in human health and disease prevention [J]. Molecular nutrition & food research,2007,51 (6): 675-683.
    [81]谢靖.紫薯素对~(60)Coγ辐射导致的小鼠胸腺细胞损伤的抑制作用及机制[D];中国海洋大学,2011.
    [82]Wu, X., Cao G., Prior R. L. Absorption and metabolism of anthocyanins in elderly women after consumption of elderberry or blueberry [J]. The Journal of nutrition,2002,132 (7):1865-1871.
    [83]陈玮,凌文华,李茂全,等.黑米花青素在大鼠视网膜光化学损伤中的抗氧化作用研究[J].营养学报,2010,(4):341-344.
    [84]柳嘉,景浩.笃斯越橘花青素提取物对3T3-L1前脂肪细胞生长的抑制作用[J].食品科学,2010,31(15):248-252.
    [85]赵晓燕,张超,马越,等.紫玉米花色苷对小鼠免疫功能的影响[J].湖北农业科学,2010,49(008):1933-1936.
    [86]Rein, M. J., Heinonen M. Stability and enhancement of berry juice color [J]. Journal of Agricultural and Food Chemistry,2004,52 (10):3106-3114.
    [87]Cespedes, C. L., El-Hafidi M., Pavon N., et al. Antioxidant and cardioprotective activities of phenolic extracts from fruits of Chilean blackberry Aristotelia chilensis (Elaeocarpaceae), Maqui [J]. Food Chemistry,2008,107 (2):820-829.
    [88]Palmeri, R., Spagna G. [beta]-Glucosidase in cellular and acellular form for winemaking application [J]. International Conference on Enzyme Technology "RELATENZ 2005",2007,40 (3):382-389.
    [89]Palomero, F., Morata A., Benito S., et al. Conventional and enzyme-assisted autolysis during ageing over lees in red wines:Influence on the release of polysaccharides from yeast cell walls and on wine monomeric anthocyanin content [J]. Food Chemistry,2007,105 (2):838-846.
    [90]Jiang, C., Gao X., Liao L., et al. Phosphate starvation root architecture and anthocyanin accumulation responses are modulated by the gibberellin-DELLA signaling pathway in Arabidopsis(1[OA]) [J]. Plant Physiology (Rockville),2007,145 (4):1460-1470.
    [91]Pardo, F., Salinas M. R., Alonso G. L., et al. Effect of diverse enzyme preparations on the extraction and evolution of phenolic compounds in red wines [J]. Food Chemistry,1999,67 (2): 135-142.
    [92]邵承斌,熊建功,陈盛明,等.有机酸对紫玉米芯色素的辅色作用研究[J].2011,
    [93]王精明.几种常见有机酸对黑花生衣色素的辅色效果研究[J].惠州学院学报,2012,32(3):62-65.
    [94]李永强,杨士花,高斌,等.黄酮对杨梅花色苷的辅色作用研究[J].食品科学,2011,32(13):37-39.
    [95]Hung, K. T., Cheng D. G., Hsu Y. T., et al. Abscisic acid-induced hydrogen peroxide is required for anthocyanin accumulation in leaves of rice seedlings [J].2008,165 (12):1280-1287.
    [96]Vivar-Quintana, A. M., Santos-Buelga C., Rivas-Gonzalo J. C. Anthocyanin-derived pigments and colour of red wines [J]. Analytica Chimica Acta,2002,458 (1):147-155.
    [97]Walkowiak-Tomczak, D., Czapski J. Colour changes of a preparation from red cabbage during storage in a model system [J]. Food Chemistry,2007,104 (2):709-714.
    [98]Mishra, D. K., Dolan K. D., Yang L. Confidence intervals for modeling anthocyanin retention in grape pomace during nonisothermal heating [J]. Journal of Food Science,2008,73 (1):E9-E15.
    [99]Kammerer, D. R., Schilmoeller S., Maier O., et al. Colour stability of canned strawberries using black carrot and elderberry juice concentrates as natural colourants [J]. European Food Research and Technology,2007,224 (6):667-679.
    [100]Kawa-Miszczak, L., Wegrzynowicz-Lesiak E., Gabryszewska E., et al. Effect of temperature and sucrose/nitrogen level in the medium on chlorohyll and anthocyanin contents in Clematis cultured in vitro [J]. Acta Physiologiae Plantarum,2007,29 (Suppl.1):S72-S73.
    [101]Seeram, N. P., Zhang Y., Henning S. M., et al. Pistachio skin phenolics are destroyed by bleaching resulting in reduced antioxidative capacities [J]. Journal of Agricultural and Food Chemistry,2006,54 (19):7036-7040.
    [102]Shao, L., Shu Z., Sun S.-L., et al. Antioxidlation of Anthocyanins in photosynthesis under high temperature stress [J]. Journal of Integrative Plant Biology,2007,49 (9):1341-1351.
    [103]Cevallos-Casals, B. A., Cisneros-Zevallos L. Stability of anthocyanin-based aqueous extracts of Andean purple corn and red-fleshed sweet potato compared to synthetic and natural colorants. [J]. Food Chemistry,2004,86 (1):69-77.
    [104]Cheynier, V., Souquet J.-M., Kontek A., et al. Anthocyanin degradation in oxidising grape musts [J]. Journal of the Science of Food and Agriculture,1994,66 (3):283-288.
    [105]Castellari, M., Matricardi L., Arfelli G., et al. Level of single bioactive phenolics in red wine as a function of the oxygen supplied during storage [J]. Food Chemistry,2000,69 (1):61-67.
    [106]Mobin, M., Khan N. A. Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress [J]. Journal of Plant Physiology,2007,164 (5):601-610.
