用户名: 密码: 验证码:
植物源昆虫行为干扰剂微胶囊缓释剂的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用复凝聚法成功制备α-蒎烯、黑胡椒精油和叶醇微胶囊缓释剂。
     1)首先在考察各因素对微胶囊成囊情况和包埋率影响的基础上进行了正交优化实验,得到制备微胶囊的较优工艺。
     (1)两种方法制备α-蒎烯微胶囊较优的制备工艺是:
     以壳聚糖-阿拉伯胶为壁材制备α-蒎烯较优的微胶囊制备工艺是:壳聚糖浓度0.2%,阿拉伯胶浓度3.5%,乳化剂含量2.5%,芯壁比1:1,反应温度45℃,pH值为4.5,反应时间60min,搅拌转数770r/min。在较优制备工艺条件下制得的α-蒎烯微胶囊包封率达到为61.70±2.5%,载药量为52.11±2.3%,且囊形圆整、分散较好,粒径集中在分布在8μm左右。
     以明胶-阿拉伯胶为壁材时制备α-蒎烯微胶囊的较优工艺条件是:复凝聚溶液pH=3.4,壁材浓度2.0%,芯壁比1:1,反应温度45℃,复凝聚反应时间50min,搅拌转数660r/min。在较优制备工艺条件下制得的制备α-蒎烯微胶囊的微胶囊多为规则的球形,表面比较光滑,球形独立完整,没有黏连,包埋率为71.70±1.09%,载药量为56.70±0.09%,微胶囊粒径集中在分布在21μm左右。
     (2)两种方法制备黑胡椒精油微胶囊较优的制备工艺是:
     以壳聚糖-阿拉伯胶为壁材制备黑胡椒精油较优的微胶囊制备工艺:壳聚糖浓度0.2%,阿拉伯胶浓度3.0%,乳化剂含量2.0%,芯壁比1:1,反应温度45℃,pH值为4.5,反应时间60min,搅拌转数770r/min。在较优制备工艺条件下制得的黑胡椒精油微胶囊包封率达到为51.70±2.5%,载药量为42.11±2.3%,且囊形圆整、分散较好,粒径集中在分布在7μm左右。
     以明胶-阿拉伯胶为壁材时制备黑胡椒精油微胶囊的较优工艺条件是:复凝聚溶液pH3.4,壁材浓度2.0%,芯壁比1:1,反应温度45℃,复凝聚反应时间50mmin,搅拌转数660r/min。在较优制备工艺条件下制得的黑胡椒精油微胶囊多为规则的球形,表面比较光滑,球形独立完整,没有黏连,包埋率为69.26%,微胶囊粒径集中在分布在13μm左右。
     (3)两种方法制备叶醇微胶囊较优的制备工艺是:
     以壳聚糖-阿拉伯胶为壁材的制备叶醇的较优制备工艺条件:壳聚糖浓度0.2%,阿拉伯胶浓度3.0%,乳化剂含量2.5%,芯壁比1:1,反应温度45℃,pH值为4.5,反应时间30mmin,搅拌转数770r/min。在较优制备工艺条件下制得的叶醇微胶囊包封率达到为73.56%±1.69,载药量为49.7%±2.49,且囊形圆整、分散较好,粒径集中在分布在12μm左右。
     以明胶-阿拉伯胶为壁材时制备叶醇微胶囊的较优工艺条件:复凝聚溶液pH=3.4,壁材浓度2.0%,芯壁比1:1,反应温度45℃,复凝聚反应时间50min,搅拌转数660r/min。在较优制备工艺条件下制得叶醇的微胶囊多为规则的球形,表面比较光滑,球形独立完整,没有黏连,包埋率为83.01%±2.67,微胶囊粒径集中在分布在19μm左右。
     2)两种方法所制备的微胶囊红外分析结果显示:壳聚糖与阿拉伯胶,明胶与阿拉伯胶形成凝聚物,芯材α-蒎烯、黑胡椒精油、叶醇存在于所制备的微胶囊中。
     3)所制备的α-蒎烯、黑胡椒精油、叶醇微胶囊悬浮剂结果是:
     (1)两种方法所制备的微胶囊悬浮剂配方是:4%的聚乙烯吡咯烷酮和0.1%氯化钠,0.1%的增稠/抗沉淀剂黄原胶,1%的抗冻剂丙二醇,0.05%的防霉剂苯甲酸钠。所制备的微胶囊悬浮率都在90%以上,均符合农药制剂悬浮率的要求。
     (2)经冷热贮稳定性检测,所制备的微胶囊悬浮剂的外观、流动性几乎没变化,扫描电镜观察微胶囊形态也没有变化,紫外分光光度计检测微胶囊悬浮剂所含的有效成分的含量的变化也在允许范围内,符合FAO规定的标准。
     (3)采用B-型(NDJ-1)旋转黏度剂分别测定以壳聚糖-阿拉伯胶为壁材和以明胶-阿拉伯胶为壁材所制备的微胶囊悬浮剂结果表明:α-蒎烯分别为121mpa.s和158mpa.s;黑胡椒精油为129mpa.s和167mpa.s;叶醇为114mpa.s和143mpa.s,均符合农药悬浮剂的黏度要求。
     4)微胶囊悬浮剂的药效及缓释结果:
     (1)室内检测两种方法所制备的α-蒎烯、黑胡椒精油、叶醇微胶囊悬浮剂的缓释效果可知:包封后的α-蒎烯、黑胡椒精油、叶醇微胶囊悬浮剂中的芯材通过透析袋释放到介质中的速率明显受到抑制,其所制备的微胶囊悬浮剂的缓释效果可达11天以上。
     (2)两种方法所制备的α-蒎烯、黑胡椒精油、叶醇微胶囊悬浮剂,放置一段时间以后,以明胶-阿拉伯胶为壁材所制备的微胶囊,随着放置时间的增长,凹陷度越来越大。此现象说明,其微胶囊能够有效的控制芯材的挥发;以壳聚糖-阿拉伯胶为壁材制备的微胶囊悬浮剂放置一段时间以后,微胶囊的外形没有变化,切开后其内部为穴状结构,穴状结构为芯材挥发后留下的,同样可证明,壳聚糖-阿拉伯胶为壁材能够成功的包埋挥发物α-蒎烯、黑胡椒精油、叶醇。
     5)野外生测药效结果表明:两种方法所制备的α-蒎烯、黑胡椒精油、叶醇微胶囊悬浮剂其药效没有受到影响,能够有效的降低芯材的挥发,延长药效时间。
This study has successfully prepared slow-release microcapsule of a-pinene, black pepper oil, and leaf alcohol micro sizing agents with the method of complex coacervation.
     1) First of all, the study had performed the orthogonal experiment after exploring various factors of the influence on the microcapsule capsule and embedding rate, and found a preferred preparation process of the microcapsules.
