用户名: 密码: 验证码:
柔韧预浸炭纤维及C_f/C复合材料的制备与抗氧化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
炭纤维/炭(Cf/C)复合材料具有高比强度、高比模量、材料结构可设计性、高温下强度保持率高等优异的性能,它广泛应用于军事、航空航天等领域。Cf/C复合材料抗氧化涂层研制成功后,在氧化气氛下可以多次重复使用,使它成为一种极好的耐烧蚀材料,也是一种耐高温热结构材料,成为当今先进复合材料研究和开发的重点。但是Cf/C复合材料也存在一些问题限制了它的应用,目前主要的问题是各种常用的致密化方法和浸渍剂性能不尽如人意。探索一种全新的粉末涂层快速制备Cf/C复合材料途径,并通过沥青浸渍-炭化和萘原位浸渍聚合-炭化的复合致密化工艺,来达到减少致密化周期、降低材料成本。
     本文主要研究炭纤维处理、硼改性酚醛树脂(BPR)粉末涂层、预制体的成型及炭化、Cf/C复合材料的致密化和抗氧化涂层等对试样性能的影响,其中炭纤维开纤和BPR粉末涂层对Cf/C复合材料的性能研究十分重要,采用空气梳对炭纤维进行气流开纤和BPR粉末涂层可以制备柔韧性优良的丝束,该丝束不仅可以直接成型,而且还可以编织、纺织成一定的形状后成型。Cf/C复合材料的致密化对其性能提高有非常明显的效果,集中探讨了三种致密化方法对Cf/C复合材料性能的影响。
     针对炭纤维表面惰性不易被浸润的特性,使用浓硝酸氧化法对炭纤维进行表面改性,采用扫描电镜(SEM)、红外光谱(FT-IR)和动态接触角法等研究了炭纤维的形态、特征基团和表面浸润性能的改变。首次利用空气梳开纤和粉末涂层的方法制备柔韧预浸炭纤维丝束,空气梳对炭纤维进行开纤时,考察气流压力和炭纤维处理速度对开纤幅度和稳定性的影响;该方法充分克服炭纤维开纤困难的难题,如采用常规的罗拉法开纤,分丝效果不太理想,并且对炭纤维产生巨大的破坏作用。比较系统地研究开纤幅度、处理速度、树脂粉末的粒径和加热温度等对BPR粉末在炭纤维丝束上的涂层效果。
     采用热压成型工艺对BPR粉末涂层炭纤维进行成型,并对预制体的成型工艺和性能进行研究,成功地制备高体积分数炭纤维的预制体,为降低Cf/C复合材料的成本提出了新思路。通过达西定律、粉末涂层炭纤维热压成型的特点和BPR的性能首次建立热压成型的浸渍模型,并成功地将其运用于预制体成型过程中的工艺参数调整。在合理控制炭化工艺的前提下,将预制体热解制备Cf/C复合材料。
     研究不同致密化方法对Cf/C复合材料性能的影响。通过沥青浸渍-炭化(PIC)、原位浸渍聚合-炭化(IsIPC)和硼改性酚醛树脂浸渍-炭化(BPR-IC)对Cf/C复合材料进行致密化,研究不同致密化方法对Cf/C复合材料的密度、开口气孔率和形态结构等的影响。首次提出PIC和IsIPC复合致密化方法,并对萘原位浸渍聚合的浸渍机理、聚合机理和聚合最佳条件进行研究,通过复合致密化方法处理的Cf/C复合材料的性能有较大幅度的提高。采用X-射线衍射(XRD)分析不同致密化方法对Cf/C复合材料的石墨化度的影响,并由导热机理探讨了不同致密化方法对Cf/C复合材料导热性能的影响。
     比较粉末涂层工艺和致密化方法对Cf/C复合材料高温热失重的变化,从而研究Cf/C复合材料基体制备工艺对高温抗氧化性能的影响。由于Cf/C复合材料本身的抗氧化性能较差,必须对其进行抗氧化处理才得以应用。对Cf/C复合材料采用包埋法制备SiC/MoSi2复合涂层,并对其界面性能和抗氧化性能进行初步的探讨。对涂层Cf/C复合材料在1500℃下进行等温氧化和1500℃至室温条件的抗热震研究,分析涂层对高温抗氧化性能的影响。
Compared with conventional composites, Cf/C composites possess good qualities such as higher specific strength, higher specific modulus, programmabler material structure and better retentive ratio of strength at high temperature. So Cf/C composites have been widely used in the military, aerospace and other fields. After Cf/C composites anti-oxidation coated are successfully developed, Cf/C composites can be reusable under the condition of oxidized ambience. This makes it possible to become an exellent ablative resistant material and also a high temperature thermal structure material, as today's focus on advanced composite research and development. But some problems limited the application of Cf/C composites. At present the main problem is that commonly-used methods for densification and the property of the impregnant are not satisfactory. This essay explored a new rapid way for preparing Cf/C composites with the powder coated carbon fiber tows, and through the multiple densification process of the pitch impregnation-carbonization and naphthalene in-situ impregnation polymerization-carbonization, few densification cycles and material costs were realized.
