用户名: 密码: 验证码:
中国糯大麦种质资源及Wx基因的遗传多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糯大麦是指籽粒胚乳中直链淀粉含量很低或者为零的大麦。Waxy基因(简写为Wx)是控制大麦籽粒直链淀粉合成的关键基因,位于大麦7H染色体的短臂上,其编码酶蛋白的功能和特性直接影响大麦胚乳的淀粉结构、组成和加工品质。目前我国尚未对保存的大麦种质资源进行糯性鉴定及相关研究。开展糯大麦种质资源鉴定,研究我国糯大麦及其Wx基因的遗传多样性,不仅可以发现新的糯大麦种质,挖掘新的糯性淀粉等位基因,从而在亲本材料和糯性淀粉功能基因方面为我国大麦品质育种奠定基础,而且可以深入了解我国糯大麦品种的形成、衍化、分布和传播,以及Wx基因的等位变异类型、特点和分布及功能特点等,为栽培大麦的进化研究积累知识。本研究以我国作物种质资源库中保存的7700多份国内农家大麦品种为基础材料,采用半籽粒碘-碘化钾染色法进行表型鉴定,筛选出含糯性基因型的大麦品种,分析了它们的地理分布,讨论了糯大麦品种的形成;采用近红外法,分单株测定了这些品种的直链淀粉含量;通过SDS-PAGE电泳,对不同直链淀粉含量大麦品种的Wx蛋白进行了检测;采用SSR分子标记,对筛选的含糯性基因型的大麦品种进行了遗传多样性分析;根据公布的大麦Wx基因序列,利用Primer primer 5软件,在该基因的各个不同区域设计重叠引物,以2个国外糯大麦品种为对照,对30份高、中、低不同直链淀粉含量的中国大麦进行了Wx基因的PCR扩增、克隆、测序和等位变异分析。取得的主要研究结果如下:
     1.从7713份国内大麦种质资源中筛选出252份含糯性基因型的大麦品种,占鉴定品种总数的3.3%。不同品种糯性基因型个体所占比例差异很大,变异幅度为2.7%~90.0%,平均为32.8%。中国的糯大麦品种主要分布在黄河中下游、长江中下游、云贵及青藏高原地区,分别以河南、江苏和滇藏为中心。3个分布区之间,没有出现糯性基因频率从一个地区向另一个地区扩散传播的明显梯度变化,具有独立的突变起源。从糯大麦品种所占比例及其纯合程度来看,河南似乎是我国最早出现糯性基因突变和糯大麦品种的地区。糯大麦品种是糯性突变体在保持原有的分蘖力和不降低产量的情况下,由于籽粒变小、每穗粒数增加、提高了繁殖系数、逐代扩大其在群体中的比例而形成的。
     2.利用近红外反射光谱(NIRS)法,对含糯性基因型品种的直链淀粉含量测定结果表明,在中国大麦中鉴定发现的糯大麦种质均属低直糯大麦,尚无一份是无直糯大麦材料。162份含糯性基因型品种的直链淀粉含量变异范围为13.34~38.23%,平均值为25.23%,标准差为4.18,变异系数为16.56%。在28个品种中检测到直链淀粉含量小于15%的单株,其中在6个品种中鉴定出7份单株材料,其直链淀粉含量低于10%,可以在我国糯大麦育种和遗传等基础理论研究中优先利用,分别是鉴24(ZDM09222)、钜野米大麦(ZDM08677)、米大麦(ZDM00478)、芒大麦(ZDM00693)、三月黄大麦(ZDM09028)、光芒黄大麦(ZDM09113)。由于大麦品种间和品种内单株之间的直链淀粉含量存在很大差异,因此进行糯大麦种质资源鉴定筛选时,应在品种群体测定的基础上,进一步开展单株纯系繁殖鉴定;在杂交育种中选择糯大麦亲本时,不但要考虑备选品种的直链淀粉含量,还要考虑其个体基因型的遗传一致性。
     3.在低直糯大麦和无直糯大麦两种类型中,可能存在四种生化遗传变异类型。其中有两种与无直糯大麦有关,一种是Wx基因可以正常转录,但转录产生的Wx蛋白无活性,不能催化直链淀粉合成;另一种是Wx基因不能正常转录,既无Wx蛋白产生,也无直链淀粉合成。另外两种与低直糯大麦有关,一种是Wx基因可以正常转录,但转录产生的Wx蛋白活性有限,催化直链淀粉合成的功能降低;另一种是Wx基因不完全正常转录,产生的Wx蛋白数量有限,影响直链淀粉合成。
     4.利用50对SSR分子标记对162份含糯性基因型的中国大麦品种进行遗传多样性分析,在所有检测位点中,有效等位基因数为188.51,平均有效等位基因数为3.77,占总等位基因数的92.86%。表明中国糯大麦具有较高的遗传多样性,是进行大麦遗传改良的丰富基因库。对河南、江苏、云南和西藏的含糯性基因型大麦品种进行的SSR分析发现,其多态性信息指数、遗传多样性指数差别不大,进一步为中国不同地区的糯大麦基因可能起源于独立的自然突变提供了佐证。
     5.迄今利用Wx基因的STS引物P1,在大麦中共扩增出600bp、800bp和1000bp及800bp与1000bp杂合等4种带型。本研究在162个中国大麦品种的501个单株中,只检测到800bp、1000bp两种单一带型和这两条带同时出现的杂合带型,没有发现具有600bp带型的品种或单株,并且以1000bp的带型居多,杂合带型非常罕见,3种基因型分别占14.4%、85.2%和0.04%。
     6.在对32个大麦品种的核苷酸序列多态性鉴定中,共检测到了169个多态性位点,平均每26个bp检测到一个多态性位点。在所有检测到的多态性位点中,包括143个SNP和26个InDel,二者的频率分别为1/310和1/169。Wx基因的内含子1、3、5、8区,外显子2、5和5′-UTR及3′-UTR区域为变异富集区,其它区域变异较小。同时,Wx基因表现出连锁不平衡现象,外显子2和内含子1区域所承受的选择压力较小。
     7.中国6份低直链淀粉含量的大麦材料,均在其Wx基因前导序列区第637碱基处插入了5bp、757碱基处插入了4bp、891碱基处插入了4bp的片段。此外,还在这些低直链淀粉材料Wx基因的5′-UTR以及编码区,发现均有大量SNP出现,其中在编码区有11处是非同义突变。在23份中、高直链淀粉含量材料Wx基因的第1654碱基处,同时发现有15bp的碱基插入片段,但在6份低直链淀粉含量的材料中均没有出现该15bp的插入片段,表明中国低直链淀粉大麦材料存在共同的等位变异特征,与中高直淀粉含量材料相比,其直链淀粉含量降低可能与该片段的缺失有关。
Waxy barley is such a kind of barley whose endosperm has low or no amylose. Waxy gene (Wx in short) , a key gene responsible for the barley amylose synthesis and locates in the short arm of chromosome 7H in barley, has a direct impact on the structure, composition and processing quality of starch in barley endosperm. At present, no any identification and related research have been conducted for the waxy barley germplasm and Wx gene in China. Identification of waxy barley and research on genetic diversity of Wx gene not only will find out waxy barley and new Wx genes, providing parents for barley quality breeding, but also will help to understand origin, development, distribution and spread of waxy barley cultivar and alleles, characteristics, distribution and function variation of Wx gene, increasing knowledge on evolution of cultivated barley.