     (1) Two better preparation technologies to prepare α-pinene microcapsule
     Complex coacervation method with chitosan-gum arabic as wall materials can be effective for micro-encapsulation of core material a-pinene. The optimum conditions of preparation of α-pinene microcapsules are:concentration of0.2%chitosan, gum arabic concentration of3.5%,2.5%emulsifier content the core wall than1:1, the reaction temperature is45℃, pH=4.5, reaction time60min, stirring speed770r/min. Under the best preparation conditions, the microcapsule cladding and drug loading rate reach up to61.70±2.5%and52.11±2.3%, and the microcapsule were capsule-shaped, round, and well-dispersed; the particle size is concentrated in about8μm.
     Optimum conditions for preparation of a-pinene microcapsules with gelatin-gum arabic as wall material are as follows:complex cohesion solution pH=3.4, wall material concentration of2.0%, the core wall ratio1:1, reaction temperature45℃, complex coacervation reaction time50min, stirring speed660r/min. Under the best preparation condition, the microcapsules are capsule-shaped, rounded, and well-dispersed; encapsulation efficiency reach up to71.70±1.09%and56.70±0.09%drug loading; the particle size of the microcapsules is concentrated in the distribution21μm.
     (2) Two better preparation technologies to prepare black pepper essential oil microcapsule
     The optimum conditions of preparation of black pepper essential oil by using the Chitosan-Arabia gum as wall material was:Concentration of0.2%chitosan, gum arabic concentration of3.0%,2.0%emulsifier content the core wall than1:1, the reaction temperature is45℃, pH=4.5, reaction time60min, and stirring speed770r/min. Under the best preparation conditions, the microcapsule cladding and drug loading rate reach up to51.70±2.5%and42.11±2.3%, and the microcapsule were capsule-shaped, round and well-dispersed; the particle size is concentrated in about7μm.
     Optimum conditions for preparation of black pepper essential oil microcapsule with gelatin-Arabia gum as wall material are:complex cohesion solution pH=3.4, wall material concentration of2.0%, the core wall ratio1:1, reaction temperature45℃, complex coacervation reaction time50min, stirring speed660r/min. Under the best preparation conditions, the microcapsules are capsule-shaped, rounded, and well-dispersed; encapsulation efficiency reached69.26%; the particle size of the microcapsules is concentrated in the distribution13p.m.
