用户名: 密码: 验证码:
静压桩挤土效应及施工措施研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
静压桩因具有无噪音,无振动,无冲击力,施工应力小等诸多优点而得到了较为广泛的应用。但是,静压桩属于挤土桩,其产生的挤土效应会对周边环境造成不利的影响,严重者可能造成邻近的建筑物开裂,道路隆起以及地下管线断裂等工程事故。因此,能有效地预估静压桩产生的挤土效应以及采取能够减少挤土效应的施工措施都具有非常重要的工程意义。本文首先详尽地分析了圆孔扩张理论、应变路径理论、有限元理论在静压桩挤土效应方面存在的不足,并在此基础上做了如下工作:
     1、基于SPM法的理论基础,在小应变假定情况下,推导了静压单桩周围土体位移场的解析解。该解析解能够解决如下问题:地表面的自由边界条件问题;土体不可压缩问题;预钻孔与管桩问题,并给出了整个压桩深度内的土体位移场。由位移场的解析解分析可知,桩身整个深度内的水平向位移场是向外挤出,竖向位移场在表层土体表现为隆起,而深层土体表现为下沉。对大应变假定情况下的土体位移场也做了相应的理论推导,并比较了大小应变情况下挤土产生的位移场差异。
     2、在得到静压单桩挤土产生位移场的基础上,运用拉格朗日插值法得到了已存在桩的情况下压桩产生的土体位移场,并推导了二桩,排桩及静压群桩施工产生的迎桩面及背桩面位移场的解析式。该式考虑到了沉桩施工顺序的影响,较各桩的简单叠加更符合工程实际情况,而且能够简化为不考虑施工顺序的静压群桩挤土位移场的解答。
     3、根据目前有限元在模拟静压沉桩方面存在的不足,指出了模拟沉桩过程需要解决的问题:土体的有限变形;接触问题;本构关系;位移贯入法的加载问题。接着建立了能够模拟沉桩连续贯入的有限元模型,利用该有限元模型分析了桩土模量比、桩土界面接触刚度、桩土界面摩擦、泊松比以及土体的c和Φ指标等因素对沉桩挤土效应的影响。在相同的假定条件下,将数值解和解析解进行了对比分析,得出了近似一致的结论。
     4、利用有限元对减少静压桩挤土效应的施工措施进行了理论分析,讨论了预钻孔与防挤土槽等施工措施的防挤效果。
     最后通过实测的结果和单桩及群桩解析解的结果对比,精度基本上能够满足工程需要。
Jacked pile is widely used because of its various advantages such as noiseless, vibrationless, no impact and minor construction stress. However, the obvious compacting effects caused by the penetration of jacked pile may have severe influence on surrounding engineering environment. So it is important for engineering application that compacting effects of jacked pile are effectively predicted and construction measures that can decrease the compacting effects of jacked pile are taken. Through the detailed analysis of cavity expansion theory, strain path method and finite element theory applied in jacked pile, some deficiencies are put forward. According to the analysis,some main original work are made.
    Firstly, on the basis of strain path method (SPM), closed-form analytical expressions of displacement fields caused by the installation of jacked pile are obtained in small strains. The expressions can take into account some important aspects such as stress-free ground surface, incompression of soil, prebored hole and tubular pile. Through the analysis of displacement field, the variation rules of horizontal and vertical displacements are obtained. The integrate expressions of large strain are deduced by means of SPM. And the difference of the soil compacting effects in the condition of large strain and small strain is analyzed.
    Secondly, according to the analytical expressions of single jacked pile, the displacement fields of subsequent jacked pile due to the presence of adjacent pile are obtained. The expressions of displacement fields of dorsal and frontal surface for two piles, row piles and group piles are derived. The solution taking into consideration the effect of construction sequence of jacked pile accords with the actual engineering.