     This article has mainly studied the performance of the samples under the influence of the carbon fiber disposed, BPR powder coating, the formation technology and carbonization of the preforms, the densification and the oxidation protective coating and so on. The spreading of carbon fiber and the coating of BPR powder are the very important aspects to study the performance of Cf/C composites. The carbon fiber dispersed by air-comb and BPR powder coated the carbon fiber results to the flexible towpreg carbon fiber tows. These carbon fiber tows may not only carry on the formation in a direct way, but also product a very flexible towpreg suitable for weaving, braiding, and so on. The densification of Cf/C composites has a very significant effect on its performance, so we focus on three densification methods of Cf/C composites.
     Due to the inertia feature on the surface, the carbon fiber was hard to be fully soaked, nitric acid oxidized treatment scheme was put forward. The surface treatment of carbon fiber influencing the performance of the composites was deeply explored. The surface shapes, the characteristic groups and surface wettability of surface treated carbon fiber were analyzed by SEM, FT-IR and dynamic contact angle as well. Air-comb spread carbon fiber tows and the powder coating process are firstly introduced to prepare the flexible towpreg carbon fiber tows. When the carbon fiber was spread by the air-comb, the scope and the stability of the spread carbon fiber tow was studied under the gas pressure of air-comb and the processing speed of the carbon fiber, thus the difficulty of the spread carbon fiber tow was overcome. If the routine Roller spreading carbon fiber tow was adopted, the effect was not perfect and it also had the immense breakage to carbon fiber. This essay systematically investigated that the scope of the spread carbon fiber tow, the processing speed, the resin powder particle size and the heating temperature have the influence on the effect of the powder coating. Secondly, the research in boron modified phenolic resin powder coating on the spread carbon fiber tows, focused the powder coating influence on the scope of the spread carbon fiber tow, the processing speed, the resin powder particle size and the heating temperature.
     The formation technology and the performance relations of the preforms were studied by hot pressing with BPR powder coated carbon fiber tows, and simultaneously the mechanical properties of the preforms and the appearance of cross section were researched in details, finally the preforms with high volume fraction of carbon fiber were triumphantly prepared, which put forward a new train of thought in reducing the cost of Cf/C composites. The BPR impregnation experiment model was established on the basic of Darcy’s law, the hot pressing of the powder coated carbon fiber tows and the property of BPR. In addition, it was successfully applied in adjusting parameter in the hot pressing process of the preforms. Cf/C composites were formed after the preforms were carbonized with a reasonable carbonization technology.
     This article analyzed how the densification methods influenced the performance of Cf/C composites. The PIC, IsIPC and BPR-IC were adopted to densify Cf/C composites, and meanwhile the influence from the densification cycle to the density and open porosity of Cf/C composites was detailedly analyzed. The PIC and IsIPC multiple treatments were used to densify Cf/C composites. The impregnation mechanism, polymerization mechanism and the best conditions of in-situ impregnation polymerization were investigated. The properties of Cf/C composites increased at a certain rate after multiple densifications. The degree of graphitization of Cf/C composites with different densifications have been earnestly analyzed by XRD. The thermal conductivity of Cf/C composites with different densifications were discussed on the thermal conductivity mechanism.
     In order to study the technology of preparation Cf /C composites to the high temperature oxidation properties resistance, the techniques of powder coating and the methods of densification to Cf/C composites had been researched by the weight loss of Cf/C composites. As a result, poor oxidation resistance of Cf/C composites, Cf/C composites must be treated with oxidation resistance before their application. The SiC/MoSi2 compound coating was prepared by pack cementation technology on Cf/C composites, and the preliminary discussion to its boundary performance and the oxidation resistance performance were explored. The coated Cf/C composites were studied on isothermal oxidation at 1500℃, the research on the thermal shock was done at 1500℃on the condition of the room temperature, and the influence on oxidation resistance at high temperature was analyzed.