     (3) Two better preparation technologies to prepare geranial microcapsule
     The optimum conditions of preparation of black pepper essential oil by using the Chitosan-Arabia gum as wall material are:concentration of0.2%chitosan, gum arabic concentration of3.0%,2.5%emulsifier content the core wall than1:1, the reaction temperature is45℃, pH=4.5, reaction time30min, and stirring speed770r/min. Under the best preparation conditions, the microcapsule cladding and drug loading rate reach up to73.56%±1.69; drug loading is49.7%+2.49, and the microcapsules are capsule-shaped, round and well-dispersed; the particle size is concentrated in about12μm.
     Optimum conditions for preparation of geranial microcapsule with gelatin-Arabia gum as wall material: complex cohesion solution pH=3.4, wall material concentration of2.0%, the core wall ratio1:1, reaction temperature45℃, complex coacervation reaction time50min, stirring speed660r/min. The microcapsules capsule-shaped rounded, well dispersed, encapsulation efficiency reached83.01%±2.67, the particle size of the microcapsules is concentrated in the distribution19μm about the best preparation conditions.
     2) Infrared analysis of the results of the two methods for preparing microcapsule:the chitosan and Arabia gum, gelatin and Arabia formed condensed mixture, and the core material of a-pinene, black pepper essential oil, and cis-3-hexen-l-ol exist in the preparation of microcapsules.
     3) The results of suspending capsule prepared by the a-pinene, black pepper oil, and leaf alcohol micro sizing agents
     (1) Suspending formula of microcapsules prepared by the two methods is:4%polyvinyl pyrrolidone and0.1%sodium chloride,0.1%of the thickening/anti-settling agent is xanthan gum,5%of the anti-freezing agent propylene glycol, and0.05%fungicides sodium benzoate. The suspension rate of the microcapsules prepared in the above reaches90%, which is in line with the requirements of the suspension rate of pesticide formulations.
     (2) Through hot and cold storage stability test, the appearance and fluidity of the microcapsules prepared suspensions almost did not change, and the scanning electron microscope microcapsules morphology did not, either. The change in content of the active ingredients by the UV spectrophotometer microcapsule suspensions also comply with the FAO prescribed standards
     (3) B-type (NDJ-1) measurement of microcapsule suspensions prepared by chitosan-gum arabic as wall material and gelatin-gum arabic as wall material separately show that the viscosity of the a-pinene is121mpa.s and158mpa.s separately; black pepper oil,129mpa.s and167mpa.s; leaf alcohol microcapsules,114mpa.s and143mpa.s. All of these comply with the viscosity of pesticide suspension requirements of the agent.
     4) Efficacy and slow-release capsule suspension results
     (1) Indoor testing prepared by the two methods are a-pinene, black pepper essential oils, the sustained release effect of phytol microcapsule suspensions manefested:encapsulating the a-pinene, black pepper oil, leaf alcohol microcapsule suspensions, the core material is released by the dialysis bag to a medium rate was significantly inhibited and their microcapsules prepared sustained-release effect of the suspending agent of up to11days or more.
     (2) microcapsule suspensions of α-pinene, black pepper oil, leaf alcohol prepared by two methods, if placed for some time, the morphological changes of the microcapsules of the scanning electron microscope show that:If gelatin-gum arabic as wall material prepared in black microcapsules is placed for3days, the wall will show depression, and with the growth of the storage time, the depression degree as well as the depth of the recess and recessed areas are also increasing. This phenomenon indicates that using complex coacervation of gelatin-gum arabic as wall material can successfully entrapped volatiles alpha-pinene, the essential oils of black pepper, leaf alcohol, and the microcapsules can effectively control the core material volatile; If chitosan-Gum Arabic as the wall material of microcapsules prepared suspensions are placed for some time, the shape of the microcapsules do not change, and its internal is cut to be of cryptand structure, which is left after evaporation of the core material. The same goes to chitosan-gum arabic as wall material, which successfully entrapped volatiles alpha-pinene, the essential oils of black pepper, leaf alcohol.
     5) The field bioassay pharmacodynamic results show that:the efficacy of microcapsule suspensions prepared by α-pinene, black pepper oil, and leaf alcohol is not affected, and it is possible to effectively reduce the volatilization of the core material, and to extend the efficacy time.