    Thirdly, some shortcomings that numerical simulation can't effectively applied in jacked pile are proposed. Several problems need to be resolved in numerical simulation of jacked pile; for instance, finite deformation problem, constitutive model of soil, contact between pile and soil and loading problem. Then displacement fields are researched via the finite element model that accords with actual process of jacked pile. And the effects of displacement fields caused by difference modulus ratio, friction between pile and soil, possion ration of soil and soil index of c and Φ are put forward. On the same supposition, the numerical solution and analytical solution are agreeable
    
    
    
    with each other.
    Fourthly, some construction measures that are used to decease the compacting effect are analyzed by use of finite element method. And the impact of construction measures such as prebored hole and groove that prevent the compacting effect is discussed.
    Finally, comparisons are made between theoretical and measured displacement. In general, satisfactory agreement is found.
引文
[1] Adams, J.I. & Hanna, T.H. Ground movements due to pile driving. Behavior of piles. London: institution of Civil Engineers, 127-133.
    [2] Baligh, M.M. Strain path method. J. Geotech. Eng, ASCE, 1985, 111,1108-1136.
    [3] Baligh, M.M. Undrained deep penetration Ⅰ: shear stresses, Geotechnique, 1986, 36(4), 471-485.
    [4] Baligh, M.M. Undrained deep penetration Ⅱ: pore pressures, Geotechnique, 1986, 36(4), 486-501.
    [5] Baligh, M.M. Azzouz, A.S. and Chin, C.T. Disturbrances due to 'ideal' tube sampling, J.Geotech. Eng. ASCE, 1987, 113,739-757.
    [6] Baligh, M.M. & Levadoux, J.N. Consolidation after undrained piezocone penetration. Ⅱ: interpretation. Journal of Geotechnical Engineering, 1986,112(7), 727-745.
    [7] Been, k., Jefferies, M. A state parameter for sands. Geotechnique, 1985, 35(2): 99-112.
    [8] Bishop, R.F, Hill, R., and Mott, N.F. Theory of indentation and hardness tests. Proceedings of the physical society, London, 1945,57:147-159.
    [9] Bolton, M.D. The strength and dilantancy of sands. Geotechnique, 1986, 36(1):65-78.
    [10] Bond, A.J., and Jardine, R.J. Effects of installing displacement ples in high OCR clays. Geotechnique, 1991,London, 41 (3), 341-365.
    [11] Bozozuk, M., Fellenius, B. H. and Samson, L. Soil disturbance from pile driving in sensitive clay. Can. Geotech. J. 1978,15,346-361.
    [12] Burns, S.E. and Mayne, P.W. Analytical cavity expansion critical state model for piezocone dissipation in fine-grained soils. Soils and Foundations, 2002,42(2): 131-137.
    [13] Cao, L.F., The, C.I., and Chang, M.f. Undrainded cavity expansion in modified Cam clay Ⅰ: Theoretical analysis. Geotechnique, 2001, 51 (4): 323-334.
    [14] Carter, J.P., Booker, J.R., and Yeung, S.K. Cavity expansion in cohesive frictional soils. Geotechnique, 1986, 36(3): 345-358.
    [15] Carter, J.P., Randolph, M.F. and Wroth, C.P. Stress and pore pressure changes in clay during and after the expansion of a cylindrical cavity. Int. J. Numer. Anal. Meth. Geomech., 1979,3,305-322.
    [16] Chopra, M. B. & Dargush, G.F. Finite-element analysis of time-dependent large-deformation problems. International Journal of numerical and analytical methods in Geomechanics,
    
    1992,16(1): 101-130.
    [17] Chow, EC., Jardine, R.J. et al. Time-related increases in the shaft capacities of driven piles in sand. Geotechnique, 1997, 47(2): 353-361.
    [18] Chow, Y.K. and The, C.I. A theoretical study of pile heave. Geotechnique, 1990, 40,1-14.
    [19] Collins, I., Pender, M., and Wang Yan. Cavity expansion in sands under drained loading conditions. International Journal of numerical and analytical methods in Geomechanics, 1992,16(1): 3-23.