     In this study, more than 7700 Chinese barley cultivars preserved in National Crop Germplasm Resources Center of China were employed as basic materials. Waxy barley genotypes were screened by the method of half kernel with I2-KI. The geographic distribution of waxy barley was analyzed and the origin of waxy barley cultivars discussed. The individual plant content of amylose in these cultivars was measured by Near infrared reflectance spectroscopy. Wx proteins from cultivars with different amylose content were identified by SDS-PAGE. Genetic diversity of the barley cultivars with waxy genotype was analyzed based on SSR markers. According to the published Wx gene sequence, the contig primers were designed for the whole region of Wx gene with Primer primer5 software. After PCR amplification and gene clone, 30 Chinese normal and waxy barley cultivars, which had high, medium and low amylose content respectively, were sequenced and polymorphism analyzed for Waxy gene with 2 Canadian waxy barley as controls. The main findings were obtained as following:
     1. 252 cultivars with waxy genotypes were screened from the 7713 domestic barley cultivars in China, accounting for 3.3% of the total identified. But the proportion of waxy genotypes in each cultivar varied much, ranging from 2.7% to 90.0% with an average of 32.8%. The waxy barley mainly distributed in the middle and lower va1ley of Yellow River and Yangtze River geographically in China, with Henan, Jiangsu and Yunnan-Tibet as centers respectively. The three distribution regions is dependent each other in origin, because no notable spreading grade of waxy gene frequency was found among them. Henan province seems to be the earliest place where barley waxy gene mutation took place with the highest rate of waxy barley cultivars and the highest rate of waxy genotypes in waxy barley cultivars in China. The reason that waxy barley cultivars were formed was due to smaller kernel and increasing kernels per spike and enhancing coefficient of propagation and expansion of its proportion in the population when keeping its intrinsic tillering ability and the yield.
     2. The results of amylose content (AC) measure with NIRS showed that all waxy barley were low AC cultivars and no one no-AC was found. The amylose content ranged from 13.34% to 38.23% among 162 waxy barley cultivars, with an average of 25.23%, a standard deviation of 4.18 and a variation coefficient of 16.56%. The genotypes with AC lower than 15% were found in 28 barley cultivars. Among them 7 plants were found to be lower than 10% in amylose content, which are Jian24 (ZDM09222)、Juyemidamai (ZDM08677)、Midamai (ZDM00478)、Mangdamai (ZDM00693)、Sanyuehuangdamai (ZDM09028)、Guangmanghuangdamai (ZDM09113) and could be used in barley quality breeding and waxy gene study. Because there was much difference of amylose content between and within cultivars, it should be pay attention not only to AC but also to population purity in identification and cross parent selection of waxy barley.
     3. There could be four types of biochemical genetics in the low and no amylose barley. Among them two types were related to no AC barley: in one of which waxy gene could transcribe normally, but the enzyme waxy protein produced has no catalytic activity of amylose synthesis. in the another of which waxy gene could not transcribe normally and no waxy protein produced. In the third type, waxy gene could transcribe normally, but catalytic activity of waxy protein was low. In the fourth type waxy gene could only partly transcribe and produce insufficient waxy protein.
     4. 50 pairs of SSR molecular markers were used for genetic diversity analysis of the 162 barley cultivars with waxy genotypes. In all testing sites, the effective number of alleles was 188.51, with an average of alleles 3.77, accounting for 92.86% of the total gene locus. All these showed that there was a high genetic diversity within the barley containing waxy genotypes of China, which is a rich gene pool for genetic improvement of barley. The SSR analysis for the barley with waxy genotypes from Henan, Jiangsu, Yunnan-Tibet showed that there was no difference in polymorphism information index and the genetic diversity index between the three provinces or districts, which offered further evidence for the independent mutation origin of waxy barley in the three areas.
     5. There were four kinds of amplification production with primer P1 found: 600bp, 800bp, 1000bp and 800bp+1000bp, in barley till now. Only thee kinds of 800bp, 1000bp and 800bp+1000bp, but no 600bp were found in 501 plants from 162 Chinese barley cultivars, which contain waxy genotype individuals. And the types of 1000bp and 800bp+1000bp occupied overwhelmingly majority and extremely minority, with 85.2% and 0.04% respectively.