引文
[1]武晓颖.双条杉天牛植物源引诱剂及衰弱寄主植物诱虫机理的研究.北京林业大学硕士学位论文,2009
    [2]周琼.植物挥发性次生物质对昆虫的行为调控及其机制.湘潭师范学院学报(自然科学版),2003,25(4):55-60
    [3]Lucas-Barbosa D, Van Loon JJA, Dicke M. The effects of herbivore-induced plant volatiles on interactions between plants and flower-visiting insects. Phytochemistry, 2011,72(13):1647-1654
    [4]Kumar P, Mishra S, Malik A, Satya S. Insecticidal properties of Mentha species:A review. Ind Crop Prod,2011,34(1):802-817
    [5]Bruce TJA, Pickett J A. Perception of plant volatile blends by herbivorous insects-Finding the right mix. Phytochemistry,2011,72(13):1605-1611
    [6]Phillips M, Croteau R B. Resin-based defenses in conifers.Trends in Plant Science, 1999,4(5):184-190
    [7]Burguiere L, Marion-Poll F, Cork A. Electrophysiological responses of female Helicoverpa armigera (Hubner) (Lepidoptera; Noctuidae) to synthetic host odours. J Insect Physiol,2001,47(4-5):509-514
    [8]Reddy G VP, Guerrero A. Interactions of insect pheromones and plant semiochemicals. Trends in Plant Science,2004,9(5):253-261
    [9]Brouat C, McKey D, Bessiere J-M, Pascal L. Leaf volatile compounds and the distribution of ant patrollingin an ant-plant protection mutualism:Preli minary results on Leonardoxa (Fabaceae:Caesalpinioideae) and Petalomyrmex (Formicidae: Formicinae). Acta Oecologica,2000,21(6):349-357
    [10]Sivinski J, Wahl D, Holler T, Dobai SA, Sivinski R. Conserving natural enemies with flowering plants:Estimating floral attractiveness to parasitic Hymenoptera and attraction's relationship to flower and plant morphology. Biol Control, 2013,58(3):208-214
    [11]Pinero JC, Giovanni Galizia C, Dorn S. Synergistic behavioral responses of female oriental fruit moths (Lepidoptera:Tortricidae) to synthetic host plant-derived mixtures are mirrored by odor-evoked calcium activity in their antennal lobes. J Insect Physiol, 2008,54(2):333-343
    [12]Webster B, Bruce T, Pickett J, Hardie J. Volatiles functioning as host cues in a blend become nonhost cues when presented alone to the black bean aphid. Animal Behaviour,2010,79(2):451-457
    [13]Collins LE, Bryning GP, Wakefield ME, Chambers J, Cox PD. Progress towards a multi-species lure:Identification of components of food volatiles as attractants for three storage beetles. J Stored Prod Res,2007,43(1):53-63
    [14]Erler F, Ulug I, Yalcinkaya B. Repellent activity of five essential oils against Culex pipiens. Fitoterapia,2006,77(78):491-494
    [15]Wang J, Zhu F, Zhou XM, Niu CY, Lei CL. Repellent and fumigant activity of essential oil from Artemisia vulgaris to Tribolium castaneum (Herbst) (Coleoptera:Tenebrionidae). J Stored Prod Res,2006,42(3):339-347
    [16]Birkett MA, Hassanali A, Hoglund S, Pettersson J, Pickett JA.Repellent activity of cat mint, Nepeta cataria, and iridoid nepetalactone isomers against Afro-tropical mosquitoes, ixodid ticks and red poultry mites. Phytochemistry,2011,72(1):109-114
    [17]Konno K. Plant latex and other exudates as plant defense systems:Roles of various defense chemicals and proteins contained therein. Phytochemistry,2011,72(13):1510-1530