    [107]Remy-Tanneau, S., Le Guerneve C., Meudec E., et al. Characterization of a colorless anthocyanin-flavan-3-ol dimer containing both carbon-carbon and ether interflavanoid linkages by NMR and mass spectrometry. [J]. Journal of Agricultural and Food Chemistry,2003,51 (12): 3592-3597.
    [108]Tsai, P.-J., Wu S.-C., Cheng Y.-K. Role of polyphenols in antioxidant capacity of napiergrass from different growing seasons [J].2008,106 (1):27-32.
    [109]Ichiyanagi, T., Shida Y., Rahman M. M., et al. Effect on both aglycone and sugar moiety towards Phase Ⅱ metabolism of anthocyanins [J].2008,110 (2):493-500.
    [110]Amr, A., Al-Tamimi E. Stability of the crude extracts of Ranunculus asiaticus anthocyanins and their use as food colourants [J]. International Journal of Food Science & Technology,2007,42 (8): 985-991.
    [111]Sarni, P., Fulcrand H., Souillol V., et al. Mechanisms of anthocyanin degradation in grape must-like model solutions [J]. Journal of the Science of Food and Agriculture,1995,69 (3): 385-391.
    [112]Sarni-Manchado, P., Fulcrand H., Souquet J.-M., et al. Stability and color of unreported wine anthocyanin-derived pigments [J]. Journal of Food Science,1996,61 (5):938-941.
    [113]Bechtold, T., Mahmud-Ali A., Mussak R. Anthocyanin dyes extracted from grape pomace for the purpose of textile dyeing [J]. Journal of the Science of Food and Agriculture,2007,87 (14): 2589-2595.
    [114]Veigas, J. M., Narayan M. S., Laxman P. M., et al. Chemical nature, stability and bioefficacies of anthocyanins from fruit peel of syzygium cumini Skeels [J]. Food Chemistry,2007,105 (2): 619-627.
    [115]Boehm, V., Kuehnert S., Rohm H., et al. Improving the nutritional quality of microwave-vacuum dried strawberries:A preliminary study [J]. Food Science and Technology International,2006,12 (1):67-75.
    [116]Pacheco-Palencia, L. A., Hawken P., Talcott S. T. Phytochemical, antioxidant and pigment stability of acai (Euterpe oleracea Mart.) as affected by clarification, ascorbic acid fortification and storage [J]. Food Research International,2007,40 (5):620-628.
    [117]Fischer, U., Loechner M., Wolz S. Red wine authenticity:Impact of technology on anthocyanin composition. [J]. Abstracts of Papers American Chemical Society,2005,229 (Part 1):U43.
    [118]Garcia-Puente Rivas, E., Alcalde-Eon C., Santos-Buelga C., et al. Behaviour and characterisation of the colour during red wine making and maturation [J]. Analytica Chimica Acta,2006,563 (1-2):215-222.
    [119]Schwarz, M., Hofmann G., Winterhalter P. Investigations on anthocyanins in wines from Vitis vinifera cv. Pinotage:Factors influencing the formation of pinotin A and its correlation with wine age [J]. Journal of Agricultural and Food Chemistry,2004,52 (3):498-504.
    [120]Pacheco-Palencia, L. A., Talcott S. T. Chemical stability of acai fruit (< i> Euterpe oleracea Mart.) anthocyanins as influenced by naturally occurring and externally added polyphenolic cofactors in model systems [J]. Food Chemistry,2010,118 (1):17-25.
    [121]Awika, J. M. Behavior of 3-deoxyanthocyanidins in the presence of phenolic copigments [J]. Food Research International,2008,41 (5):532-538.
    [122]Eiro, M. J., Heinonen M. Anthocyanin color behavior and stability during storage:effect of intermolecular copigmentation [J]. Journal of Agricultural and Food Chemistry,2002,50 (25): 7461-7466.
    [123]Terahara, N., Konczak I., Ono H., et al. Characterization of acylated anthocyanins in callus induced from storage root of purple-fleshed sweet potato, Ipomoea batatas L [J]. Journal of Biomedicine & Biotechnology,2004, (5):279-286.
    [124]Darias-Martin, J., Carrillo M., Diaz E., et al. Enhancement of red wine colour by pre-fermentation addition of copigments [J]. Food Chemistry,2001,73 (2):217-220.
    [125]Fulcrand, H., Benabdeljalil C., Rigaud J., et al. A new class of wine pigments generated by reaction between pyruvic acid and grape anthocyanins [J]. Phytochemistry,1998,47 (7): 1401-1407.
    [126]Bordignon-Luiz, M., Gauche C., Gris E., et al. Colour stability of anthocyanins from Isabel grapes (Vitis labrusca L.) in model systems [J]. LWT-Food Science and Technology,2007,40 (4):594-599.
    [127]Darias-Martin, J., Carrillo-Lopez M., Echavarri-Granado J. F., et al. The magnitude of copigmentation in the colour of aged red wines made in the Canary Islands [J]. European Food Research and Technology,2007,224 (5):643-648.
    [128]Dugo, P., Mondello L., Errante G., et al. Identification of Anthocyanins in Berries by Narrow-Bore High-Performance Liquid Chromatography with Electrospray Ionization Detection [J]. Journal of Agricultural and Food Chemistry,2001,49 (8):3987-3992.
    [129]Fan-Chiang, H. J., Wrolstad R. E. Anthocyanin pigment composition of blackberries [J]. Journal of Food Science,2005,70 (3):C198-C202.
    [130]Wada, L., Ou B. Antioxidant Activity and Phenolic Content of Oregon Caneberries [J]. Journal of Agricultural and Food Chemistry,2002,50 (12):3495-3500.