     6. By polymorphism identification of waxy gene nucleotide sequences for the 32 barley cultivars, 169 polymorphism sites were identified, which included 143 SNP and 26 InDel with frequencies of 1/310 and 1/196 respectively. It was found that the intron 1,3,5,8, 2,5, exon 2,5 and 5'-UTR, 3'-UTR were the rich nucleotide variation regions, while nucleotide variation was rare in other regions. At the same time, Wx gene showed the phenomena of linkage disequilibrium (LD) and exon 2 and intron 1 regions were subject to the least selection pressure in its entire gene sequence.
     7. Research on Wx gene nucleotide diversity from 30 accessions showed that 5bp、4bp、4bp insertions, appeared in 637 site、757site and 891 site in the leading sequence of Wx gene respectively in all 6 low amylose content barley accessions of China. Meanwhile, there were a lot of SNPs appeared in 5′-UTR and coding regions of the gene, of which 11 SNP in coding regions were non-synonymous. Insertion of 15 bp in 1654 site was found in 23 accessions with medium and high amylose content, but not found in all the 6 low amylose content accessions. This showed that the low amylose content barley in China had some common characteristics in sequence variation of Wx gene and their decrease of amylose content perhaps related to the 15bp deletion when compared with the accessions with medium and high amylose content.
引文
1.包劲松,舒庆尧,吴殿星等.水稻Wx基因(CT)n微卫星标记与稻米淀粉品质的关系研究.农业生物技术学报,2000,8(3):241~244
    2.包劲松.植物淀粉生物合成研究进展.生命科学,1999,11(6):104~107
    3.蔡一霞,徐大勇,朱庆森.稻米品质形成的生理基础研究进展.植物学通讯,2004(21):419~428
    4.陈灵芝,马克平.生物多样性科学:原理与实践.上海:上海科学技术出版社,2001,8
    5.邓万洪,晏本菊,任正隆.糯性小麦研究进展.麦类作物学报,2007,27(1):166~171
    6.郭尧君.蛋白质电泳实验技术.北京:科学出版社,2005
    7.黄睦枪,刘冬成,郭小丽等.我国部分冬小麦新品种(系)SSR标记遗传差异的研究.农业生物技术学报,2001,9:49~54
    8.侯永翠,颜泽洪,魏育明等.利用RAPD标记分析大麦种质资源的遗传资源的多样性.植物遗传资源学报,2005,6(2):145~150
    9.贾继增.分子标记种质资源鉴定和分子标记育种.中国农业科学,1996(4):1~10
    10.李文军等译.保护世界的生物多样性,《生物多样性译丛(一)》(中国科学院生物多样性委员会).北京:中国科学技术出版社,1992,1~199
    11.李桂凤,林澄菲,吕潇等.我国大麦品种资源淀粉含量的地理分布规律及气候生态分析.大麦科学,1994,44(3):11~13
    12.刘旭,黎裕,曹永生等.中国禾谷类作物种质资源地理分布及其富集中心研究.植物遗传资源学报,2009,10(1):1~8
    13.刘坚.中国糯玉米多样性中心及胚乳突变型基因内分子标记策略研究.博士研究论文,2007
    14.卢良恕.中国大麦学.北京:中国农业出版社,1996
    15.闵顺耕,覃方丽,李宁等.傅里叶变换近红外光谱法测定大麦中蛋白质、淀粉和赖氨酸含量.分析化学,2003,31(7):843~845
    16.潘志芬,邓光兵,王涛等.小麦Wx蛋白亚基1D-SDS-PAGE分离方法改良.应用与环境生物学报,2000,6:487~489
    17.彭吉松,郑志仁,刘涤,胡之璧.淀粉的生物合成及其关键酶.植物生理学通讯,1997,33(4):297~303
    18.舒庆尧,吴殿星,夏英武,高明尉,Anna McClung.用近红外反射光谱测定小样本糙米粉的品质性状.中国农业科学,1999,32(4):92~97
    19.舒庆尧,吴殿星,夏英武,离明尉,Anna McClung.籼稻和粳稻中蜡质基因座位上微卫星标记的多态性及其与表观直链淀粉含量的关系.遗传学报,1999,26(4):350~358
    20.舒庆尧,吴殿星,夏英武等.水稻杂交后代表观直链淀粉质量分数与蜡质基因(CT)n微卫星多态性的相关性.应用与环境生物学报,1999,5(5):464~467
    21.孙义伟.水稻灌浆成熟期气温对稻米品质的影响.水稻文摘,1993,12(2):6~8
    22.谈移芳,张启发.水稻蜡质基因引导区的两个SSR序列与直链淀粉含量的相关性.植物学报,2001,43:146~150
    23.王子宁,郭北海,李洪杰等.多倍体麦类Wx蛋白检测的SDS-PAGE方法遗传.遗传,2000,22(3):169~171
    24.王子宁,郭北海,张艳敏等.小麦地方品种Wx基因构成分析.华北农学院,1999,7:1~9
    25.徐广通,袁洪福,陆婉珍.现代近红外光谱技术及应用进展.光谱学与光谱分析, 2000,20(2):134~142
    26.姚大年,王新望,刘志勇等.小麦品种Waxy蛋白的鉴定和筛选.农业生物技术通报,1999,7:1~10
    27.阎隆飞,李明启.基础生物化学.北京:农业出版社,1985
    28.张红骥,吕晓波,于德才.小麦Wx蛋白亚基缺失类型鉴定方法的研究.黑龙江农业科学,2004,(6):8~9
    29.张京,曹永生.我国大麦基因库的群体结构和表型多样性研究.中国农业科学,1999,32(4):20~26.