    [18]赵善欢.植物化学保护(第三版)北京:中国农业出版社,2000
    [19]翟金玲,张鹏,宋淑霞,等.我国植物源农药研究现状.河北林业科技,2008,6(3):23-25
    [20]从大鹏.我国植物源农药的研究及问题分析.农药研究与应用,2009,13(1):7-9
    [21]刘小凤,相建业,胡想顺,等.0.15%苦皮藤素微乳剂防治小菜蛾田间药效试验.农药,2003,42(1):44-45
    [22]祝树德,高振兴,金党琴.印楝素对水稻二化螟的生物活性及控制作用.中国水稻科学,2004,18(6):551-556
    [23]江志利,张兴,冯俊涛.植物精油研究及其在植物保护中的利用.陕西农业科学,2002(1):32-36
    [24]黄素青,梁炳泉,苏兆雄,徐汉虹.植物精油的生物活性及其在有害生物控制上的应用.农药,2010,49(6):64-66
    [25]邓志勇.我国植物源农药的研究与应用.广西农业科学,2006,37(6):678-681
    [26]乐海洋,赵善欢.几种菊科植物提取物对蚊幼虫的光活化活性初试.华南农业大学学报,1997,18(1):20-24
    [27]杨仕平,梁炳泉等.鱼藤酮的晶体结构.华南农业大学学报,2001,22(31):30-31
    [28]曾鑫年,张善学,等.毛鱼藤酮鱼鱼藤酮杀虫活性的比较.昆虫学报,2002,45(5):20-23
    [29]张兴.几种川楝素提制品对菜青虫的生物活性.植物保护学报,1989,16(3):205-210
    [30]吴文君,胡兆农.我国植物源害虫控制剂的研究与开发.农药,1995,(2):6-8
    [31]刘惠霞.苦皮藤素V对东方粘虫中肠细胞及其消化酶活性的影响.昆虫学报, 1998,41(3):258-260
    [32]张兴,王兴林,冯俊涛.植物杀虫剂川楝素的开发研究.西北农业大学学报,1993,21(40):1-5
    [33]严福顺,Schoonhoen.L M大菜粉蝶幼虫外颚叶味觉感器对蓼二醛的电生理反应.昆虫学报,1993,36(1):1-7
    [34]张宗炳.杀虫药剂的分子毒理学.北京农业出版社,1982,3:18-120
    [35]何道航,徐汉虹,黄继光.植物源番荔枝内酯的杀虫作用.安徽农业大学学报,2001,28(4):385-389
    [36]张夏亭,聂球林,高欣.除虫菊素的杀虫特性与作用机理.农药科学与管理,2003,24(2):22-23
    [37]吴文君,胡兆农.我国植物源害虫控制剂的研究与开发.农药,1995,6(2):6-8
    [38]Nitza Y, Ephraim C. Acetylcholinesterase of the California red scale Anonidiella aurantii Mask:Catalysis, inhibition and reactivation. Pestic Bicochem Physiol, 2002,(72):133-141
    [39]涂晓云,廖满英.植物农药与植物保护.江西植保,2002,25(2:61-62
    [40]吴文君,高希武.生物农药及其应用.北京:化学工业出版社,2004,28(4):40-42
    [41]蒋小龙,寸东义,杨晶焰.香茅精油、香茅醛、香茅醇对储粮霉菌和害虫抑制与熏杀效果的试验研究.郑州粮食学院学报,1994,15(1):39-47
    [42]裴勇强.化学生态及无公害调控青杨天牛种群的基础研究.东北林业大学硕士学位论文,2010
    [43]吕建华,任信升,许建双,等.三种植物精油对米象的控制作用.湖北农业科学,2006,45(4):470-473
    [44]胡仕林.植物精油在害虫控制中的作用.四川日化,1992,7(1):44-48
    [45]崔得君,赵善欢.万寿菊粗提物对小菜蛾产卵忌避作用研究.农药,1998,37(6):31-35
    [46]夏传国,陈杰林,李隆术,等.丹皮及其提取物对几种中药材储粮害虫的忌避作用研究.粮食储藏,2000,29(1):3-9
    [47]杨群芳,周祖基,李庆.植物精油对云南松纵坑切梢小蠹的驱避活性研究.西南农业大学学报(自然科学版),2003,6(04):89-91
    [48]崔丽贤.非寄主植物挥发性化学物质对红脂大小蠹驱避作用的研究.河北农业大学硕士论文,2008
    [49]徐汉虹,赵善欢.五种精油对储粮害虫的忌避作用和杀卵作用研究.中国粮油学报,1995,1(4):5-7
    [50]严善春,胡隐月,孙江华,孙凡.落叶松挥发性物质与球果花蝇危害的关系.林业科学,1999,6(03):87-89
    [51]严善春,孙江华,迟德富,等.植物挥发性物质对落叶松球果花蝇的驱避效果.生态学报,2003,23(2):314-319
    [52]Choochote Wm, Chaiyasit D, Kanjanapothi D. Chemical composition and anti-mosquito potential of rhizome extract and volatile oil derived from Curcuma aromatics against Aedes aegypti (Diptera:Culicidae). Journal of Vector Ecology, 2005,9(02):877-879
    [53]Harish Chander, Ahufa, DF, Nagender AA.Repellency of different plant extracts and commercial formulations used as prophylactic sprays to protect bagged grain against Tribolium Castaneum-a field study. Journal of stored Products Research, 2000,37(6):582-585
    [54]Pushpanathan T,,Jebanesan A,Govindarajan M.Larvicidal,ovicidal and repellent activities of Cymbopogan citratus Stapf (Gra minae) essential oil against the filarial mosquito Culex quinquefasciatus (Say) (Diptera:Culicidae).Trop Biomed, 2006,9(02):693-695
    [55]张振.化学生态技术调控青杨脊虎天牛种群基础研究.东北林业大学硕士学位论文,2011