    [131]Sapers, G., Burgher A., Phillips J., et al. Composition and color of fruit and juice of thornless blackberry cultivars [J]. Journal of the American Society for Horticultural Science,1985,110 (2): 243-248.
    [132]Patras, A., Brunton N. P., Da Pieve S., et al. Impact of high pressure processing on total antioxidant activity, phenolic, ascorbic acid, anthocyanin content and colour of strawberry and blackberry purees [J]. Innovative Food Science & amp; Emerging Technologies,2009,10 (3): 308-313.
    [133]Wang, W. D., Xu S. Y. Degradation kinetics of anthocyanins in blackberry juice and concentrate [J]. Journal of Food Engineering,2007,82 (3):271-275.
    [134]彭常安,卢锋波,袁晔,等.外源咖啡酸和阿魏酸对黑莓汁中花色苷的辅色研究[J].天然产物研究与开发,2012,24(001):94-97.
    [135]彭常安,姜雯翔,袁晔,等.外源绿原酸对黑莓汁花色苷的辅色效果[J].江苏农业学报,2012,27(6):1357-1362.
    [136]Wang, H., Cao G., Ronald L. Oxygen radical absorbing capacity of anthocyanins [J]. Journal of Agricultural and Food Chemistry,1997,45 (2):304-309.
    [137]Elisia, I., Hu C., Popovich D. G., et al. Antioxidant assessment of an anthocyanin-enriched blackberry extract [J]. Food Chemistry,2007,101 (3):1052-1058.
    [138]Wang, S. Y., Lin H. S. Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage [J]. Journal of Agricultural and Food Chemistry,2000,48 (2):140-146.
    [139]Zhu, W., Jia Q., Wang Y., et al. The anthocyanin cyanidin-3-O-β-glucoside, a flavonoid, increases hepatic glutathione synthesis and protects hepatocytes against reactive oxygen species during hyperglycemia:Involvement of a cAMP-PKA-dependent signaling pathway [J]. Free Radical Biology and Medicine,2012,52 (2):314-327.
    [140]Tate, P., Kuzmar A., Smith S. W., et al. Comparative effects of eight varieties of blackberry on mutagenesis [J]. Nutrition Research,2003,23 (7):971-979.
    [141]Tate, P., Stanner A., Shields K., et al. Blackberry extracts inhibit UV-induced mutagenesis in Salmonella typhimurium TA100 [J]. Nutrition Research,2006,26 (2):100-104.
    [142]Seeram, N. P., Adams L. S., Zhang Y., et al. Blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry extracts inhibit growth and stimulate apoptosis of human cancer cells in vitro [J]. Journal of Agricultural and Food Chemistry,2006,54 (25):9329-9339.
    [143]Serraino, I., Dugo L., Dugo P., et al. Protective effects of cyanidin-3-O-glucoside from blackberry extract against peroxynitrite-induced endothelial dysfunction and vascular failure [J]. Life Sciences, 2003,73 (9):1097-1114.
    [144]Chen, P.-N., Chu S.-C., Chiou H.-L., et al. Mulberry anthocyanins, cyanidin 3-rutinoside and cyanidin 3-glucoside, exhibited an inhibitory effect on the migration and invasion of a human lung cancer cell line [J]. Cancer Letters,2006,235 (2):248-259.
    [145]Sasaki, R., Nishimura N., Hoshino H., et al. Cyanidin 3-glucoside ameliorates hyperglycemia and insulin sensitivity due to downregulation of retinol binding protein 4 expression in diabetic mice [J]. Biochemical Pharmacology,2007,74 (11):1619-1627.
    [146]Cimino, F., Ambra R., Canali R., et al. Effect of Cyanidin-3-O-glucoside on UVB-Induced Response in Human Keratinocytes [J]. Journal of Agricultural and Food Chemistry,2006,54 (11):4041-4047.
    [1]Scols H A, Posthumus M A.Voragen A G J. Structural features of hairy regions of pecting isolated from apple juice produced by the liquefaction process[J]. Carbohydr Research,1990,206(11):117-129.
    [2]Yu J, Lencki R W. Effect of enzyme treatments on the fouling behavior of apple juice during microfiltration[J]. Journal of Food Engineering,2004,63(4):413-423.
    [3]Liew Abdullah A G, Sulaiman N M, Aroua M K. Response surface optimization of conditions for clarification of carambola fruit juice using a commercial enzyme[J]. Journal of Food Engineering, 2007,81(1):65-71.
    [4]任俊,曹飞.果胶酶澄清猕猴桃汁最佳工艺条件研究[J].中国食物与营养,2008,(8):44-45.
    [5]刘红梅.壳聚糖和果胶酶澄清桑椹果汁作用的比较[J].食品工业,2006,(2):16-18.
    [6]丁利君,周燕芳,张琳琳.复合果胶酶法加工番荔枝果汁的工艺及技术参数研究[J].食品科学,2004,25(11):126-131.
    [7]何平,陈茂彬,陈柯.果胶酶对柑橘汁的澄清效果研究[J].化学与生物工程,2006,23(11):39-41.
    [8]王卫东,许时婴.黑莓澄清汁的酶解工艺.食品与发酵工业[J],2006,32(10):156-159.
    [9]宋建强,单祖华,梁艳英,等.低温条件下果胶酶对黑莓汁影响的研究[J].酿酒科技,2008,167(5):21-26.
    [10]Jungmin Lee, Christopher Rennaker, Ronald E Wrolstad. Correlation of two anthocyanin quantification methods:HPLC and spectrophotometric methods[J]. Food Chemistry,2008,110(3): 782-786.
    [11]Vasco, C., Ruales J., Kamal-Eldin A. Total phenolic compounds and antioxidant capacities of major fruits from Ecuador [J]. Food Chemistry,2008,111 (4):816-823.