    30.张京,刘旭等.大麦种质资源描述规范和数据标准.北京:中国农业出版社,2006
    31.张赤红,张京.大麦品种资源遗传多样性的SSR标记评价.麦类作物学报,2008,28(2):
    14~219
    32.中国农业科学院作物品种资源研究所.中国大麦遗传资源目录.北京:农业出版社,1994
    33.朱彩梅,张京.中国糯大麦品种资源及地理分布研究.中国农业科学,2008,41(12):4244~4249
    34. Alisan M Smith,Kay Denyer,Cathie R Martin.贮藏器官中淀粉的含量和结构由什么控制.国外畜牧学—草原与牧草,1996,72(1):27~31
    35. Amano E. Phenotypic expression of Wx gene in cereals. Annu Rep Natl Inst Genet. Misima,1980,31:82~83
    36. Aryes N M, McClung A M, Larkin P D, Bligh H F J, Jones C A, Park W D. Microsatellites and a single nucleotide polymorphism differentiate apparent amylose classes in an extended pedigree of US rice germplasm. Theor Appl Genet,1997,94:773~781
    37. Bao JS, Corke H, Sun M. Microsatallites in starch-synthesizing genes in relation to starch physicochemical properties in waxy rice (Oryza sativa L.). Theor Appl Genet,2002,105:898~905
    38. Ball S, Van de Wal M, Visser R. Progress in understanding the biosynthesis of amylose. Trends Plant Sci,1998,3:462~467
    39. Bathgate G N, Palmer G H. A reassessment of the chemical structure of barley and wheat starch granules. Die Starke, 1972, 24: 336~341
    40. Bhattramakki D, Rafalski A. Discovery and Application of Single Nucleotide PolymorphismMarkers in Plants. In: Plant Genotyping: The DNA Fingerprinting of Plants (Edited by Henry R J).Wallingford Oxon, UK: CABI Publishing ,2001
    41. Blakeney A B, Welsh L A, Martin M. Analytical methods for wheat starch amylose. Proceedings of the 44th Australian Cereal Chemistry Conference.J.F.Panozzo and P.G.Downie, eds.RACI:elboume.1994:275~278
    42. Blight H f et al. A microsatellite sequence closely linked to the waxy gene of Oryza stiva. Euphytica,1995, 86: 83~85
    43. Bohn M, Utz H F, Melchinger A E. Genetic similarities among winter wheat cultivars deteimined on the basis of RFLPs, AFLPs, and SSRs and their use for predicting progeny variance . Crop Science,1999,39:228~237
    44. Bostsein D, White R L, Skolnick M, Davis R W. Construction of a genetic linkage map in man using restriction fragment polymorphisms. American Journal of Human Genetics, 1980,32:314~331
    45. Briggs D E, The origin and classification of barleys. In Barley. Chapman and Hall London, Halsted Press Book, John Wiley & Sons, New York,1987:76~88
    46. Briggs R W, Amano E, Smith H H. Genetic recombination with ethylme-thane sulphonate induced waxy mutants in maize. Nature,1965,207:891~892
    47. Buleon A, Colonna P, Planchot V, Ball S. Starch granules: structure and biosynthesis. Int J Biol Macromol,1998,23:85~112
    48. Bureau T E, Wessler S P. Tourist:a large family of small inverted repeat elements frequently associated with maize genes. Plant Cell,1992,4:1283~1294
    49. Buleon A, Colonna P, Planchot V, Ball S. Starch granules: structure and biosynthesis. Int J Biol. Macromol, 1998,23:85~112
    50. Campbell M R, Brumm T J, Glover D V. Whole grain amylose analysis in maize using near-infrared transmittance spectroscopy. Cereal Chemistry,1997,74(3):300~303
    51. Campbell M R, Maunis S R, Port H A, Zimmerman A M, Glover D V. Predication of starch amylode content versus total grain amylose content in corn by near infrared transmittance spectroscopy. Cereal Chem.,1999,76:552~557
    52. Chao S, Sharp P J, Worland E J. RFLP-based genetic maps of wheat homologous group 7 chromosomes. Theor. Appl. Genet.,1989,78:495~504
    53. Char H J. Genetic Evidence of Mutator-Induced Deletions in the Short Arm of Chromosome 9 of Maize. Genetics,1987,115:353~361
    54. Clark J R, Robertson M, Ainsworth C, et al. Nucleotide sequence of a wheat (Triticum aestivum L.) cDNA clone encoding the waxy protein. Plant Mol. Biol.,1991,16:1099~1101
    55. Delwiche S R, Bean M M, Miller R E, Webb B D, Williams P C. Apparent amylose content of milled rice by near-infrared reflectance spectrophotometry. Cereal Chemistry,1995,72 (2):182~187
    56. Delwiche S R, Graybosch R A. Identification of waxy wheat by near-infrared reflectancespectroscopy. Cereal Sci.,2002,35:29~38
    57. Demerec M. A case of pollen dimorphism in maize. Am. J. Bot., 1924,11: 461~464
    58. Denyer K, Barber L M, Edwards E A, Smith A M, Wang T L. Two isoforms of the GBSSI class of granule-bound starch synthase are differentially expressed in the pea plant (Pisum sativum L.). Plant Cell Environ,1997,20:1566~1572
    59. Denyer K, Clarke B, Hylton C, Tatge H, Smith A M. The elongation of amylose and amylopectin chains in isolated starch granules. Plant J.,1996,10:1135~1143
    60. Denyer K, Barber L M, Burton R, Hedley C L, et al. The isolation and characterization of novel low-amylose mutants of Pissativum L. Plant Cell Environ,1995,18:1019~1026
    61. Denyer, Hylton C M, Jenner C F, et al. Identification of multiple isoforms of soluble and granule-bound starch synthase in developing wheat endosperm. Planta,1995,196(2):256~265
    62. Devos K M, Chao S. Relationship between chromosome 9 of maize and wheat homeologous group 7 chromosomes. Genetics,1994,138:1287~1292
    63. Devos K M, Gale M D. The use of random amplified polymorphic DNA markers in wheat. Theor. Appl. Genet.,1992,84:567~572