    [20] Collins,I.E,and Yu,H.S. Undrained cavity expansions in critical state soils. International Journal of numerical and analytical methods in Geomechanics, 1996,20:489-516.
    [21] Cooke, R.W. and Price.G. Strains and displacements around friction piles. In proceeding of the 8th international conference on soil mechanics and foundation engineering, Moscow, 1973, Vol.2.1: 53-60.
    [22] Cooke, R.W., Price.G. and Tarr, K. Jacked piles in London clay: a study of load transfer and settlement under working conditions. Geotechnique, 1979,29(2): 113-147.
    [23] Coop, M.R. and Wroth C.P. Field studies of an instrumented model pile in clay. Geotechnique, 1989,39(4): 679-696.
    [24] Danziger, F.A.B, Almeida, M.S.S. and SillS.G.C. The significance of the strain path analysis in the interpretation of piezocone dissipation data. Geotechnique, 1997, 47(5): 901-914.
    [25] Eigenbrod, K.D. and Issigonis, F. Pore-water pressures in soft to firm clay during driving of pile in to underlying dense sand, Can. Geotech.J.,1996,33,209-218.
    [26] Gibson, R.E. and Anderson, W.F. In-situ measurement of soil properties with the pressuremeter. Civil Engineering and Public Works Review. 1961,5D: 615-618.
    [27] Gupta, R.C. Finite strain analysis for expansion of cavities in granular soils. Soils and Foundations, 2002,42(6): 105-115.
    [28] Hagerty, D.J.& Peck, R.B. Heave and lateral movements due to pile driving. Journal of soil Mechanical foundations division, ASCE, 1971, 97,SM11: 1513-1532.
    [29] Hallquist, J.O., Goudreau, G.L and Benson, D.J. Sliding interfaces with contact-impact in large scale. Lagrangian computations. Computer Methods in applied Mechanics and Engineering, 1985,51:107-137.
    [30] Holloway, D.W., Clough, G.W. and Vesic, A.S. The effects of residual driving stress on piles performance under axial loads. In proceeding of the offshore Technology conference, 1978, Houston, OTC 3306:2225-2236.
    [31] Holtz, W.G., Lowltz, C.A. Effects of driving displacement piles in lean clay. Journal of soil
    
    Mechanical foundations division, ASCE, 1965, 91,SM5: 1-13.
    [32] Huang, A.B. Strain path analyses for arbitrary three-dimensional penetrometers. International Journal for numerical and analytical methods in Geomechanics,(1989), 13:551-564.
    [33] Jefferies, M., and Been, k. Cone factors in sand. In the international symposium on cone penetration testing. Sweden, 4-5 October 1995,Vol, 2:187-193.
    [34] Jin-Hung, Huang, Neng Liang, and Chen Cheng-Hsing. Ground response during pile driving. Journal of Geotechnical and Geoenvironmental engineering, 2001,127(11): 939-949.
    [35] Klotz, E.U.and Coop, M.R. An investigation of the effect of soil state on the capacity of driven piles in sands. Geotechnique, 2001,51 (9): 733-751.
    [36] Koutsoftas, D.C. H-pile heave: a field test. J.Geotech. Engrg. Div., ASCE.1982, 108(2), 999-1016.
    [37] Ladaniyi, B. Expansion of cavities in brittle media. International Journal of Rock Mechanics and Mineral. Science, 1967, 4:301-328.
    [38] Ladanyi, B. Quasi-static expansion of a cylindrical cavity in rock. In engineering applications of solid mechanics. Edited by Tabarrok, b., university of Toronto press, Toronto, Vol.2, 1976,219-240.
    [39] Ladanyi, B., Foriero, A. A numerical solution of cavity expansion problem in sand based directly on experimental stress-strain curves. Can. Geotech. J. 1998,35,541-559.