    [12]Ronald E Wrolstad, Robert W Dursta, Jungmin Lee. Tracking color and pigment changes in anthocyanin products[J]. Trends in Food Science and Technology,2005,16(9):423-428.
    [13]Jungmin Lee, Christopher Rennaker, Ronald E Wrolstad. Correlation of two anthocyanin quantification methods:HPLC and spectrophotometric methods[J]. Food Chemistry,2008,110(3): 782-786.
    [14]Dugo, P., Mondello L., Errante G., et al. Identification of Anthocyanins in Berries by Narrow-Bore High-Performance Liquid Chromatography with Electrospray Ionization Detection [J]. Journal of Agricultural and Food Chemistry,2001,49 (8):3987-3992.
    [15]Santin, M. M., Treichel H., Valduga E., et al. Evaluation of enzymatic treatment of peach juice using response surface methodology [J]. Journal of the Science of Food and Agriculture,2008,88 (3):507-512.
    [16]Liew Abdullah, A. G., Sulaiman N. M., Aroua M. K., et al. Response surface optimization of conditions for clarification of carambola fruit juice using a commercial enzyme [J]. Journal of Food Engineering,2007,81 (1):65-71.
    [17]王鸿飞,李和生,马海乐,等.果胶酶对草莓果汁澄清效果的研究[J].农业工程学报,2003,19(3):161-164.
    [18]唐小俊,池建伟,张名位,等.果胶酶和纤维素酶澄清荔枝提取液研究[J].食品工业,2007,(2):11-14.
    [19]Anne Katrine Landbo, Karl Kaack, Anne S Meyer. Statistically designed two step response surface optimization of enzymatic prepress treatment to increase juice yield and lower turbidity of elderberry juice[J]. Innovative Food Science and Emerging Technologies,2007,8(1):135-142.
    [1]Stintzing, F. C., Stintzing A. S., Carle R., et al. A Novel Zwitterionic Anthocyanin from Evergreen Blackberry (Rubus laciniatus Willd.) [J]. Journal of Agricultural and Food Chemistry,2001,50 (2): 396-399.
    [2]Sellappan, S., Akoh C. C., Krewer G. Phenolic compounds and antioxidant capacity of Georgia-grown blueberries and blackberries [J]. Journal of Agricultural and Food Chemistry,2002, 50 (8):2432-2438.
    [3]Kong, J. M., Chia L. S., Goh N. K., et al. Analysis and biological activities of anthocyanins [J]. Phytochemistry,2003,64 (5):923-933.
    [4]Vasco, C., Ruales J., Kamal-Eldin A. Total phenolic compounds and antioxidant capacities of major fruits from Ecuador [J]. Food Chemistry,2008,111 (4):816-823.
    [5]Dai, J., Gupte A., Gates L., et al. A comprehensive study of anthocyanin-containing extracts from selected blackberry cultivars:extraction methods, stability, anticancer properties and mechanisms [J]. Food and Chemical Toxicology,2009,47 (4):837-847.
    [6]易龙,陈春烨,金鑫,等.花色苷类植物化学物抑制血管内皮细胞氧化应激损伤作用的结构-效应关系研究[J].第三军医大学学报,2009,31(021):2046-2049.
    [7]朱洪梅,韩永斌,顾振新,等.大孔树脂对紫甘薯色素的吸附与解吸特性研究[J].农业工程学报,2006,22(5):153-156.
    [8]刘传菊,戚向阳,任献忠,等.杨梅花色苷的提取分离研究[J].中国食品学报,2009,9(001):59-65.
    [9]张钟,汪杰,李凤霞.大孔树脂对黑糯玉米芯色素吸附性能的研究[J].中国粮油学报,2010,(001):13-17.
    [10]徐金瑞,张名位,刘兴华,等.黑大豆种皮花色苷的提取及其抗氧化作用研究[J].农业工程学报,2005,21(008):161-164.
    [11]黄思梅,张镜.阴香果实花色苷粗提物树脂纯化研究[J].食品科学,2009,30(22):
    [12]戚向阳,姚叶斌.杨梅花色苷提取工艺条件的响应面分析及其抗氧化活性[J].果树学报,2009,26(002):226-230.
    [13]曹少谦,潘思轶,姚晓琳,等.柱层析法分离纯化血橙花色苷[J].中国农业科学,2009,42(5):1728-1736.
    [14]赵善仓,刘宾,赵领军,等.蓝,紫粒小麦籽粒花色苷组成分析[J].中国农业科学,2010,43(19):4072-4080.
    [15]赵秀林,王富荣,徐凌云,等.HPLC法测定桃不同品种果实中花色苷组成和含量[J].2012,
    [16]杜琪珍,姜华,徐渊金.杨梅中主要花色苷的组成与结构[J].食品与发酵工业,2008,34(8):48-51.
    [17]陆英,李佳银,罗晋,等.高速逆流色谱制备分离紫甘薯花色苷[J].分析化学,2011,39(6):851-856.
    [18]Cerezo, A. B., Cuevas E., Winterhalter P., et al. Isolation, identification, and antioxidant activity of anthocyanin compounds in Camarosa strawberry [J]. Food Chemistry,2010,123 (3):574-582.
    [19]Yawadio, R., Tanimori S., Morita N. Identification of phenolic compounds isolated from pigmented rices and their aldose reductase inhibitory activities [J]. Food Chemistry,2007,101 (4): 1616-1625.
    [20]Bowen-Forbes, C. S., Zhang Y., Nair M. G. Anthocyanin content, antioxidant, anti-inflammatory and anticancer properties of blackberry and raspberry fruits [J]. Journal of Food Composition and Analysis,2010,23 (6):554-560.