    64. Domon E, Yanagisawa T, Saitol A, Takeda K. Single nucleotide polymorphism genotyping of the barley waxy gene by polymerase chain reaction with confronting two-pair primers. Plant Breeding,2004,123:225~228
    65. Domon E, Fuijita M, Ishikawa N. The insertion/deletion polymorphisms in the waxy gene of barley genetic resources from East Asia. Theor. Appl. Genet.,2002,104:132~138
    66. Dry I, Smith A M, Edwards A, Bhattacharyya M, Dunn P, Martin C. Characterization of cDNAs encoding two isoforms of granule-bound starch synthase which show differential expression in developing storage organs of pea and potato. Plant J.,1992,2:193~202
    67. Echt C S, Schwartz D. Evidence for the inclusion of controlling elements within the structural gene at the waxy locus in maize. Genetics,1981,99:275~284
    68. Eiji Domon, Akira Saito, Kazuyoshi Takeda. Comparison of the waxy locus sequence from a non-waxy strain and two waxy mutants of spontaneous and artificial origins in barley. Genes Genetic Systems,2002,77:351~359
    69. Ellis R P, Cochrane M P, Dale M F B. Starch production and industrial use. Journal of the Science of Food and Agriculture,1998,77:289~311
    70. Eriksson G. The waxy character. Hereditas,1969,63:180~204
    71. Fabrice Wattebled, Alain Buleon, Brigitte Bouchet, et al. Granule-bound starch synthase I-A major enzyme involved in the biogenesis of B-crystallites in starch granules. Eur. J. Biochem,2002,269:3810~3820
    72. Falconer D S, Mackay T F. Introduction to Quantitative Genetics. Essex, UK:Longman Group Ltd,1996
    73. Feike R, Van Der leij, Richard G F. Sequence of the structural gene or the locus in maize. Mol. Gen. Genet.,1991,228:240~248
    74. Flint-Garcia S A, J M Thornsberry, E S Buckler IV. Structure of linkage disequilibrium in plants. Annu. Rev. Plant Biol.,2003,54:357~374
    75. Fukunaga k, Kawase M, Kato K. Structural variation in the waxy gene and differentiation in foxtail millet, Setaria italica (L.)P.Besuv.—implication for multiple origins of the waxy phenotype. Mol. Gen. Genomics,2002
    76. Gonzalez-Martinez S.C., Robledo-Arnuncio J.J., Collada C., Diaz A., Williams R., Alia R., Cervera M T. Cross-amplification and squence variation of microsatellite loci in Eurasian hard pines. Theor. Appl. Genet.,2004,109:103~111
    77. Graybosch R A, Schemmerhorn K J, Skerritt J H, et al. An enzyme-linked immunosorbent assay for the identification of wheats carrying null alleles at genetic loci encoding the granule-bound starch synthase. Cereal Sci.,1999,30:159~163
    78. Hirano H, Sanoy. Molecular characterization of the waxy locus of rice (Oryza sativa). Plant Cell Plasia,1991,32:989~997
    79. Hiro-Yuki Hirano, Mitsugu Eiguchi, Yoshio Sano. A single base change altered the regulation of the waxy gene at the posttranscriptional level during the domestication of rice. Mol. Biol. Evol.,1998,15(8):978~987
    80. Holtekjolen A K, Uhlen A K, Brathen E, Sahlstr S, Knutsen S H. Contents of starch and non-starch polysaccharides in barley varieties of different origin. Food Chemistry, 2006,94:348~358
    81. Hovenkamp-Hermelink J H M, Jacobsen E, Ponstein A S, Visser R G F, Vos-Scheperkeuter G H, Bijmolt E W, de vries J N, Witholt B, Feenstra W J. Isolation of an amylose-free starch mutant of the potato (Solanum Tubersum L.). Theor. Appl. Genet.,1987,75:217~221
    82. Hsieh J, Liu C, Hsing Y C, Molecular cloning of a sorghum cDNA encoding the seed Waxy protein. Plant Physiol.,1996,112:1735
    83. Hylton C M, Denyer K, Keeling P L, et al. The effect of waxy mutation on the granule- bound starch synthases of barley and maize endosperms. Plant,1996,198:230
    84. Ishikawa N, Ishihara J, Itoh M. Artificial induction and characterization of amylose-free mutants of barley. Barley Genet Newslett,1995,24:49~53
    85. Iwata N, Omura T. Linkage analysis by reciprocal translocation method in rice plant (Oryza sativa L.) II: Linkage groups corresponding to the chromosome 5, 6, 8, 9, 10 and 11. Sci. Bull. Fac. Agr., Kyushu Univ,1971,25:802~804
    86. Jacobsen E, J H M Hovenkamp-Hermelik, H T Krijgsheld, H Nijdam, L P Pijnacker B Wiltholt, W J Feenstra. Phenotypic and genotypic characterization of amylose-free starch mutant of the potato. Euphytica,1989,44:43~48
    87. Kang M Y, Sugimoto K I, Sakamoto S., et a1. Some properties of large and small starch granules of barley endosperm. Agricultural and Biological Chemistry,1985,491:291~297
    88. Karakousis A, Gastafson J P, Chalmers K J, Barr A R, Langridge P. A consensus map of barley integrating SSR, RFLP and AFLP markers. Austr. J. Agr. Res.,2003,54:1173~1185
    89. Kleinhofs A. Integrating barley RFLP and classical marker maps. Barley Genet Newslett, 1997,27:105~112
    90. Kramer H H, Blander B A. Orientating linkage maps on the chromosomes of barley. Crop Sci.,1961,1:339~342
    91. Kimura M, Ohta T. Mutation and evolution at the molecular lever. Genetics,1973,73 (Suppl):19~735
    92. Kiribuchiotobe C, Nagamine T, Yanagisawa T, et al. Production of hexaploid wheats with waxy endosperm character. Cereal Chemistry,1997,74:72~74
