用户名: 密码: 验证码:
预制混凝土管柱结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
预制混凝土管柱,即在预制的混凝土管中浇注混凝土,二者共同承担荷载,用作建筑物、构筑物的受力构件,预制混凝土管既做模板又做受力构件。具有标准化生产、质量可靠,采用高强混凝土、承载力高,拼装施工、施工效率高,柱外表采用清水混凝土、避免二次装修,节省模板、节约钢材,耐高温,耐腐蚀、造价低、用途广泛等特点。
     本文在混凝土本构关系、钢筋本构关系及二者相互作用关系现有研究成果基础上,根据箍筋约束混凝土基本理论、混凝土损伤理论等,建立了混凝土弹塑性损伤模型,用ABAQUS软件,对预制混凝土管短柱的承载力和变形进行了非线性有限元研究。提出了预制混凝土管短柱极限承载力计算公式和简化计算公式;提出了预制混凝土管约束管芯混凝土抗压强度、相应峰值应变计算公式和应力-应变全曲线方程;指出承载力简化提高系数在1.05~1.3之间;管壁厚、配箍特征值、箍筋间距三个主要影响因素中,配箍特征值影响承载力和管芯混凝土抗压强度、相应峰值应变最大,壁厚、箍筋间距其次;短柱随管芯混凝土强度提高、体积配箍率增大、壁厚增厚、箍筋间距变小,极限承载力分别提高10%~40%、10%~30%、10%~20%、10%~30%左右,增加的幅值逐渐变小;约束混凝土抗压强度随体积配箍率增大、壁厚增厚、箍筋间距变小分别提高20%~60%、20%~50%、5%左右,增加的幅值逐渐变小;峰值应变随着体积配箍率增大、壁厚增厚逐渐增大,幅值在0.002~0.004之间;预制混凝土管约束管芯混凝土应力-应变全曲线与现有研究结论和特征相符。
     中长柱承载力和变形研究中指出,理想轴压中长柱(长细比小于20)承载力与短柱相同,柱中无侧向位移即无挠度,柱中横向应变为纵向应变的0.3~0.5倍,即计算泊松比为0.3~0.5,随管芯混凝土强度提高、壁厚增大、体积配箍率增大,逐渐变小。轴向极限承载力受偏心距影响较大,承载力-弯矩关系符合混凝土构件弯压破坏的规律和特征。中长柱弯压受力,存在二次弯矩效应,影响因素多,弯矩效应比较复杂。
     根据拟静力实验方法、引入损伤因子,单向水平加载,短柱柱顶最大位移、承载力在轴压比为0、0.2时,分别为30-40mm、60-80mm,60-70kN、135-145kN,与预制混凝土空心管相比,分别提高20%、25%,25%、30%左右,延性系数均大于6;反复加载时,滞回曲线饱满,骨架曲线良好,承载力退化系数在0.95~0.98之间。
Precast concrete pipe column is constructed by pouring concrete into precast pipe column, which acts as mould as well as resists loads with concrete pouring in site. Precast concrete pipe column, as a kind of resistance member of buildings, is a kind of standardized production with high quality, and has a high bearing capacity as the utility of high strength concrete. Its construction process is effective under assembly process, and without secondary decoration by adopted as cast finish concrete. It can be widely used and has a low cost as low quantity of mould and steel is applied.
     On the basis of current research on constitutive model of concrete and reinforcement and their interaction, taking into account of theory concerning constrain on concrete by reinforcement and concrete damage, numerical model concerning elastoplastic damage model and nonlinear behavior was developed using FEM software ABAQUS, in order to study on the resistance capacity and deflection of precast concrete pipe short column. Formulation and its simplified vision concerning ultimate resistance capacity of precast concrete pipe short column were developed. The compressive strength and corresponding ultimate strain and stress-strain diagram of core concrete was proposed. It is concluded that the value of the simplified enhanced coefficient of resistance capability is between 1.05and 1.3. Among the three factors of wall thickness, stirrup characterize value, stirrup spacing that affect resistance capability, stirrup characterize value has the most significant impact, and wall thickness, stirrup spacing have the secondary impact. The ultimate resistance capability of short column increases by 10%~40%、10%~30%、10%~20%、10%~30% as the increase of core concrete strength ,the increase of stirrup ratio, the increase of wall thickness ,and the decrease of stirrup spacing separately. The compressive strength of the core concrete increases by 20%~60%、20%~50%、5% as the increase of stirrup ratio ,the increase of wall thickness and the decrease of stirrup spacing separately, but the increment decreases gradually. The ultimate strain increases as the increase of stirrup ratio, the increase of wall thickness, and the value was between 0.002and 0.004. The stress-strain diagram of core concrete obtained was in accordance with current research result.