    [21]Dugo, P., Mondello L., Errante G., et al. Identification of anthocyanins in berries by narrow-bore high-performance liquid chromatography with electrospray ionization detection [J]. Journal of Agricultural and Food Chemistry,2001,49 (8):3987-3992.
    [22]Turkben, C., Sanburun E., Demir C., et al. Effect of freezing and frozen storage on phenolic compounds of raspberry and blackberry cultivars [J]. Food Analytical Methods,2010,3 (3): 144-153.
    [23]Iriwoharn, T., Wrolstad R. Polyphenolic composition of Marion and Evergreen blackberries [J]. Journal of Food Science,2004,69 (4):FCT233-FCT240.
    [24]Acosta-Montoya,, Vaillant F., Cozzano S., et al. Phenolic content and antioxidant capacity of tropical highland blackberry (Rubus adenotrichus Schltdl.) during three edible maturity stages [J]. Food Chemistry,2010,119 (4):1497-1501.
    [25]Siriwoharn, T., Wrolstad R. E., Finn C. E., et al. Influence of Cultivar, Maturity, and Sampling on Blackberry (Rubus L. Hybrids) Anthocyanins, Polyphenolics, and Antioxidant Properties [J]. Journal of Agricultural and Food Chemistry,2004,52 (26):8021-8030.
    [26]Fan-Chiang, H. J., Wrolstad R. E. Anthocyanin pigment composition of blackberries [J]. Journal of Food Science,2005,70 (3):198-202.
    [1]Rein, M. J., Heinonen M. Stability and enhancement of berry juice color [J]. Journal of Agricultural and Food Chemistry,2004,52 (10):3106-3114.
    [2]Cespedes, C. L., El-Hafidi M, Pavon N., et al. Antioxidant and cardioprotective activities of phenolic extracts from fruits of Chilean blackberry Aristotelia chilensis (Elaeocarpaceae), Maqui [J]. Food Chemistry,2008,107 (2):820-829.
    [3]Verbeyst, L., Oey I., Van Der Plancken I., et al. Kinetic study on the thermal and pressure degradation of anthocyanins in strawberries [J]. Food Chemistry,2010,123 (2):269-274.
    [4]Aramwit, P., Bang N., Srichana T. The properties and stability of anthocyanins in mulberry fruits [J]. Food Research International,2010,43 (4):1093-1097.
    [5]Cemeroglu, B., Velioglu S., Isik S. Degradation kinetics of anthocyanins in sour cherry juice and concentrate [J]. Journal of Food Science,1994,59 (6):1216-1218.
    [6]孙海燕.石榴汁花色苷热稳定性及其降解动力学研究[J].
    [7]辛修锋,余小林,胡卓炎,等.杨梅澄清汁及浓缩汁中花色苷热降解动力学的研究[J].农业工程学报,2007,23(9):251-255.
    [8]Kirca, A., Cemeroglu B. Degradation kinetics of anthocyanins in blood orange juice and concentrate [J]. Food Chemistry,2003,81 (4):583-587.
    [9]Patras, A., Brunton N. P., Da Pieve S., et al. Impact of high pressure processing on total antioxidant activity, phenolic, ascorbic acid, anthocyanin content and colour of strawberry and blackberry purees [J]. Innovative Food Science & Emerging Technologies,2009,10 (3):308-313.
    [10]Wang, W. D., Xu S. Y. Degradation kinetics of anthocyanins in blackberry juice and concentrate [J]. Journal of Food Engineering,2007,82 (3):271-275.
    [11]Shimada, K., Fujikawa K., Yahara K., et al. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion [J]. Journal of Agricultural and Food Chemistry,1992,40 (6):945-948.
    [12]Pacheco-Palencia, L. A., Hawken P., Talcott S. T. Phytochemical, antioxidant and pigment stability of acai (Euterpe oleracea Mart.) as affected by clarification, ascorbic acid fortification and storage [J]. Food Research International,2007,40 (5):620-628.
    [13]Sadilova, E., Stintzing F. C., Carle R. Thermal Degradation of Acylated and Nonacylated Anthocyanins [J]. Journal of Food Science,2006,71 (8):504-512.
    [14]Walkowiak-Tomczak, D., Czapski J. Colour changes of a preparation from red cabbage during storage in a model system [J]. Food Chemistry,2007,104 (2):709-714.
    [15]Zkan, M., Yemenicioglu A., Asefi N., et al. Degradation kinetics of anthocyanins from sour cherry, pomegranate, and strawberry juices by hydrogen peroxide [J]. Journal of Food Science,2002,67 (2): 525-529.
    [16]辛修锋,余小林,胡卓炎,等.杨梅澄清汁及浓缩汁中花色苷热降解动力学的研究[J].农业工程学报,2007,23(9):251-255.[3]
    [17]Kammerer, D. R., Schillmoeller S., Maier O., et al. Colour stability of canned strawberries using black carrot and elderberry juice concentrates as natural colourants [J]. European Food Research and Technology,2007,224 (6):667-679.
    [18]Kawa-Miszczak, L., Wegrzynowicz-Lesiak E., Gabryszewska E., et al. Effect of temperature and sucrose/nitrogen level in the medium on chlorohyll and anthocyanin contents in Clematis cultured in vitro [J]. Acta Physiologiae Plantarum,2007,29 (Suppl.1):S72-S73.
    [19]Garzon, G., Wrolstad R. Comparison of the Stability of Pelargonidin-based Anthocyanins in Strawberry Juice and Concentrate [J]. Journal of Food Science,2002,67 (4):1288-1299.