引文
[1]李翠云,李辅安.碳/碳复合材料的应用研究进展.化工新型材料,2006, 34(3): 18-20
    [2]赵稼祥.炭纤维的发展与应用.纤维复合材料, 1996, 13(4): 46-50
    [3]朱良杰,廖东娟.炭/炭复合材料在美国导弹上的应用.宇航材料工艺,1993, 4(12): 10-13
    [4]陈腾飞,龚伟平,黄伯云,等.航空刹车用炭/炭复合材料坯体结构研究进展.矿冶工程, 2005, 25(6): 74-81
    [5] Shu-En Hsu, Huan-Der Wv, Tsung-Ming Wv, et al. Oxidation protection for 3D carbon/carbon composites. Acta Astronautica, 1995, 35(1): 35-41
    [6]卫建军.浸渍中间相沥青使C/C复合材料致密化.新型碳材料, 1997, 12(2):49
    [7]杨海峰,王惠,冉新权. C/C复合材料的快速致密化工艺.材料导报, 2000, 11 (14): 50-52
    [8] Woolard D.E., Ramani K. Electric field modeling for electrostatic powder coating of a continuous fiber bundle. Journal of Electrostatics, 1995, 35(4): 373-387
    [9] Edie, Danny D., Klett, James W., et al. Process for coating carbon fibers with pitch and composites made therefrom. United States Patent. 5334414. 1993-01-22
    [10] Nirav Patel, Keiji Okabe, Asao Oya. Designing carbon materials with unique shapes using polymer blending and coating techniques. Carbon, 2002, 40(3): 315–320
    [11] Klett J.W., Edie D.D. Flexible towpreg for the fabrication of high thermal conductivity carbon/carbon composites. Carbon, 1995, 33(10): 1485-1503
    [12] Allen L.E. A contnuous process for powder coating carbon fiber. M.S. Thesis,Clemson University, Clemson, 1989: 1-34
    [13] Isao Mochida, Yozo Korai, Cha-Hun Ku. Chemistry of synthesis, structure, preparation and application of aromatic-derived mesophase pitch. Carbon, 2000, 38(2): 305–328
    [14]林起浪,李铁虎,单玲,等.碳材料用基体前驱体沥青的改性研究.新型碳材料, 2001, 16(2): 27-31
    [15]孙乐民,李贺军,宋克兴,等.沥青基碳/碳复合材料常压浸渍-碳化工艺及组织.机械科学与技术,2000, 19(2): 278-280
    [16]李伟,陈振华,李劲.粉末涂层炭纤维制备碳/碳复合材料研究进展.材料导报,2006, 11(Ⅶ): 440-442
    [17]丁学文,齐会民,庄元其,等.芳基乙炔聚合物固化反应动力学和结构表征.华东理工大学学报,2001, 14(1): 105-108
    [18]李崇俊,马伯信,金志浩.酚醛树脂前驱体C/C复合材料研究-硼酚醛树脂理化性能分析及固化、热解过程研究.新型碳材料, 2001, 16(1): 19-23
    [19] Ramani K., Borgaonkar H., Hoyle C. Experiments on compression moulding and pultrusion of thermoplastic powder impregnated towpregs. Composites Manufacturing, 1995, 6(1): 35-43
    [20]唐纳特J.B.,斑萨尔R.C.(李仍元,过梅丽,译).炭纤维.北京:科学出版社,1989: 1-43
    [21]杨东洁,李远惠.炭纤维及其复合材料.四川纺织科技, 2000, 3: 4-6
    [22]沃西源.国内外几种炭纤维性能比较及初步分析.航天返回与遥感, 1993, 14(4): 50-57
    [23]赵宗桂.炭纤维及其复合材料的发展与应用.甘肃科技,2002,18(5):12
    [24]赵宗桂.炭纤维及其复合材料的发展与应用.石油技术与应用, 2002,20(4): 273-276
    [25]沈新元.聚丙烯腈系纤维的产业用途.合成纤维, 1998, 27(1): 13-17
    [26]赵稼祥.炭纤维市场及发展.高科技纤维与应用, 1998, 23(5): 7-12
    [27] Long-Gui Tang, Kardos John L. A review of methods for improving the interfacial adhesion between carbon fiber and polymer matrix. Polymer Composites, 1997, 18 (1): 100-112
    [28] Febo S., Leonardo F., Mario P., et al. Chemical modification of carbon fiber surfaces. Carbon, 2002, 40(5): 735-741
    [29] Dujardin S., Lazzaroni L., Rigo L., et al. Electrochemically polymer coated carbon fibers: characterization and potential for composites applications. Journal of Materials Science, 1986, 21(12): 4342-4326
    [30] Bismarck A., Wuertz C., Springer J. Basic surface oxides on carbon fibers. Carbon, 1999, 37(7): 1019–1027