     It is indicated that from the research the resistance capability of medium long column (the slenderness ratio is less than 20) is similar to that of short column, and there is no lateral deflection in the column. The transverse stain was 0.3~0.5 times of longitude stain, that is to say the calculation Passion’s ratio is 0.3~0.5. The resistance capability-moment relationship of beam-column was in accordance with the axial force-moment diagram obtained by current calculation method, but the resistance capability increases by 20%. The initial eccentric was taken into account when the slenderness ratio is 30, and the effect of second-order effects is notable.
     Taking into account of quasi-static experiment method and damage factor, the ultimate displacement of short column is 30~40mm, 60~80mm, and the resistance capability of short column is 30~40kN, 135~145kN when axial compression ratio of short column is 0, 0.2 separately under monotonous transvers loads. The data above are 20%, 25%, 25%, and 30% larger than that corresponding data of precast concrete hollow pipe separately. And the ductility factors are all bigger than 6 under different conditions. Under cyclic loadings, the hysteresis loop obtained is full and spine curve is in good condition, and the ratio of strength degradation is between 0.95~0.98.
引文
[1]四川省建筑工程局钢筋混凝土离心管结构编写组.钢筋混凝土管柱离心管结构[M].中国建筑工业出版社,1977.
    [2] Reinfreed Conerete Sturetures with Annular Section[M].Russia,1975.
    [3]四川省建工局科研所.苏联的钢筋混凝土离心管结构[J].建筑结构,1977,19 (3): 26-31.
    [4] Libby J.R. Modern Perstressed Concrete: Design Principles and Construction Methods. Van Nostrand Reihnold Co.NewYokr, 1977.
    [5]刘西拉,吴世英,邹槐.钢筋混凝土柱与管柱全过程同步量测试验研究报告[R].上海:同济大学,1985.
    [6] Liu X.L and Chen W.F. Reinforced Concrete Pipe Columns: Behvaior and Design [J].Journal of Structural Engineering, 1984,110(6):1356-1373.
    [7]吕志涛,周明华,陈友文.环形截面钢筋混凝土受弯构件的抗剪强度试验研究[J].南京工学院学报,1980(3):206-209.
    [8]吕志涛,石平府,周燕勤,等.圆形、环形截面钢筋混凝土构件抗剪承载力的试验研究[J].建筑结构学报,1995,16(3):13-20.
    [9]王广勇,孙水志,傅传国,等.高强混凝土管柱轴心受力性能试验研究及分析[J].山东建筑工程学院学报,2004,19(3):12-16.
    [10]王广勇,傅传国.高强混凝土管柱稳定系数试验研究与分析[J].山东建筑工程学院学报,2010,25(2):102-104.
    [11]朱丽华,白国良,李晓文,等.大尺寸薄壁钢筋混凝土管柱抗震性能试验研究[J].工程力学,2009,26(3):134-139.
    [12]卜永红.大尺寸钢筋混凝土管柱抗震性能试验研究与有限元分析[D].西安:长安大学,2006.
    [13]涂峰.大尺寸薄壁钢筋混凝土管柱抗震性能试验研究与非线性有限元分析[D].西安:西安建筑科技大学,2006.
    [14]荣哲.大尺寸薄壁钢筋混凝土管柱抗震性能试验研究[D].西安:西安建筑科技大学,2006.
    [15]郭纯.一种新型预制管混凝土柱的轴压性能试验研究[D].长沙:湖南大学,2005.
    [16]周毅雷,陈忠范,张建中.环形截面大偏心受压构件截面延性系数计算[J].特种结构,2002,(2):15-18.
    [17]简洪钰,唐瑞霖,吴琛.钢筋混凝土环形截面受弯构件正截面强度计算[J].福建工程学院学报,2009,7(3):206-209.
    [18]霍锦锋,刘西拉.钢筋混凝土环形截面构件破坏的统一表达[J].上海交通大学学报,2005,39(11):1866-1869.
    [19]童岳生,童燕华,童润家.钢筋混凝土环形截面偏压构件计算[J].建筑结构,1997,(3):14-17.
    [20]方志,黄立葵,李志平.钢筋混凝土环形截面偏压构件正截面承载力简化计算[J].中国公路学报,1995,8(Z1):47-51.
    [21]顾祥林,地震作用下钢筋混凝土圆形截面柱的抗剪强度[J].结构工程师,1994,(4):6-10.
    [22] ACI Committee 318. Building code requirements for reinfored Concrete (ACI 318-86) .American Conerete Institude, 1986.
    [23]《混凝土结构设计规范》(GB50010-2010)[S].北京:中国建筑工业出版社,2011.
    [24]《先张法预应力混凝土管桩》(GB 13476-2009)[S].北京:中国标准出版社,2009.