    [20]Seeram, N. P., Bourquin L. D., Nair M. G. Degradation products of cyanidin glycosides from tart cherries and their bioactivities [J]. Journal of Agricultural and Food Chemistry,2001,49 (10): 4924-4929.
    [21]Sadilova, E., Carle R., Stintzing F. C. Thermal degradation of anthocyanins and its impact on color and in vitro antioxidant capacity [J]. Molecular nutrition & food research,2007,51 (12):1461-1471.
    [22]Yue, X., Xu Z. Changes of anthocyanins, anthocyanidins, and antioxidant activity in bilberry extract during dry heating [J]. Journal of Food Science,2008,73 (6):C494-C499.
    [23]Pacheco-Palencia, L. A., Hawken P., Talcott S. T. Phytochemical, antioxidant and pigment stability of acai (Euterpe oleracea Mart.) as affected by clarification, ascorbic acid fortification and storage [J]. Food Research International,2007,40 (5):620-628.
    [24]Harbourne, N., Jacquier J. C., Morgan D. J., et al. Determination of the degradation kinetics of anthocyanins in a model juice system using isothermal and non-isothermal methods [J]. Food Chemistry, 2008,111(1):204-208.
    [25]Pantelidis, G., Vasilakakis M., Manganaris G. A., et al. Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and Cornelian cherries [J]. Food Chemistry,2007,102 (3):777-783.
    [26]Schieber, A., Stintzing F., Carle R. By-products of plant food processing as a source of functional compounds--recent developments [J]. Trends in Food Science & Technology,2001,12 (11): 401-413.
    [27]Elisia, I., Hu C., Popovich D. G., et al. Antioxidant assessment of an anthocyanin-enriched blackberry extract [J]. Food Chemistry,2007,101 (3):1052-1058.
    [1]Rein M J. Copigmentation reactions and color stability of berry anthocyanins [D]. University of Helsinki, Department of Applied Chemistry and Microbiology. Helsinki(Finland):University of Helsinki,2005:87.
    [2]彭常安,卢锋波,袁晔,等.外源咖啡酸和阿魏酸对黑莓汁中花色苷的辅色研究[J].天然产物研究与开发,2012,24(001):94-97.
    [3]Darias-Martin, J., Carrillo M., Diaz E., et al. Enhancement of red wine colour by pre-fermentation addition of copigments [J]. Food Chemistry,2001,73 (2):217-220.
    [4]Awika, J. M. Behavior of 3-deoxyanthocyanidins in the presence of phenolic copigments [J]. Food Research International,2008,41 (5):532-538.
    [5]Eiro, M. J., Heinonen M. Anthocyanin color behavior and stability during storage:effect of intermolecular copigmentation [J]. Journal of Agricultural and Food Chemistry,2002,50 (25): 7461-7466.
    [6]邵承斌,熊建功,陈盛明,等.有机酸对紫玉米芯色素的辅色作用研究[J].食品科学,2012,33(007):64-68.
    [7]Siriwoharn T, Wrolstad RE. Polyphenolic composition of Mar-ion and Evergreen blackberries. J Food Sci,2004,69:233-240.
    [8]Cevallos-Casals B A, Cisneros-Zevallos L. Stability of anthocyanin-based aqueous extracts of Andean purple corn and red-fleshed sweet potato compared to synthetic and natural colorants. [J]. Food Chemistry,2004,86(1):69-77.
    [9]Gradinaru, G., Biliaderis C., Kallithraka S., et al. Thermal stability of Hibiscus sabdariffa L. anthocyanins in solution and in solid state:effects of copigmentation and glass transition [J]. Food Chemistry,2003,83 (3):423-436.
    [10]Brenes, C. H., Del Pozo-Insfran D., Talcott S. T. Stability of copigmented anthocyanins and ascorbic acid in a grape juice model system [J]. Journal of Agricultural and Food Chemistry,2005, 53 (1):49-56.
    [11]Gonnet J F. Colour effects of co-pigmentation of anthocyanins revisited-1. A calorimetric definition using the CIELAB scales [J]. Food Chemistry,1998,63(3):409-415.
    [12]Gonnet J F. Colour effects of co-pigmentation of anthocyanins revisited-2. A colorimetric look at the solutions of cyanin co-pigmented by rutin using the CIELAB scale [J]. Food Chemistry,1999, 66:387-394.
    [13]Kjell Torskangerpoll,φyvind M. Andersen Colour stability of anthocyanins in aqueous solutions at various pH values [J]. Food Chemistry,2005,89:427-440.
    [14]Gris, E. F., Ferreira E. A., Falcao L. D., et al. Caffeic acid copigmentation of anthocyanins from Cabernet Sauvignon grape extracts in model systems [J]. Food Chemistry,2007,100 (3): 1289-1296.
    [15]Malien-Aubert, C., Dangles O., Amiot M. J. Color Stability of Commercial Anthocyanin-Based Extracts in Relation to the Phenolic Composition. Protective Effects by Intra-and Intermolecular Copigmentation [J]. Journal of Agricultural and Food Chemistry,2000,49 (1):170-176.
    [16]Baranac, J. M., Petranovic N. A., Dimitric-Markovic J. M. Spectrophotometric Study of Anthocyan Copigmentation Reactions.2. Malvin and the Nonglycosidized Flavone Quercetin [J]. Journal of Agricultural and Food Chemistry,1997,45 (5):1694-1697.
    [17]Baranac, J. M., Petranovic N. A., Dimitric-Markovic J. M. Spectrophotometric Study of Anthocyan Copigmentation Reactions.2. Malvin and the Nonglycosidized Flavone Quercetin [J]. Journal of Agricultural and Food Chemistry,1997,45 (5):1694-1697.