    [31]时东霞,刘宁,杨海强,等.聚丙烯腈基炭纤维的表面结构研究.电子显微学报, 1997, 16(6): 733-735
    [32] Fukunaga A., Magumo M. Anodic surface oxidation mechanisms of PAN-based and pitch-based carbon fibers. Journal of Materials Science, 1999, 34(12): 2851-2854
    [33]林慷慨,林志勇.炭纤维表面氧化的研究.华侨大学学报(自然科学版), 1990, 20(2): 136-141
    [34]房宽峻,蔡玉青,戴瑾瑾,等.电解质浓度对电化学氧化后炭纤维表面基团含量的影响.青岛大学学报, 1999, 14(1): 7-10
    [35] Figueiredo J.L., Serp Ph., Nysten B., et al. Surface treatments of vapor-grown carbon fibers produced on a substrate PartⅡ: atomic force microscopy. Carbon, 1999, 37 (11): 1809-1816
    [36] Yue Z.R., Jiang W., Wang L., et al. Surface characterization of electro- chemically oxidized carbon fibers. Carbon, 1999, 37(11): 1785-1796
    [37] Pittman C.U.Jr., Jiang W., Yue Z.R.,et al. Surface properties of electro- chemically oxidized carbon fibers. Carbon, 1999, 37(11): 1797-1807
    [38] Kaushik, Vijay K. Surface characterization of KMnO4 treated carbon fiber precursors using X-ray photoelectron spectroscopy. Polymer Test, 2000, 19(1): 17-25
    [39] Christian L.M., Michael A. Oxidation of activated aarbon fibers: effect on pore size, surface chemistry, and adsorption properties. Chemical Material, 1999, 11(12): 3476-3483
    [40]乌云其其格.炭纤维表面处理.高科技纤维与应用, 2001, 26(5): 24-28
    [41] Dhakate S.R., Bahl O.P. Effect of carbon fiber surface functional groups on the mechanical properties of carbon–carbon composites with HTT. Carbon, 2003, 41 (6): 1193–1203
    [42] Choi M. H., Jeon B. H., Chung I. J. The effect of coupling agent on electrical and mechanical properties of carbon fiber/phenolic resin composites. Polymer, 2000, 41(9): 3243–3252
    [43]康勇,项素云,梁培亮.沥青基炭纤维表面复合处理的研究.功能高分子学报, 1999, 12(4): 450-452
    [44]张开.高分子界面科学.中国石化出版社, 1997, 3: 197-234
    [45]吴庆,陈惠芳,潘鼎.炭纤维的表面处理.化工新型材料, 2000, 28(3): 11-14
    [46]刘其贤.热塑性基体复合材料工艺现状(上).纤维复合材料, 1991, 8(2): 1-6
    [47] Iyer S.R., Drzal L.T. Behavior of cohesive powders in narrow-diameter fluidized beds. Powder Technology, 1989, 57(2): 127-133
    [48]王晓,许家瑞,谢炳元,等.纤维增强树脂基复合材料悬浮法复合工艺中的表面效应.复合材料界面科学,哈尔滨:哈尔滨大学出版杜, 1997: 1-60
    [49] Vallee, Antoine, Cortinchi, et al. Material in sheet form, convertible into a finished product by moulding-stamping or heat-shaping, comprising reinforcingfibers and a thermoplastics resin in power form, and process for preparing said material. United States Patent. 4645565. 1987-02-24
    [50] Manoj K., Youqin W. Manufacture of thermoplastic towpregs by using the aqueous foam technique. ICCM-11,1997: 72
    [51] Jeffery A., Duggger, Douglas E.H. PMR-15/carbon fiber composites produced from powder-coated towpreg. Polymer Composites, 1996, 17(3): 492-496
    [52]邓杰.连续炭纤维热塑性复合材料制备工艺研究.高科技纤维与应用,2005, 30(1): 35-39
    [53] Mark S.D., Nana T., Karthik R. Electrostatic powder spray manufacture of long fiber composite materials for injection molding. ICCM-11, 1997: 14-18
    [54] Ye L., Friedrich K., Cutolo D., et al. Manufacturing of CF/PEEK-composites from powder/dheath-giber preforms. Composites Manufacturing, 1994, 5(1): 41-50