    [56]Chang KS, Tak JH, Kim SI. Repellency of Cinnamomum cassia bark compounds and cream containing cassia oil to Aeries aegypti (Diptera:Culicidae) under laboratory and indoor conditions. Pest Management Science,2006,6(11):455-457
    [57]Polsomboon S, Grieco JP, Achee NL. Behavioral responses of catnip (Nepeta cataria) by two species of mosquitoes, Aedes aegypti and Anopheles harrisoni, in Thailand. Journal of the American Mosquito Control Association,2008,65(04):543-545
    [58]黄衍章,杨长举.薛东新型驱蚊缓释剂的研制.中华卫生杀虫药械,2008,9(01):52-57
    [59]原永谦.红脂大小蠹不同配方的植物性诱芯野外优化试验.山西林业科技,2008,1(7):7-9
    [60]李永和,陈敏,叶辉.华山松挥发性物质与华山松木蠹象.东北林业大学学报,2007,9(7):7-8
    [61]池田俊弥.引诱松褐天牛的物质及利用.国家林协东北亚森保会议译文集[M].林业部三北防护林建设局印,1990,(7):78-79
    [62]刘际建.利用蛀干类害虫引诱剂来引诱松褐天牛初步试验研究.生物学志,2006,23(1):17-19
    [63]田坤,余兴主,田文利.应用天牛引诱剂监测防治松褐天牛试验初报.湖北林业科技,2007,6:35-36
    [64]张连芹,宋世涵,黄焕华.利用引诱剂诱捕松褐天牛等甲虫的研究.林业科学研究,1992,5(4):478-481
    [65]赵锦年,蒋平.松褐天牛引诱剂及引诱作用研究.林业科学研究,2000,13(3):262-267
    [66]赵锦年,林长春,姜礼元.M(99-1)引诱剂诱捕松墨天牛等松甲虫的研究.林业科学研究,2001,14(5):523-529
    [67]曾鑫年.植物体表化合物对植食性昆虫寄主接受行为的影响.江西农业大学学报,2010,9(05,):89-91
    [68]王香萍,张丽,钟伏付.植物次生物质对昆虫信息素作用效果的研究概述.湖北农业科学,2010.5(7):7-9
    [69]Prajapati V. Tripathi AK. Aggarwal KK. Insecticidal, repellent and oviposition-deterrent activity of selected essential oils against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Bioresource Technology,2005,12(16):87-89
    [70]Khater HF, Shalaby AA. Potential of biologically active plant oils to control mosquito larvae (Culex pipiens, Diptera:Culicidae) from an Egyptian locality. Rev Inst Med Trop S Paulo,2008,7(02):6-8
    [71]Shelly TE. Flower feeding affesfs mating performance in male oriental fruitfies Bactrocera dorsalis. Ecological Entomology,2000,25(1):109-114
    [72]徐河山,马雅军.植物源杀虫剂作用方式和机理的研究.热带医学杂志,2006,6(6):743-744
    [73]Schmutterer H. Properties and potential of natural pestcides from the neem tree. Annual Reviews of Entomology,1990,6(35):271-297
    [74]陈小平,黄翠.杀虫植物印楝的研究进展.四川林业科技,2003,24(4):26-31
    [75]王健.植物精油的提取分离及其对病虫生物活性的研究[D].华中农业大学硕士论文,2003
    [76]张业光,徐汉虹,黄继光等.非洲山毛豆对几种鳞翅目害虫的拒食用.华南农业大学学,2000,21(4):26-28
    [77]郝乃斌,戈巧英.中国植物源杀虫剂的研制与应用.植物学通报,1999,16(5):495-503
    [78]梁媛,叶非.植物源农药的活性成分和作用机理.农药科学与管理,2006,27(2):34-40
    [79]Tripathi A.K, Prajapati N, Vema V, et al,. Bioactivities of the leaf essential oil of Curcuma longa (var.Ch-66) on three species of stored-product beetles(Coleoptera). Journal of Economic Entomology,2002,95(1):183-289
    [80]Chaiyasit D, Choochote W, Rattanachanpichal E. Essential oils as potential adulticides against two populations of Aedes aegypti, the laboratory and natural field strains, in Chiang Maiprovince,northern Thailand. Parasitol Res,2006,34(06):109-114
    [81]Lee HS. Mosquito larvicidal activity of aromatic medicinal plant oils against Aedes aegypti and Culex pipiens pallens. Journal of the American Mosquito Control Association,2006,23(02):109-114
    [82]李云寿,邹华英,汪禄香,等.紫茎泽兰提取物对四种储粮害虫的杀虫活性.昆虫知识,2001,38(3):214-216
    [83]王燕,师光禄,吴振宇,等.中草药提取物对朱砂叶螨杀螨活性的筛选.中国农学通报,2007,24(5):323-326.