    [18]Monagas, M., Gomez-Cordoves C., Bartolome B., et al. Monomeric, oligomeric, and polymeric flavan-3-ol composition of wines and grapes from Vitis vinifera L. Cv. Graciano, Tempranillo, and Cabernet Sauvignon [J]. Journal of Agricultural and Food Chemistry,2003,51 (22):6475-6481.
    [19]Pacheco-Palencia, L. A., Talcott S. T. Chemical stability of acai fruit (Euterpe oleracea Mart.) anthocyanins as influenced by naturally occurring and externally added polyphenolic cofactors in model systems [J]. Food Chemistry,2010,118 (1):17-25.[20]李永强,杨士花,高斌,等.黄酮对杨梅花色苷的辅色作用研究[J].食品科学,2011,32(13):37-39.
    [21]Ducamp-Collin, M. N., Ramarson H., Lebrun M., et al. Effect of citric acid and chitosan on maintaining red colouration of litchi fruit pericarp [J]. Postharvest Biology and Technology,2008, 49 (2):241-246.
    [22]王宇滨,张超,马越,等.几种有机酸对紫玉米花青素热稳定性的影响[J].食品科学,2010,31(07):
    [23]Ducamp-Collin, M. N., Ramarson H., Lebrun M., et al. Effect of citric acid and chitosan on maintaining red colouration of litchi fruit pericarp [J]. Postharvest Biology and Technology,2008, 49 (2):241-246.
    [24]Hubbermann, E. M., Heins, A., Stockmann, H., & Schwarz, K. influence of acids, salt, sugar and hydrocolloids on the colour stability of anthocyanin rich black currant and elderberry [J]. European Food Research and Technology,2006,223:83-90.
    [25]Becker, H.G.O., Berger, W., Domschke, G., Fanghanel, E., Faust, J., Fischer, M., Gentz, F., Gewald, K., Gluch, R., Mayer, R., Miiller, K., Pavel, D., Schmidt, H., Schollberg, K., Schwetlick, K., Seiler, E. and Zeppenfeld, G. (1993). Organikum. Barth, Dt. Verl. der Wiss.:Leipzig, Berlin, Heidelberg. K., Seiler, E. and Zeppenfeld, G. (1993). Organikum. Barth, Dt. Verl. der Wiss.: Leipzig, Berlin, Heidelberg.
    [26]Bordignon-Luiz, M., Gauche C., Gris E., et al. Colour stability of anthocyanins from Isabel grapes (Vitis labrusca L.) in model systems [J]. LWT-Food Science and Technology,2007,40 (4): 594-599.
    [27]Schwarz, M., Wabnitz T. C., Winterhalter P. Pathway leading to the formation of anthocyanin-vinylphenol adducts and related pigments in red wines. [J]. Journal of Agricultural and Food Chemistry,2003,51 (12):3682-3687.
    [28]Eiro, M. J., Heinonen M. Anthocyanin Color Behavior and Stability during Storage:□ Effect of Intermolecular Copigmentation [J]. Journal of Agricultural and Food Chemistry,2002,50 (25): 7461-7466.
    [29]Mateus, N., Silva A. M. S., Rivas-Gonzalo J. C., et al. A new class of blue anthocyanin-derived pigments isolated from red wines [J]. Journal of Agricultural and Food Chemistry,2003,51 (7): 1919-1923.
    [30]Monagas, M., Gomez-Cordoves C., Bartolome B., et al. Monomeric, oligomeric, and polymeric flavan-3-ol composition of wines and grapes from Vitis vinifera L. Cv. Graciano, Tempranillo, and Cabernet Sauvignon [J]. Journal of Agricultural and Food Chemistry,2003,51 (22): 6475-6481.
    [1]Hou, D. X. Potential mechanisms of cancer chemoprevention by anthocyanins [J]. Current molecular medicine,2003,3 (2):149-159.
    [2]Youdim, K. A., Martin A., Joseph J. A. Incorporation of the elderberry anthocyanins by endothelial cells increases protection against oxidative stressl [J]. Free Radical Biology and Medicine,2000,29 (1):51-60.
    [3]Shim, S. H., Kim J. M., Choi C. Y., et al. Ginkgo biloba Extract and Bilberry Anthocyanins Improve Visual Function in Patients with Normal Tension Glaucoma [J]. Journal of Medicinal Food,2012,
    [4]Harding, H. P.; Zhang, Y.; Zeng, H.; Novoa, I.; Lu, P. D.; Calfon, M.; Sadri, N.; Yun, C.; Popko, B.; Paules, R.; Stojdl, D. F.; Bell, J. C.; Hettmann, T.; Leiden, J. M.; Ron, D., An Integrated Stress Response Regulates Amino Acid Metabolism and Resistance to Oxidative Stress. Molecular Cell [J]. 2003,11,619-633.
    [5]Bagri, P.; Ali, M.; Aeri, V.; Bhowmik, M.; Sultana, S., Antidiabetic effect of Punica granatum flowers:Effect on hyperlipidemia, pancreatic cells lipid peroxidation and antioxidant enzymes in experimental diabetes[J]. Food and Chemical Toxicology.2009,47,50-54.
    [6]Garcia-Alonso, M.; Rimbach, G.; Rivas-Gonzalo, J. C.; de Pascual-Teresa, S., Antioxidant and Cellular Activities of Anthocyanins and Their Corresponding Vitisins A Studies in Platelets, Monocytes, and Human Endothelial Cells[J]. Journal of Agricultural and Food Chemistry.2004,52, 3378-3384.
    [7]Sarma, A. D., Sharma R. Anthocyanin-DNA copigmentation complex:mutual protection against oxidative damage [J]. Phytochemistry,1999,52 (7):1313-1318.