    [55] Baucom R.M., Marchello J.M. Powder curtain prepreg process. Journal of Advanced Materials, 1994, 25(4): 31-35
    [56] Baucom R.M., Snoha J.J., Marchello J.M. Process for application of powder particles to filamentary materials. United States Patent.5057338. 1991-10-15
    [57] Iyer S.R., Drzal L.T., Jayaraman K. Method coating fibers with particles by fluidization in a gas. United States Patent. 5102690. 1992-04-07
    [58] Iyer S.R., Drzal L.T., Jayaraman K. Method for fiber coating with particles. United States Patent.5123373. 1992-06-23
    [59] Ogden A.L., Hyer M.W., Wilkes G.U, et al. Development of an alternative thermoplastic powder prepregging technique. Journal of Thermoplastic Composite Materials, 1992, 5(1): 14-31
    [60] Ganga R.A. Flexible composite material and process for producing same. United States Patent. 4614678. 1986-09-30
    [61] Ganga R.A. Apparatus for producing flexible composite material, United States Patent. 4713139. 1987-12-15
    [62] De Jager, Gui G. Method and apparatus for applying powdered materials to filaments. United States Patent. 4839199. 1989-06-13
    [63] Lifke, Joseph Lee, Busselle, et al. Method and apparatus for spreading fiber bundles. United States Patent. 6049956. 1999-06-18
    [64] Kip, Albart Johannes. Hot air comb. United States Patent. D388538. 1996-03-22
    [65] Peritt, Jonathan M., Everett, et al. Electrostatic fiber spreader including a corona discharge device. United States Patent. 5200620. 1991-11-05
    [66] Muzzy, John D., Varughese, et al. Flexible multiply towpreg. United States Patent. 5171630. 1991-05-15
    [67] Muzzy, John D., Colton, et al. Flexible multiply towpreg tape from powder fusion coated towpreg. United States Patent. 5409757. 1993-11-10
    [68] Lavin J.G., Boyington D.R., Lahijani J., et al. The correlation of thermal conductivity with electrical resistivity in mcsophase pitch-based carbon fiber. Carbon, 1993, 31(6): 1001-1002
    [69]Mundt C.M., Edie D.D. High thermal conductivity carbon/carbon composites made from PBO-based carbon fiber. Carbon 97, Proceedings of 23rd biennial conference on carbon state college, PA, 1997, II: 540-541
    [70] Shinn-Shyong Tzeng, Ya-Ga Chr. Evolution of microstructure and properties of phenolic resin-based carbon/carbon composites during pyrolysis. Materials Chemistry and Physics, 2002, 73 (2): 162–169
    [71] Kuo H.H., Chern Lin J.H., Ju C.P. Effect of carbonization rate on the properties of a PAN/phenolic-based carbon/carbon composite. Carbon, 2005, 43(2): 229- 239
    [72]浦保,浦继强.飞机炭刹车盘的快速气相沉炭.新型炭材料, 2000, 15(4): 27- 29
    [73]李铁虎,杨峥,郑修麟,等.用改进的低压渍浸碳化法制备C/C复合材料的工艺研究.西北工业大学学报, 1994, 12(2): 155-158
    [74]肖鹏,徐永东,张立同,等.旋转CVI快速沉积热解碳基体.硅酸盐学报, 2000, 28(2): 181-183
    [75] Kent J.P., Theodore M.B., David P.S., et al. Recent advances in forced-flow, thermal-gradient CVI for refractory composites. Surface and Coatings Technology, 1999, 120-121: 250-258
    [76] Sundar, Lackey W., Garth B., et al. Fabrication of carbon-carbon composites by forced flow-thermal gradient chemical vapor infiltration. Journal of Materials Research, 1995, 10(6): 1469-1477