    [84]曹挥,王有年,张铁强,等.地肤不同部位提取物对山楂叶螨活性的研究.林业科学,2007,43(9):27-31
    [85]Zhu JW, Zeng XP.Ma Y., Adult repellency and larvicidal activity of five plant essential oils against mosquitoes. Journal of the American Mosquito Control Association,2006,6(03):109-114
    [86]Pitasawat B, Champakaew D.Choochote W. Aromatic plant-derived essential oil:an alternative larvicide for mosquito control. Fitoterapia,2007,9(03):65-67
    [87]何衍彪,詹儒林,赵艳龙.植物源农药的研究和利用.热带农业科学,2004,24(3):48-56
    [88]祁志军,胡兆农,时春喜,等.0.2%苦皮藤素乳油对非靶标生物的影响.西北农林科技大学学报,2004,32(2):31-34
    [89]周仕涛.我国植物源农药的研究及前景.西南农业学报,2004,17(4):525-529
    [90]赵雯,张秋禹,王结良等.缓释技术及应用.河南化工,2004,7:1-3
    [91]Chang CP, Leung TK, Lin SM. Release properties on gelatin-gum arabic microcapsules containing camphor oil with added polystyrene. Colloids Surf B:Biointerfaces,2006,50:136-138
    [92]Dong ZJ, Xia SQ, Hua S, et al. Optimization of c ross-linking parameters during production of transgluta minase-hardened spherical multinuclear microcapsules by complex coacervation. Colloids Surf. B:Bioint-erfaces,2008,63:41-45
    [93]孔祥正,廉洁,朱晓丽,等.聚[2-(甲基丙烯氧)乙基三甲基氯化铵]/阿拉伯胶复凝聚法十二醇微胶囊的制备.高分子学报,2008,(8):799-803
    [94]沈煜.耐高温微胶囊化食用香精的研究.香料香精化妆品,2011,9(03):65-67
    [95]Thimma RT, Tammishetti S. Study of complex coacervation of gelatin with sodium carboxymethyl guar gum:microencapsulation of clove oil and sulphamethoxzole. Journal of Microencapsulation,2003,20(2):203-210.
    [96]Junyaprasert VB, Mitrevej A, Sinchaipanid N, et al. Effect of process variables on the microencapsulation of vita min A palmitate by gelatin-Acacia coacervation. Drug Development and Industrial Pharmacy,2001,27(6):561-566
    [97]谢艳丽,蒋敏,陈鸿雁.复凝聚法制备明胶/阿拉伯胶含油微胶囊工艺过程的研究.化学世界,2010,9(03):65-67
    [98]刘楠楠,陈雪峰,刘俊杰.复凝聚法制备葱油香精微胶囊.食品与发酵工业,2011.37(2):97-99
    [99]李芳,王全杰,肖振峰.艾蒿油微胶囊的制备及其抗菌性研究.皮革科学与工程,2012,22(2):86-88
    [100]葛寒英.沙棘油的微囊化技术.东北林业大学学报,2005,5(03):65-67
    [101]黄凤洪,夏伏建,王江薇.亚麻油粉末油脂制备的研究.中国油料作物学报,2002,4(03):65-67
    [102]徐丽琴,尚德静,海华.月见草油微胶囊技术的研究.辽宁师范大学学报(自然科学版),2005,4(03):65-67
    [103]华彩丽,陈华涛,宋晓平.丁香油微囊的制备与测定方法的建立.中国畜牧兽医,2008,7(03):65-67
    [104]阎师杰,吴彩娥,寇晓虹.核桃油微胶囊化工艺的研究.农业工程学报,2003,19(1):13-15
    [105]常明,岳红坤,牟微.蓖麻油缓释微囊的研制.安徽农业科学,2011,39(10):35-37
    [106]王承南,钟海雁,谢碧霞.油茶籽油微胶囊凝聚法工艺技术的研究.中南林学院学报,2001,21(4):67-69
    [107]Schmitt C, Sanchez C, Despond S, et al. Effect of protein aggregates on the complex coacervation between beta-lactoglobulin and acacia gum at pH4.2.Food Hydrocolloids,2000,14(6):403-413
    [108]Schmitt C, Sanchez C, Thomas F, et al. Complex coacervation between beta-lactoglobulin and acacia gum in aqueous medium. Food Hydrocolloids,1999,13: 483-496
    [109]Sovilj V, Dokic P, Marjanovic V, et al. Microencapsulation of paraffin oil by gelatin-soldium carboxy methylcellulose complex coacervation. Conference on Colloid Chemistry,1996,7:376-379
    [110]Ozge M, Oguz B, Aysegul B. Complex coacervation of silk fibroin and hyaluronic acid. International Journal of Biological Macromolecules,2007,40:387-393