    [8]Yi, L., Chen C., Jin X., et al. Structural requirements of anthocyanins in relation to inhibition of endothelial injury induced by oxidized low-density lipoprotein and correlation with radical scavenging activity [J]. FEBS Letters,2010,584 (3):583-590.
    [9]Pergola, C., Rossi A., Dugo P., et al. Inhibition of nitric oxide biosynthesis by anthocyanin fraction of blackberry extract [J]. Nitric Oxide,2006,15 (1):30-39.
    [10]Amorini, A. M., Lazzarino G., Galvano F., et al. Cyanidin-3-O-β-glucopyranoside protects myocardium and erythrocytes from oxygen radical-mediated damages [J]. Free radical research,2003, 37 (4):453-460.
    [11]Yi, L., Chen C., Jin X., et al. Structural requirements of anthocyanins in relation to inhibition of endothelial injury induced by oxidized low-density lipoprotein and correlation with radical scavenging activity [J]. FEBS Letters,2010,584 (3):583-590.
    [12]Garcia-Alonso, M., Rimbach G., Sasai M., et al. Electron spin resonance spectroscopy studies on the free radical scavenging activity of wine anthocyanins and pyranoanthocyanins [J]. Molecular Nutrition & Food Research,2005,49 (12):1112-1119.
    [13]贾娜,孔保华,张洪涛.黑加仑花色苷的提取及抗氧化活性研究[J].食品科学,2011,32(16):162-166.
    [14]Hwang, J. W., Kim E. K., Lee S. J., et al. Antioxidant activity and protective effect of Anthocyanin oligomers on H2O2-triggered G2/M arrest in retinal cells [J]. Journal of Agricultural and Food Chemistry,2012,
    [15]Youdim, K. A., Martin A., Joseph J. A. Incorporation of the elderberry anthocyanins by endothelial cells increases protection against oxidative stress1 [J]. Free Radical Biology and Medicine,2000,29 (1):51-60.
    [16]Heo, H. J., Lee C. Y. Strawberry and its anthocyanins reduce oxidative stress-induced apoptosis in PC12 cells [J]. Journal of Agricultural and Food Chemistry,2005,53 (6):1984-1989.
    [17]Ye, J., Meng X., Yan C., et al. Effect of Purple Sweet Potato Anthocyanins on P-Amyloid-Mediated PC-12 Cells Death by Inhibition of Oxidative Stress [J]. Neurochemical Research,2010,35 (3):357-365.
    [18]Garcia-Alonso, M., Rimbach G., Sasai M., et al. Electron spin resonance spectroscopy studies on the free radical scavenging activity of wine anthocyanins and pyranoanthocyanins [J]. Molecular Nutrition & Food Research,2005,49 (12):1112-1119.
    [19]Shimada, K., Fujikawa K., Yahara K., et al. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion [J]. Journal of Agricultural and Food Chemistry,1992,40 (6):945-948.
    [20]Bao, L., Yao X. S., Tsi D., et al. Protective effects of bilberry (Vaccinium myrtillus L.) extract on KBrO3-induced kidney damage in mice [J]. Journal of Agricultural and Food Chemistry,2007, 56 (2):420-425.
    [21]Nizamutdinova, I. T., Jin Y. C., Chung J. I., et al. The anti-diabetic effect of anthocyanins in streptozotocin-induced diabetic rats through glucose transporter 4 regulation and prevention of insulin resistance and pancreatic apoptosis [J]. Molecular nutrition & food research,2009,53 (11): 1419-1429.
    [22]Quesada, I. M., Del Bas J. M., Blade C., et al. Grape seed procyanidins inhibit the expression of metallothione in genes in human HepG2 cells [J]. Genes & nutrition,2007,2 (1):105-109.
    [23]Bautista-Ortin, A., Martinez-Cutillas A., Ros-Garcia J., et al. Improving colour extraction and stability in red wines:the use of maceration enzymes and enological tannins [J]. International journal of food science & technology,2005,40 (8):867-878.
    [24]Zhao, R., Shen G. X. Functional modulation of antioxidant enzymes in vascular endothelial cells by glycated LDL [J]. Atherosclerosis,2005,179 (2):277-284.
    [25]Tsuda, T., Horio F., Kitoh J., et al. Protective Effects of Dietary Cyanidin 3-O-β-d-Glucoside on Liver Ischemia-Reperfusion Injury in Rats [J]. Archives of Biochemistry and Biophysics,1999,368 (2):361-366.
    [26]Wang, C. J., Wang J. M., Lin W. L., et al. Protective effect of Hibiscus anthocyanins against tert-butyl hydroperoxide-induced hepatic toxicity in rats [J]. Food and Chemical Toxicology,2000, 38 (5):411-416.
    [27]Bao, L., Yao X. S., Tsi D., et al. Protective effects of bilberry (Vaccinium myrtillus L.) extract on KBrO3-induced kidney damage in mice [J]. Journal of Agricultural and Food Chemistry,2007,56 (2):420-425.
    [28]Quesada, I. M., Del Bas J. M., Blade C., et al. Grape seed procyanidins inhibit the expression of metallothione in genes in human HepG2 cells [J]. Genes & nutrition,2007,2 (1):105-109.
    [29]Philpott, M., Gould K. S., Lim C., et al. In situ and in vitro antioxidant activity of sweetpotato anthocyanins [J]. Journal of Agricultural and Food Chemistry,2004,52 (6):1511-1513.
    [31]Bautista-Ortin, A., Martinez-Cutillas A., Ros-Garcia J., et al. Improving colour extraction and stability in red wines:the use of maceration enzymes and enological tannins [J]. International journal of food science & technology,2005,40 (8):867-878.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700