    [40] Lamb, T.W. & Horn, H.M. The influence on an adjacent building of pile driving for the M.I.T materials center, the 6th international conference on soil mechanics and foundation engineering, Montreal, 1965,Vol.Ⅱ, pp: 280-284.
    [41] Lehane, B.M. and Jardine, R.J. Displacement pile behavior in glacial clay. Can. Geotech. J., Ottava, 1994,31(1), 79-90.
    [42] Lehane, B.M. and Jardine, R.J. Displacement pile behavior in a soft marine clay. Can. Geotech. J., Ottava, 1994,31,181-191.
    [43] Levadoux, J.N. & Baligh, M.M. Consolidation after undrained piezocone penetration. Ⅰ: prediction. Journal of Geotechnical Engineering, ASCE, 1986,112(GT7), 707-726.
    [44] Lo, K.Y. and Stermac, A.G. Induced pore pressures during pile driving operations, the 6th international conference on soil mechanics and foundation engineering, Montreal,1965,Vol.Ⅱ,pp:285-289.
    [45] Mabsout, M.E. & Tassoulas, J.L. A finite element model for the simulation of pile driving. International Journal for numerical methods in Engineering, 1994,37:257-278.
    
    
    [46] Mabsout, M.E., Teese, L.C. and Tassoulas, J.L. Study of pile driving by finite-element method. Journal of Geotechnical Engineering, ASCE, 1995,121:535-543.
    [47] Mabsout, M.E., Sadek, S.M. and Smayra, T.E. Pile driving by numerical cavity expansion. International Journal for Numerical and analytical Methods in Geomechanics,1999,23:1121-1140.
    [48] Mabsout, M.E. and Sadek, S. A study of the effect of driving on pre-bored piles. Int. J. Numer. Anal. Meth. Geomech.,2003,27:133-146.
    [49] O'neill, M.W., Hawkins, R.A. and Audibert, J.M.E. Installation of pile group in overconsolidated clay. Journal of geotechnical engineering, ASCE, 1982, GT11: 1369-1386.
    [50] Ordje, O. & Brom, B.B. Effects of pile driving on soil properties. J.Soil Mech. Fdns Div., ASCE, 1967,93(SM5): 59-73.
    [51] Pestana, J.M., Hunt, C.E. and Bray J.D. Soil deformation and excess pore pressure field around a closed-ended pile. Journal of Geotechnical and Geoenvironmental engineering. 2002,128(1): 1-12.
    [52] Poskitt, T. J. The defection of piles during driving. Geotechnique, 1996, 46(2): 235-243.
    [53] Poulos, H. G. Analysis of residual stress effects in piles. Journal of geotechnical engineering, ASCE, 1987,113(3): 216-229.
    [54] Poulos, H.G.. Effect of pile driving on adjacent piles in clay. Can. Geotech. J 1994,3,856-867.
    [55] Poulos, H.G. Pile behavior—theory and application. Geotechnique, 1989,39,365-415.
    [56] Randolph, M.F., Wroth, C.P. Analytical solution for the consolidation around a driven pile. Int. J. Numer. Anal. Meth. Geomech.,1979,3,217-229.
    [57] Randolph, M.F., Carter, J.P., Wroth, C.P. Driven piles in clay—the effects of installation and subsequent consolidation. Geotechnique, 1979, 29(4): 361-393.
    [58] Randolph, M.F., Steenfelt, J.S., Wroth, C.P. The effect of pile type on design parameters for driven piles. Pro.,7th Eur. Conf. On Soil Mech. and Found Engrg.,1979,2,107-114.
    [59] Robinsky, E.I. and Morrison, C.F. Sand displacement and compaction around friction piles, Can Geotech.J. 1964, 81-93.
    [60] Roy, M., Blancher, R., Tavenas, F., and La Rochelle,P. Behavior of a sensitive clay during pile driving. Can. Geotech. J., Ottava, 1981,18(1), 67-86.