    [77] Golecki I. Rapid vapor-phase densification of refractory composites. Materials Science and Engineering: R, 1997, 20(2): 37-124
    [78] Golecki I., Morris R.C., Narasimhan D., et al. Rapid densification of porous carbon-carbon composites by thermal-gradient chemical vapor infiltration. Applied Physics Letters, 1995, 66(18): 2334-2336
    [79] Weigang Zhang, Klaus J. Hüttinger. Chemical vapor infiltration of carbon- revised: Part I: Model simulations. Carbon, 2001, 39(7): 1013-1022
    [80]朱时珍,杨勇,晓东.快速化学气相渗积制备碳/碳复合材料的工艺研究.材料科学与工程学报, 2003, 21(3): 342-345
    [81]邹武,闫联生,宋麦丽. CVI+先驱体浸渍法3D C/SiC复合材料的结构与性能.第17届炭-石墨材料学术会议, 1998, 9: 200-203
    [82] Houdayer, Michel, Spitz, et al. Process for the densification of a porous structure.United States Patent. 4472454. 1982-11-24
    [83]李新涛,李克智,李贺军等,等. CLVI工艺制备C/C复合材料研究进展.材料导报, 2005, 19(11): 79-81
    [84]孙万昌,李贺军,张守阳,等.快速液相气化法制备碳/碳复合材料研究进展.硅酸盐学报, 2002, 30(4): 513-516
    [85]Scaringella D.T., Connors D.E., Thurston G.S. Method for densifying and refurbishing brakes. United States Patent. 5547717. 1996-08-20
    [86]王兰英,李贺军,卢锦花,等.以甲苯为前驱体化学液气相沉积法制备碳/碳复合材料.高等学校化学学报, 2005, 26(6): 1002-1005
    [87]赵建国,杨国臣,张素芳. CLVI技术制备炭/炭复合材料.材料工程, 2007, (z1): 8-10
    [88]周振中,王宪伟.碳/碳复合材料的研究进展.武警工程学院学报, 2005,21(6):9-11
    [89]任呈强.沥青基碳材料浸渍-碳化的数值计算: [西北工业大学博士学位论文].2006: 5-21
    [90]孙乐民,李贺军,宋克兴,等.高压浸渍-碳化制备沥青基碳/碳复合材料的组织与性能.热加工工艺, 2000, (3): 10-12
    [91]霍宇凝,马伯信,苏君明.超高温模压碳/碳复合材料性能与结构的研究.第十届全国复合材料会议, 1998, 9: 380-384
    [92]刘红林,曾晓梅,霍肖旭,等.炭/炭复合材料快速制备方法综述.第18届炭-墨材料学术会论文集, 2000, 18: 58-60
    [93] Christ K., Hüttinger K.J. Carbon-fiber-reinforced carbon composites fabricated with mesophase pitch. Carbon, 1993, 31(5): 731-750
    [94]李伟,陈振华,张明.炭/炭复合材料致密化工艺研究进展.炭素,2007, 4: 14-18
    [95]王世驹,安红艳,陈渝眉,等.碳/碳复合材料氧化行为的研究.兵器材料科学与工程, 1999, 22(4): 36-40
    [96]张中伟,王俊山,许正辉,等. C/C复合材料抗氧化研究进展.宇航材料工艺, 2004, 34(2): 1-7
    [97] Friedrich C., Cadow R., Speicher M. Protective multilayer coatings for carbon-carbon composites. Surface and Coating Technology, 2002, 151-152(2): 405-411
    [98] Krishan L., Luthra. Oxidation of carbon/carbon composites-a theoretical analysis. Carbon, 1988, 26(2): 217-224
    [99] Sheehan J.E., Buesking K.W., Sullivan B.J. Carbon-carbon composites. Annual Review of Materials Science, 1994, 24(1): 19-44
    [100]成来飞,张立同.高温长寿命C/C防氧化复合梯度涂层的研究.高技术通讯, 1996, 6(5): 16-18
    [101] Strife J.R, Sheehan J.E. Ceramic coatings for carbon/carbon composites. American Ceramic Society Bulletin, 1988, 67(2): 369-374
    [102] Savage G. Carbon/carbon composites. London:Chapman and Hall, 1993: 323- 359
    [103] Tsou H.T., Kowbel W. A multilayer plasma-assisted CVD coating or oxidation protection of carbon-carbon composites. Journal of Advanced Materal, 1996, 27(3): 9-13
    [104] Buchanan F.J., Little J.A. Particulate-containing glass sealants for carbon- carbon composites. Carbon, 1995, 33(4): 491-497
    [105] Chwastiak S. A wicking method for measuring wetting properties of carbon yarns. Journal of Colloid and Interface Science, 1973, 42(2): 298-309