    93. Klosgen R B, Gicrl A, Schwarz-Sommer Z, Sacdler H. Molecular analysis of the Waxy locus of Zea mays. Mol. Gen. Genet., 1996,203,237~244
    94. Kluth A, Sprunck S, Becker D, Lorz H, Lutticke S. 5′deletion of a gbssI promoter region from wheat leads to changes in tissue and developmental specificities. Plant Mol. Biol., 2002,49:669~682
    95. Kresovich S, et al. AgBiotech News and information,1993,5(7):225~218
    96. Langridge P, Lagudah E S, Holton T A, Appels R, Sharp P J, Chalmers K J. Trends in genetic and genome analyses in wheat: a review. Australian Journal of Agricultural Research, 2001,52:1043~1077
    97. Lindblad-Toh K, Winchester E, Daly M, Wang D, Hirschhorn J N, Laviolette J P, Ardlie K, Reich D E, Robinson E, Sklar P, Shah N, Thomas D, Fan J B, Gingeras T, Warrington J, Patil N, Hudson T J, Lander E S. Large-scale discovery and genotyping of single nucleotide polymorphisms in the mouse. Nat. Genet.,2000,24:381~386
    98. Liu K, Muse S V, Power Marker: Integrated analysis environment for genetic marker data. Bioinformatics,2005,21:2128~2129
    99. Liu Z W, Biyashev R M, Saghai Maroof M A. Development of simple sequence repeat markers and their integration into a barley linkage map. Theor. Appl. Genet.,1996,93:869~876
    100. Marcel T C, Niks R E. Molecular dissection of a QTL region for partial resistance to barley leaf rust. In:Spunar J, Janikova J(eds) Proceedings of the 9th international barley genetics.2004
    101. Masayuki Isshiki, Kazuko Morino, Midori Nakajima, Ron J Okagakki, Susan R Wessler, Takeshi Izawa, Ko Shimamoto. A naturally occurring functional allele of the rice waxy locus has a GT to TT mutation at the 5′splice site of the first intron. The Plant Journal,1998,15:133~138
    102. McDonald F D, Yreiss J. Partial purification and characteri-sation of granule-bound starch synthases from normal and waxy maize. Plant Physiol,1985,78:849~852
    103. Miura H, Tanii S. Endosperm starch properties in several wheat cultivars preferred for Japanese noodles. Euphitica,1994,72:171~175
    104. Miura H, Sugawara A. Dosage effects of the three Wx genes on amylose synthesis in wheatendosperm.Theor. Appl. Genet.,1996,93:1066~1070
    105. Müller-R?ber BT, Kossmann J, Hannah LC, Willmitzer L, Sonnewald U. One of two different ADP-glucose pyrophosphorylase genes from potato responds strongly to elevated levels of sucrose. Mol. Gen. Genet. 1990,224(1):136~146
    106. Müller-R?ber BT, Kopmann J. Approaches influence starch quantity and starch quality in transgene plants. Plant Cell,1994,17:601
    107. Murai J,Taira T, Ohta D, Isolation and characterization of the three waxy genes encoding the granule-bound starch sythase in hexaploid wheat. Gene,1999,234:71~79
    108. Murata T, Sugiyama T, Akazawa T. Enzymatic mechanism of starch synthesis in glutinous rice grains. Biochem Biophys Res. Commun,1965,18:371~376
    109. Nakamura T, et al. Decrease of waxy protein in two common wheat cultivars with low amylose content. Plant Breeding,1993,111:99~105
    110. Nakamura T, Vrinten P, Saito M, Konda M. Rapid classification of partial waxy wheat using PCR-based markers. Genome,2002,45:1150~1156
    111. Nakamura T, Yamamori M, Hitano H, et al. Identification of three Wx proteins in wheat (Triticum aestivunm L). Biochem.Genet.,1993,111:75~86
    112. Nakamura T, Yamamori M, Hirano H, Hidaka S, Nagamine T. Production of waxy (amylose-free) wheats. Mol. Gen. Genet.,1995,248:253~259
    113. Nakamura T, Yamamori M, Hirano H, Hidaka S. The waxy proteins of maize, rice and barley. Phytochemistry,1993,33(4):749~753
    114. Nakao S. On waxy barleys in Japan. Seiken Jiho,1950,4:111~113
    115. Nicola J Patron, Alison M Smith, Brendan F Fahy, Christopher M Hylton, Mike J Naldrett, Brian G Rossnagel, Kay Denyer. The altered pattern of amylose accumulation in the endosperm of low amylose barley cultivars is attributable to a single mutant allele of granule bound starch synthase I with a deletion in the 5′-noncoding regin. Plant Physiology,2002,130:190~226
    116. Newman R K, C W Newman, Barley as a food grain. Cereal Foods World,1991,36(9):800~805
    117. Nelson O E, H W Rines. The enzymatic deficiency in the waxy mutation of maize. Biochem. Biophys. Res. Comm.,1962,9:297~300
    118. Nei M, Li W H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Nat. Acad. Sci. USA,1979,76:5256~5273
    119. Nelson O E, C. Y Tsal. Glucose transfer from adenosine diphosphate-glucose to starch in preparations of waxy seeds. Science,1964,145:1194~1195
    120. Nelson O E. The waxy locus of maize-The location of the controlling elements alleles. Genetics,1968,60:507~524
    121. Nieto-Taladriz M T, Rodriguez-Quuano M, Carrillo J M. Ploymorphism of waxy proteins in Spanish durum wheat. Plant breeding,2000,119:277~279
    122. Okagaki R J, Wessi E R S R. Comparison of non-mutant and mutant waxy genes in rice and maize. Genetics,1988,120:l137~l143
    123. Okita T W. Is there an alternative pathway for starch synthesis? Plant Physiology, 1992,l00:560~564
    124. Okuno K, Sakaguchi S. Inheritance of starch characteristics in perisperm of Amaranthus hypochondriacus. The Journal of Heredity,1982,73(6):467~467