    [25]国家建筑标准设计图集《先张法预应力混凝土管桩》(03SG409).苏州中材建筑建材设计研究院,2011.
    [26]《先张法预应力溷凝土薄壁管桩》(JC888-2001)[S].北京:中国建材工业出版社,2002.
    [27]《预应力混凝土管》(GB5696-2006)[S].北京:中国标准出版社,2007.
    [28]凌应轩.预应力混凝土管桩填芯混凝土抗剪试验研究及理论分析[D].合肥:合肥工业大学,2006.
    [29]过镇海,钢筋混凝土原理和分析[M].北京:清华大学出版社,2003,175-200.
    [30]刑秋顺,翁义军,沈聚敏.约束混凝土应力-应变全曲线的试验研究[M].约束混凝土与普通混凝土强度理论及应用学术讨论会论文集,烟台:1987.10.
    [31]钱稼茹,程丽荣,周栋梁.普通箍筋约束混凝土柱的中心受压性能[J].清华大学学报(自然科学版).2002,42(10):1370-1373.
    [32]袁锦根,约束钢筋混凝土压弯构件延性和它的滞回特征[M].约束混凝土与普通混凝土强度理论及应用学术讨论会论文集,烟台:1987.10.
    [33]张秀琴,过镇海,等.反复荷载下箍筋约束混凝土的应力-应变全曲线方程[J].工业建筑,1985,(12):16-20.
    [34]林大炎,王传志.矩形箍筋约束混凝土应力-应变全曲线研究[R].清华大学抗震抗爆工程研究室,科学研究报告集,第三集:钢筋混凝土结构的抗震性能,北京:清华大学出版社,1981,19-37.
    [35] M.Sargin,S.K.Ghosh,V.K.Handa,Effect of lateral reinforcement upon the strength and deformation properties of concrete[J],Magazine of Concrete esearch,1971,23 (75-76): 99~110.
    [36] J.B.Mander,M.J.N.Priestley,R.Park,Theoretical stress-strain modelfor confined concrete[J], Journal of the Structural Division ,ASCE ,1988 .
    [37] D.C.Kent,R.Park,Flexural members with confined concrete,ASCE,Journal of the Structural Division,ASCE,1971,97(ST7):1969-1990.
    [38] M.T.M.Soliman,C.W.Yu, The flexural stress-strain relationship ofconcrete confined by rectangular transverse reinforcement [J],Magazineof Concrete Research, 1967,19(61):223-238.
    [39] R.Park,M.J.N.Priestley,W.D.Gill,Ductility of square-confined concrete columns [J], Journal of the Structural Division,ASCE,1982,108(ST4):929-951.
    [40] Shah, Fafitis, Richard, Cyclic loading of spirally reinforcedconcrete[J],Journal of Structural Engineering,1983,109(7):1695-1710.
    [41] Fafitis, Shah, Predictions of ultimate behavior of confined columnssubjected to large deformations, ACI, 1985,7-8.
    [42] W.L.Chan, The ultimate strength and deformation of plastic hinges inreinforced concrete frameworks,Magazine of Concrete Research,1955,7(21):121~132.
    [43] Vallenas J.,Bertero V.V.,Popov E.P.,Concrete confined by rectangular hoops subjected to axial loads[J],Report UCB/EERC,1977(13), Earthquake Engineering Research Center, University of California,Berkeley.
    [44] H.E.H.Roy,M.A.Sozen,Ductility of concrete,Proceedings of the International Symposium on Flexural Mechanics of Reinforced Concrete, ASCE-ACI, Miami, 1964, 11:213-224.
    [45] S.A.Sheikh,S.M.Uzumeri. Analytical model for concrete confinement in tied columns[J], ASCE,1982,(12):2703-2722.
    [46] S.M.Saatcioglu,S.R.Razvi,Strength and ductility of confinedconcrete[J],Journal of the Structural Division, ASCE, 1992,6:1590-1607.
    [47]张愉.高强螺旋箍筋约束混凝土轴压力学性能试验及有限元分析[D].西安:西安建筑科技大学,2008.
    [48]贺霞.高强螺旋箍筋约束高强混凝土力学性能的试验研究[D].西安:西安建筑科技大学,2008.
    [49]赵东.高强箍筋约束混凝土偏心受压构件试验及非线性分析[D].西安:西安建筑科技大学,2008.
    [50]胡钟.高强箍筋约束高强混凝土柱在轴压下的力学性能研究[D],大连:大连理工大学,2010.
    [51]关萍,王清湘,赵国藩.高强约束混凝土应力-应变本构关系的试验研究[J].工业建筑,1997,27(1): 26-29.
    [52]胡海涛,复合箍筋约束高强混凝土应力应变性能[D],北京:清华大学,1990.