    [106] Patton R.D., Pittman C.U., Wang L., et al. Ablation, mechanical and thermal conductivity properties of vapor grown carbon fiber/phenolic matrix composites. Composites Part A: Applied Science and Manufacturing, 2002, 33(2): 243-251
    [107] Nursel D., Wightman J.P. Effect of acid–base properties of unsized and sized carbon fibers on fiber:epoxy matrix adhesion. Colloids and Surfaces A. 2000, 164(2-3): 325-336
    [108] Miller A.H., Dodds N., Hale J.M., et al. High speed pultrusion of thermoplastic matrix composites. Composites Part A: Applied Science and Manufacturing, 1998, 29(7): 773-782
    [109] Ph Serp, Figueiredo J.L, Bertrand P.,et al. Surface treatments of vapor-grown carbon fibers produced on a substrate. Carbon, 1998, 36(12): 1791-1799
    [110]万怡灶,王玉林,周福刚,等.界面状态对C/PLA复合材料降解特性的影响.材料研究学报, 2002, 16(3): 268-272
    [111]杜慧玲,齐锦刚,庞洪涛,等.表面处理对炭纤维增强聚乳酸材料界面性能的影响.材料保护, 2003, 36(2): 16-18
    [112] Varelidis P.C., McCullough R.L., Papaspyrides C.D. The effect on the mechanical properties of carbon/composites of polyamide coatings on the fibers.Composites Science and Technology, 1999, 59(12): 1813-1823
    [113] Manocha L. M., Bahl O. P. Influence of carbon fiber type and weave pattern on the development of 2D carbon-carbon composites. Carbon, 1988, 26(1): 13-21
    [114]林洋雄,古屋光大.连续长丝的开纤方法和开纤装置.中国专利, 1350082, 2002-05-22
    [115]蒲宗耀,陶益德,李国璋,等.一种振动式罗拉开纤方法和开纤机.中国专利. 1667162, 2005-09-14
    [116]蒲宗耀,陶益德,李国璋,等.振动式罗拉开纤机.中国专利. 2786160, 2006- 06-07
    [117]张旺玺.提高聚丙烯腈原丝及其炭纤维质量的研究.上海纺织科技, 2004, 32(6): 11-13
    [118] Lee W.I. A mold of the manufacturing process of thermoplastic matrix composites. Journal of Composites Materials, 1987, 21(11): 1017-1055
    [119] Seo J.W., Lee W.I. A model of the resin impregnation in thermoplastlc composites. Joumal of Composites Materials, 1991, 25(9): 1127-1142
    [120] Ye L., Friedrich K., Mai Y.W. Consolidation of unidirectional CF/PEEK composites from commingled yam prepreg. Composites Science and Technology, 1995, 54(4): 349-358
    [121] Bames J.A., Cogswell F.N. Transverse flow processin continuous fiber reinforced thermoplastic composites. Composites, 1989, 20(1): 38-42
    [122] Lin H.R. Processing models and characterization of thermoplastic composite wound parts. Polymer Composites, 1997, 18(3): 405-411
    [123] Shuler S.F., Advani S.G. Flow instabilities during the squeezing flow of multiaxial laminates. Journal of Composites Materials, 1997, 31(21): 2146-2160
    [124] Ba1asubramanyam R., Wheeler A.B. Modeling transverse glow of reinforced thermoplastic materials. Composites, 1989, 20(1): 33-37
    [125]张万虎.连续炭纤维增强热塑性复合材料浸渍特性研究:[中国纺织大学博士学位论文].1999: 20
    [126] Teng H., Zhao T. S. An extension of Darcy’s law to non-Stokes flow in porous media. Chemical Engineering Science, 2000, 55(14): 2727-2735
    [127] Preziosi L., Farina A. On Darcys law for growing porous media. International Journal of Non-Linear Mechanics, 2002, 37(3): 485-491