    125. Okuno M. Expression of mutant genes specifying starch synthesis in cereal grains. Gamma-Field Symp.,1985,24:39~62.
    126. Ono T, Suzuki H. Endosperm characters in hybrids between barley varieties with starchy and waxy endosperms. Seiken Jiho,1957,8:11~19
    127. Olsen K M, et al. Selection under domestication: Evidence for a sweep in the rice waxy genomic region. Genetics,2006,173(3):975~983
    128. Pejic L, Ajmone-Marsan P, Morgante M, Kozumplick V, Castiglioni P, Taramino C X, Motto M., Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs, and AFLPs. Theor.Appl. Genet.,1998,97:1248~1255
    129. Philip J. Starch.In Philip J(ed) Biosynthesis of the Major Crop Products. hichester:John Wiley and Sons Ltd.,1992,32
    130. Plaschke J, Ganal M W, Roder M S, Detection of genetic diversity in closely related 6 keed wheat using microsatellite markers. Theor. Appl. Genet.,1995,91:1001~1007
    131. Ponomarenko J V, Merkulova T I, Vasiliev G V, Levashova Z B, Orlova G V, Lavryushev S V, Fokin O N, Ponomarenko M P, Frolov A S, Sarai A. Rsnp-Guild, a database system for analysis of transcription factor binding to target sequences:application to SNPs and site-direction mutations. Nucleic Acids Research,2001,29(1):312~316
    132. Powell W, Morgente M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A, The comparison of RFLP, RAPD, AFLP, and SSR(microsatellite) markers for germplasm analysis. Molecular Breading ,1996,2:225~238
    133. Qureshi A A, Chaudhary V, Weber F E, Chicoye E, Qureshi N. Effects of brewers grain and other cereals on lipid metabolism in chicken. Nutr. Res.,1991,11:159~168
    134. Ramsay L, Macaulay M, Ivanissevich S D, Maclean K, Cardle L, Fuller J, Edwards K J, Tuvesson S, Morgante M, Massari A, Maestri E, Marmiroli N, Sjakste T, Ganal M W, Powell W, Waugh R. A simple sequence repeat-based linkage map of barley. Genetics, 2000,156:1997~2005
    135. Rosichan J, Nilan R A, Arenaz P, Kleinhofs A. Intragenic recombination at the waxy locus in Hordeum vulgare. Barley Genet Newslett,1979,9:79~85
    136. Russell R.J., Full Rafakkier D J, Macaulay M, Hatz B G, Jahoor A, Powell W, Waugh R, Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theor. Appl. Genet.,1997,95:714~722
    137. Rohde W, Becker D, Salamini F. Structural analysis of the waxy locus from Hordeum vulgare.Nucleic Acids Res.,1998,16:7185~7186
    138. Rodriguez Q M, NietoTaladriz M T, Carrillo J M, et al. Polymorphism of waxy proteins in Iberian hexaploid wheats. Plant Breeding,1998,117(4):341~344
    139. Saito M, et al. Molecular comparison of waxy null alleles in common wheat and identification of a unique null allele. Theor. Appl. Genet.,2004,108:1205~1211
    140. Sathish P, C Sun, A Lonneborg, C Jansson. Modified starch metabolism in mutant and transgenen plants. Prog.Bot.,1995,56:301~318
    141. Salehuzzaman S N I M, Jacobsen E, Visser R G F. Isolation and characterization of a cDNA encoding granule-bound starch synthase in cassava (Manihot esculenta Grantz) and its antisense expression in potato. Plant Mol.Biol.,1993,23:947~962
    142. Sano Y. Gene regulation at the waxy locus in rice. Gamma-Field Symp.,1985,24:63~79
    143. Sano Y. Differential regulation of waxy gene expression in rice endosperm. Theor. Appl. Genet.,1984,68:467~473
    144. Sano Y, M Katsumata, K Okuno. Genetic studies of speciation in cultivated rice. Inter- and intraspecific differentiation in the waxy gene expression of rice. Euphytica,1986,35:1~9
    145. Sharp P J, Kreis, Shewry P R, Gale M D. Location ofβ-amylase sequence in wheat and its relatives. Theor. Appl. Genet.,1988,75:289~290
    146. Shure M et al. Molecular identification and isolation of the Waxy locus in maize. Cell, 1983,35(1):225~233
    147. Smith A M, Denyer K, Martin C. The synthesis of the starch granule. Plant Physiol Plant Mol Biol,1997,48:67~87
    148. Seib P A, Steele J L, Chung O K. Wheat starch as a quality determinant. Proceedings of the International Wheat Quality Conference. Manhattan, Kansas, USA,1997,61~62
    149. Smith J S C, Chin E C L, Shu H, Smith O S, Wall S J, Senior M L, Mitchell S E, Kresovich S, Ziegle J, An evaluation of the utility of SSR loci as molecular markers in maize(Zea mays L):comparisons with data from RFLPs and pedigree. Theor. Appl. Genet.,1997,95:163~173
    150. Solos P S, Soltis D E, Genetic variation in endemic and widespread plant splecies: example from Saxifragaceas and Polystichum. Aliso,1991,13:215~223
    151. Song Y, Jane J. Characterization of barley starches of waxy, normal and high amylose varieties. Carbohydr Polymers,2000,41:365~377
    152. Steven G Ball, Marion H B J, Van de Wal, Richard G F Visser. Progress in understanding the biosynthsis of amylose. Trends in Plant Science,1998,3(12):462~467
    153. Syvanen A C: Accessing genetic variation: genotyping single nucleotide polymorphisms. Nat. Rev. Genet.,2001,2:930~942.