    [61] Sagaseta, C. Analysis of undrained soil deformation due to ground loss. Geotechnique, 1987,37(3): 301-320.
    [62] Sagaseta, C., Whittle, A. J., and Santagata, M. Deformation analysis of shallow penetration in clays. Int. J. Numer. Anal. Meth. Geomech., 1997,21,687-719.
    
    
    [63] Sagaseta, C., Whittle, A. J. Prediction of ground movements due to pile driving in clay. Journal of Geotechnical and Geoenvironmental engineering, 2001,127(1): 55-65.
    [64] Sagaseta, C., Whittle, A. J. Discussion to effect of pile driving on adjacent piles in clay. Can. Geotech. F., Ottava, 1996,33(3), 525-527.
    [65] Schwer, R.M. Tosinsdy, R. and Day, J. An axisymmetric lagrangian technique for predicting earth penetration including penetrator response. International Journal for Numerical and analytical Methods in Geomechanics, 1988,12:235-262.
    [66] Soderberg, L.O. Consolidation theory applied to foundation pile time effects. Geotechnique, 1962,12:217-225.
    [67] Tumay, M.t. Acar, Y.B., Cekirge, M.H. Flow field around cones in steady penetration. J. Geotech. Engrg, ASCE, 1985,111(2): 193-203.
    [68] Veruijt, A., and booker, J.R. Surface settlements due to deformation of a tunnel in an elastic half plane. Geotethnique, 1996,46(4), 753-756.
    [69] Vesic, A.C. Expansion of cavities in infinite soil mass. Journal soil mechanics and foundation division. ASCE. 1972,98(3M): 265-290.
    [70] Vesic, A.C. Design of pile foundations. National research council, Washington, D.C.1977.
    [71] Vesic, A.C. On the significance of residual loads for load response of piles. In proceedings of the 9th international conference on soil mechanics and foundation engineering, Tokyo, 1977, Vol.3: 374-379.
    [72] Wroth, C.P. The interpretation of in situ soil tests. 24th Rankine lecture. Geotechnique, 1984,34(4): 449-489.
    [73] Whittle, A.J. Prediction and interpretation of pore pressure dissipation for a tapered piezoprobe. Geotechnique, 2001,51 (7): 601-617.
    [74] Yu, H.S., and Houlsby, G.T. Finite Cavity expansion indilatant soils: loading analysis. Geotechnique, 1991, 41(2): 173-183.
    [75] 白冰,肖宏彬编著.软土工程若干理论与应用.北京:中国水利水电出版社,2002。
    [76] 柏烱,张庆贺.打桩引起的振动和挤土效应的预测及防治.振动与冲击,1998,17(2):34—38.
    [77] 陈福全,简洪钰,许万强等.小截面静压预制桩的现场试验及其应用研究.岩土力学,2002,23(2):213-216.
    [78] 陈文,施建勇,龚友平,周林根等.饱和粘土中静压桩挤土效应的离心模型试验研究.河海大学学报,1999,27(6):103-109.
    [79] 丁佩民,肖志斌,施建勇.松砂中大型静压沉桩模型试验研究桩基挤土加密效应.工
    
    业建筑,2003,33(3):45-48.
    [80] 樊良本.关于打桩引起的土体位移及土中应力状态变化的探讨.上海:同济大学硕士学位论文,1981.
    [81] 樊良本.打桩抬高的机理及对策.浙江工业大学学报,1998,26(1):73-77.
    [82] 龚晓南,李向红.静力压桩挤土效应中的若干力学问题.工程力学,2000,17(4):7-12。
    [83] 龚晓南.土塑性力学(第二版).杭州:浙江大学出版社,1999.
    [84] 龚晓南.高等土力学.杭州:浙江大学出版社,1996.
    [85] 韩云乔,陶茂之.软土地区高层建筑采用静压桩基的设计与施工探讨.建筑结构学报,1998,1 9(6):72-77.