    [128] Ranganathan S., Phelan Jr., Frederick R., et al. Generalized model for the transverse fluid permeability in unidirectional fibrous media. Polymer Composites, 1996, 17(2): 222-230
    [129] Ramasamy A., Youjiang Wang. Braided thermoplastic composites from powder coated towpregs. Polymer Composites, 1996, 17(3): 515-522
    [130]张宝艳,陈祥宝,李敏,等.炭纤维增强双马来酰亚胺树脂基复合材料体系冲击后压缩强度研究.航空材料学报, 2002, 22(1): 36-40
    [131] Ko TH., Chen PC. Study of the pyrolysis of phenolic resin reinforced with two-dimensional plain-woven carbon fabric. Journal of Material Science Letter, 1991,10(4): 301–305
    [132] Gupta A., Harrison I.R. New aspects in the oxidative stabilization of PAN-based carbon fibers. Carbon, 1996, 34(11): 1427-1445
    [133] Yani Zhang, Yongdong Xu, Lieyi Gao, et al. Preparation and microstructural evolution of carbon/carbon composites. Materials Science and Engineering: A, 2006, 430(1-2): 9-14
    [134]房永征,杨俊和,金鸣林,等.氧化铝对固体超强酸催化萘齐聚反应的影响.煤炭转化, 2004, 27(4): 91-95
    [135]房永征,杨俊和,金鸣林,等.固体超强酸制备条件对萘齐聚反应的影响.煤炭转化, 2003, 26(4): 91-94
    [136] Chioujones K.M., Ho W., Fathollahi B., et al. Microstructural analysis of in situ mesophase transformation in the fabrication of carbon-carbon composites. Carbon, 2006, 44(2): 284-292
    [137] Fernandez A.L., Granda M., Bermejo J., et al. Catalytic polymerization of anthracene oil with aluminium trichloride. Carbon, 1999, 37(8): 1247-1255
    [138]胡子君,凌立成,吕春祥,等. SO42-/ZrO2对萘齐聚反应的催化效应.催化学报, 1998, 19(5): 447-450
    [139]李铁虎,林起浪.一种计算碳/碳复合材料浸渍量的理论公式.西北工业大学学报, 2004, 22(4): 470-472
    [140] Zimmer J.E., White J.L. Disclination structures in the carbonaceous mesophase. Advance in Liquid Crystal, 1982, 5: 157-213
    [141]邱海鹏,赵根祥.利用XRD研究呋喃树脂制备玻璃炭过程中的结构变化.新型炭材料, 1999, 14(2): 49-53
    [142]刘涛,罗瑞盈,李进松,等.炭/炭复合材料的热物理性能.炭素技术, 2005, 24(5): 28-33
    [143]于澍,刘根山,李溪滨,等.热处理温度对炭/炭复合材料性能的影响.硅酸盐学报, 2003, 31(9): 842-847
    [144]李晔.树脂浸渍法增密制备炭/炭复合材料:[中南大学硕士学位论文]. 2002: 31
    [145] Sufang Tang, Jingyi Deng, Wenchuan Liu, et al. Mechanical and ablation properties of 2D-carbon/carbon composites pre-infiltrated with a SiC filler. Carbon, 2006, 44(14): 2877-2882
    [146] Xianxian Wu, Ljubisa R.R. Inhibition of catalytic oxidation of carbon/carbon composites by phosphorus. Carbon, 2006, 44(1): 141-151
    [147]黄剑锋,李贺军,熊信柏,等.炭/炭复合材料高温抗氧化涂层的研究进展.新型炭材料, 2005, 20(4): 373-379
    [148]焦更生.碳/碳复合材料的氧化及其防护.渭南师范学院学报, 2006, 21(5): 39-42
    [149]李龙,曾燮榕,李贺军,等.炭/炭复合材料用SiC-Glass涂层的高温氧化机理.复合材料学报, 2007, 24(5): 113-118
    [150]李龙.碳/碳复合材料ZrO2复合涂层制备及抗氧化研究:[西北工业大学硕士学位论文]. 2000: 33-37
    [151] Geng-sheng Jiao, He-jun Li, Ke-zhi Li. SiC-MoSi2-(Ti0.8Mo0.2)Si2 multi- composition coating for carbon/carbon composites. Surface & Coatings Technology, 2006, 201(6): 3452-3456
    [152] Yu-lei Zhang, He-jun Li, Qian-gang Fu, et al. A C/SiC gradient oxidation protective coating for carbon/carbon composites. Surface & Coatings Technology, 2006, 201(6): 3491-3495
    [153]焦更生,李贺军,李克智,等.涂层碳/碳复合材料氧化机理的研究.功能材料, 2007, 38(8): 1327-1330

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700