    154. Tabata M. Studies of a gametophyte factor in barley. Jpn. J. Genet.,1961,36:157~167
    155. Takahashi R. The origin and evolution of cultivated barley. Adv. Genetics,1995,7:227~266
    156. Takeda Y, Takeda C, Mizukami H, et al. Structures of large, medium and small starch granules of barley grain. Carbohydrate polymers,1999,38:109~l14
    157. Takeda Y, Hizukuri S. Structures of amylopectins with low and high affinities iodine. Carbohyr. Res.,1987,168:79~88
    158. Tanksley S D, S R McCouch. Seed banks and molecular maps: unlocking genetic potential from the wild. Science,1997,277:1063~1066
    159. Takeda K, Sasaki T. Temperature response of amylose content in rice varieties of Hokkaido. Jpn. J..Breed.,1988,38:357~362
    160. Toshiki Nakamura, M Yamamori, H Hiranot, S Hidaka. The waxy proteins of maize, rice and barley. Phytochemistry,1993,33:749~753
    161. Tsai C Y. The function of the waxy locus in starch synthase in maize endo sperm. Biochem. Genet.,1974,11:83~96
    162. Umeda M, Ohtsubo H, Ohtsubo E. Diversification of the waxy gene by insertion of mobile DNA elements into introns. Jpn. J. Genet.,1991,66:569~586
    163. Van der Leij G R, Visser R G F, Ponstein A S, Jacobsen F, Feenstra W J. Sequence of the structural gene for granule-bound starch synthase of potato (Solanum tuberosum L)and evidence for a single point deletion in the amfallele. Mol. Gen. Genet.,1991,228:240~248
    164. Van de Wal M, D Hulst C, Vinchen J P, Buleon A, Visser R, Ball S. Amylose is synthesized in vitro by extension and cleavage from amylopectin. J. Biol. Chem.,1998,273:22232~22240
    165. Van de Wal M H B J, Jacobsen E, Visser R G F L. Multiple asselism as a control mechanism in metabolic pathways: GBSSI allelic composition affects the affects the activity of granule-bound starch starch synthase I and starch composition in potato. Mol. Genet. Genomics,2001,265:1011~1021
    166. Vasanthan T, Bhatty R S. Physicochemical properties of small-and large-granule starches of waxy, regular and high-amylose barley. Cereal Chemistry,1996,73:199~207
    167. Villareal C P, Dela Cruz N M, Juliano B O. Rice amylose analysis by near-infrared transmittance spectroscopy. Cereal Chemistry,1994,71(3):292~296
    168. Vrinten P, Nakamura T, Yamamori M. Molecular characterization of waxy mutations in wheat. Mol. Gen. Genet., 1999,261:463~471
    169. Vrinten P, Nakanura T. Wheat granule-bound starch synthase I and II are encoded by separate genes that are expressed in different tissues. Plant Physiol,2000,122:225~263
    170. Wang Z, Wu Z Zheng F, Guo X, Zhang W, Hong M. Nucleotide sequence of rice waxy gene. Nucl. Acids Res.,1990,18:5898
    171. Wang Z Y, Wu Z L, Xing Y Y. Molecular characterization of rice Wx gene.Science in China.Series B,1992, 35:558
    172. Wang Z Y, Zheng F Q, Shen G Z, Goa J P, Snustad D P, Li M G, Zhang J L, Hong M M. The amylose content in rice endosperm is related to the post-transcriptional regulation of the waxy gene. Plant J.,1995,7:613~622
    173. Washington J M, Box A, Karakousis A, Barr A R. Developing waxy barley cultivars for food, feed and malt. In: longue S(ed) Barley genetics VIII, vol 2. Adelaide University,Adelaide,South Australia, Australia,2000,303~305
    174. Weatherwax P. A rare carbohydrate in waxy maize. Genetics,1922,7:568~572
    175. WRI, IUCN, UNEP, Global biodiversity strategy. Library of Congress Catalog Card No.92-60104,1992
    176. Yamamori M, et al. Waxy protein alleles in common and emmer wheat germplasm. Misc Publ Natl Inst Agrobiol. Resur.,1998,12:57~104
    177. Yamamori M, Nakamura T, Endo T R. Waxy protein deficiency and chromosomal location of coding genes in common wheat, Theor. Appl. Genet.,1994,89:179~184
    178. Yamamori M, Quynh N T. Differential effects of Wx-A1, Wx-B1 and Wx-D1 Protein deficiencies on apparent amylose content and starch pasting properties in common wheat. Theor. Appl. Genet.,2000,100:32~38
    179. Yamamori M, Nakamura T, Nagamini T. Ploymorphism of two waxy proteins in the emmer group of tetraploid wheat, Triticum dicoccoides, T. dicoccum, and T.durum. Plant breeding,1995,114:215~218
    180. Yanagisawa T, Kiribuchi-otobe C, Yoshida H. An alanine to threonine change in the Wx-D1 protein reduces GBSSI activity in waxy mutant wheat. Euphytica,121:209~214
    181. Yan L L, MRINAL B, Robert F, et al. The genes encoding granul-bound starch synthase at the loci of the A, B and D progenitors of common wheat. Genome,2000,43:264~272
    182. Zhao X C, Sharp P J. An improved 1D-SDS-PAGE method for identification of three bread wheat waxy protein. Cereal Sci.,1996,23:191~193
    183. Zeng Ming, Morris C F, Batey I L, et al. Sources of variation for starch gelatinization, pasting, and gelation properties in wheat. Cereal Chemistry,1997, 74(1):63~71

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700