    [111]Rong Y, Chen H Z, Wei D C, et al. Microcapsules with compact membrane structure from gelatin and styrenemaleic anhydride copolymer by complex coacervation. Colloids Surfaces A:Physicochem Eng,2004,242:17-20
    [112]Chimal-Valencia O, Robau-Sanchez A. Aguilar-Elguezabal. Ion exchange resins as catalyst for the isomerization of a-pinene to camphene. Bioresource Technology, 2004,93 (8):119-123
    [113]Sh W. Liu Sh.T Yu. Reactions of a-pinene using acidic ionic liquids as catalysts. Journal of Molecular Catalysis A:Chemical,2008,279 (9):177-181
    [114]V I Anikeeva. Salakhutdinov. Reactivity of a-pinene epoxide in supercritical solvents. J. of Supercritical Fluids,2010,52 (9):71-75
    [115]高苏岚.双条杉天牛植物性引诱剂研究.北京林业大学硕士论文,2007
    [116]周琳,马志卿,冯岗,张兴.天牛性信息素、引诱植物和植物性引诱剂的研究与应用.昆虫知识,2006,43(4):433-438
    [117]樊慧,金幼菊,李继泉,等.引诱植食性昆虫的植物挥发性信息化合物的研究进展.北京林业大学学报,2004,9(03):89-91
    [118]Ho,S H, Cheng L P L, Sim K Y, et al. Potential of cloves (Syzygium aromaticum L. Merr. and Perry) as a grain protectant against Tribolium castaneum (Herbst) and Sitophilus zeamais Motsch. Postharvest Biological Technology,1994,4:179-183
    [119]Ho SH, Ma Y, Huang Y. Anethole, a potential insecticide from Illicium verum Hook F., against two stored product insects. International Pest Control,1997,39(2):50-51
    [120]Ho SH, Ma Y, Goh PM, et al. Illicium verum Hook F. as a potential grain protectant against Tribolium castaneum (Herbst) and Sitophilus zeamais Motsch. Postharvest Biological Technology,1995,6(89):341-347
    [121]Huang Y, Ho S H. Toxicity and antifeedant activities of cinnamaldehyde against the grain storage insects, Tribolium castaneum (Herbst) and Sitophilus zeamais Motsch. Journal of Stored Product Research,1998,8(34):11-17
    [122]Huang Y, Hee S K, Ho S H. Antifeedant and growth inhibitory effects of α-Pinene on the stored-product insects, Tribolium castaneum (Herbst) and Sitophilus zeamais Motsch. InternationalPest Control,1998,40(1):18-20
    [123]徐汉虹.八角茴香精油的杀虫活性与化学成分研究.植物保护学报,1996,23(4):338-342
    [124]Regnault-Roger C. Potentialite's phytosanitaires des plantes Aromatiques:Controle du Fux des Insectes Phytoravageurs. COLLOQUES-INRA,2005,(03):65-67
    [125]Traboulsi AF, Taoubi K,. InsecticidalProperties of Essential Plant Oils against the Mosquito Culexpipiens molestus (Diptera:Culicidae). Pest Management Science, 2002,5(58):491-495
    [126]Sekou Moussa keta.Efficacy of essential oil of Ocimum basilicum L.and O. gratissimum L.applied as an insecticidal fumigant and Powder to control Callosobruchus maculatus (Fab) [Coleoptera:Bruchidae]. Journal of stored Products Research,2001.37(4):339-349
    [127]Weinbreck F, Roland HW. Wientjies.Rheological properties of whey protein/gum Arabic coacervates. Joumal of Rheogly,2004,48(6):1215-1228
    [128]Weinbreck F, Minor M,Kruif CGMicroencap sulation of oils using whey protein/gum Arabic coacervates. Joumal of Microencap sulation,2004,21(6):667-679

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700