    [86] 韩选江.静压桩压桩力和承载力的试验研究.建筑结构学报,1996,17(6):45-49。
    [87] 胡中雄.饱和软粘土中单桩承载力随时间的增长.岩土工程学报,1985,7(3):58-61.
    [88] 李向红.软土地基静力压桩挤土效应问题的研究.杭州:浙江大学博士学位论文,2000.
    [89] 李月健.土体内球形孔扩张及挤土桩沉桩机理研究.杭州:浙江大学博士学位论文,2001.
    [90] 刘万兴,张璞.锚杆静压桩施工产生的附加沉降问题初探.岩土力学,2000,21(1):88-91.
    [91] 刘云云.砂土中静压单桩的模型试验与分析.同济大学博士学位论文,上海,1999.
    [92] 鲁祖统.软粘土地基中静力压桩挤土效应的数值模拟.浙江大学博士学位论文,杭州,1998.
    [93] 罗战友,杨晓军,龚晓南.考虑材料的拉压模量不同及应变软化特性的柱形孔扩张问题.工程力学,2004,21(2).
    [94] 罗嗣海,候龙清,胡中雄等.预钻孔孔径对部分挤土桩挤土效应的影响研究.岩土力学,2002,23(2):222-224.
    [95] 施建勇,陈文,彭劼。沉桩挤土效应分析.河海大学学报,2003,31(4):451.418.
    [96] 王浩,魏道垛.表面约束下的沉桩挤土效应数值模拟研究.岩土力学,2002,23(1):107-110.
    [97] 王伟堂,裘华君,詹红琴.压桩挤土位移的预估与防治的研究.岩土工程学报,2001,23(3):378-379.
    [98] 谢新宇,朱向荣.静压桩的挤土效应及现场监测.浙江大学学报,1997,增刊.243-247.
    [99] 徐斌,王大通,高大钊.群桩沉降验算中接触单元模型应用的若干问题.同济大学学报,1998,26(2):149-152.
    [100] 徐建平,周健,许朝阳.沉桩挤土效应的数值模拟。工业建筑,2000,30(7):1-6.
    
    
    [101] 徐芝纶.弹性力学(第二册).北京:高等教育出版社,1978.
    [102] 杨泮池,崔荣泉,曲小刚.计算方法.西安:陕西科学技术出版社,1996.
    [103] 姚笑青,胡中雄.饱和软土中沉桩引起的孔隙水压力估算.岩土力学,1997,18(4):30-35.
    [104] 俞宗卫,张建英.黄土地基中静压桩单桩坚向承载力的试验分析.四川建筑科学研究,2002,28(1):42-44.
    [105] 张明义,邓安福.桩—土滑动摩擦的试验研究.岩土力学,2002,23(3):246-249.
    [106] 张明义,邓安福,干腾君.静力压桩数值模拟的位移贯入法.岩土力学,2003,24(1):113-117.
    [107] 郑刚,顾晓鲁.软土地基上静力压桩若干问题的分析.建筑结构学报,1998,19(4):54-60.
    [108] 周健,徐建平,许朝阳.群桩挤土效应的数值模拟.同济大学学报,2000,28(6):721-725.
    [109] 邹战强.静力压桩工艺及其应用.岩土工程学报,1997,19(3):99-104.
    [110] 周正茂.桩的遮拦作用及其在邻近隧道保护中的应用.上海:同济大学博士学位论文,1999.
    [111] 朱百里,沈珠江.计算土力学.上海:上海科学技术出版社,1990.
    [112] 朱伯芳.有限单元法原理与应用.北京:中国水利水电出版社,1998.
    [113] 朱晓林.预估桩的沉桩阻力和沉桩可能性.软土地基理论与实践,北京:中国建筑工业出版社,1992,125-128.
    [114] 《桩基工程手册》编写委员会.桩基工程手册.北京:中国建筑工业出版社,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700