    [53]程海根.约束混凝土压弯构件曲率延性分析[J].昆明理工大学学报,2001, 26(6):89-93.
    [54]张日果,阎石.高强度螺旋箍筋约束下的高强混凝土圆柱延性分析[J].沈阳建筑大学学报(自然科学版),2006,22(5),713-717.
    [55]阎石,肖潇,张日果,等.高强钢筋约束混凝土矩形柱抗震性能试验研究[J].沈阳建筑大学学报(自然科学版),2006,22(1),7-11.
    [56]王晓伟.箍筋约束混凝土异形柱轴压性能试验及理论研究[D].天津:天津大学,2009.
    [57]蔡绍怀.现代钢管混凝土结构.北京:人民交通出版社,2002
    [58]钟善桐.钢管混凝土结构.北京:清华大学出版社,2003
    [59]韩林海.钢管混凝土结构—理论与实践.北京:科学出版社,2004
    [60]金建平. CFRP带载约束加固混凝土圆柱轴压力学性能试验研究[D].长春:东北大学,2008.
    [61]吴刚. FRP加固钢筋混凝土结构的试验研究与理论分析[D].南京:东南大学,2002.
    [62]阮兵峰. GFRP套管钢筋混凝土短柱偏压力学性能研究[D].大连:大连理工大学,2009.
    [63]赵国藩,黄承速,赵志方,等.新老混凝土的粘结机理和测试方法.1996年度研究报告.国家基础性研究重大项目(攀登计划B)《重大土木与水利工程安全性与耐久性的基础研究》之5.2(1)课题,1996.
    [64] Fiebrieh M.H. Influence of the surface roughness on adherene between concrete and guite mortar overlays. Adherence of Yong on Old Concrete, edited by Wittmann F.H,1994.
    [65]敖进涛,谢慧才,熊光晶,等.影响新老混凝土粘结界面强度的主要因素[J].工程力学增刊,1997,(2):328-333.
    [66] JohnA,wells,Robert D.Stark,Dimos Polyzois. Getting better bond in concreteoverlays. Concrete International,1999,(3):49-52.
    [67]谢慧才,熊光晶,刘金伟,等.新老混凝土的粘结机理和测试方法.1997年度研究报告.国家基础性研究重大项目(攀登计划B)《重大土木与水利工程安全性与耐久性的基础研究》之52(2)课题,1997.
    [68]赵志方.新老混凝土粘结机理和测试方法[D].大连:大连理工大学,1998.
    [69]尹健,周士琼,李益进,等.新老混凝土本构关系理论分析研究[J].长沙铁道学院学报,2002, 20(3):24-29.
    [70]宁作君,唐明新.旧混凝土粘结的断裂韧度数值模拟及分析[J].鞍山科技大学学报,2004,27(6):439-442.
    [71]杨银赞,郑荣跃,胡彭青,等.新老混凝土粘结的抗压强度塑性极限分析[J].宁波大学学报(理工版),2004,23(3):79-83.
    [72]张晓光,陈泽赳,刘星,等.新旧混凝土结合面抗剪性能现场试验研究[J].结构工程师,2010,26(6):70-75.
    [73]叶爱芳,林毓梅.新老混凝土结合层的强度与结构[J].结构工程师, 2010, 26(6): 70-75.
    [74]杨承曾.新旧混凝土结合界面的强度及其工艺技术(上) [J].水运工程,1995, (6):49-54
    [75]杨承曾.新旧混凝土结合界面的强度及其工艺技术(下) [J].水运工程,1995, (7):49-54
    [76]赵志方,赵国藩.黄承逢.新老混凝土粘结抗折性能研究[J].土木工程学报. 2000,(2):68-72。
    [77]赵志方,赵国藩,刘健,等.新老混凝土粘结的抗拉强度试验研究[J].建筑结构学报,2001 ,22(2):51-56.
    [78]赵志方,赵国藩,黄承速.新老混凝土粘结的劈拉性能研究[J].工业建筑,1999, (11):11-14.
    [79]赵志方,赵国藩,黄承连.新老混凝土粘结的拉剪性能研究[J].建筑结构学报, 1999, 20(6):26-31.
    [80]袁群,刘健.新老混凝土粘结的剪切强度研究[J].建筑结构学报,2001,(2):46-50.
    [81] Robert A. B, Ramon L. C,Jaes O. J. Shear transfer across new and existin geonerete interfaees. ACI Structural Journal,1989,vol.86(4):383-392.
    [82] Walter E , Meier P. The use of mechanical dowels as bond elements between new and old conerete. Adherenee of Yong on o1d Concrete,edited by Wittmann F. H,1994.
    [83] Dong-UK Choi,James o. Jirsa. Shear transfer aross interface between new and exiting concrete using large Powder-driven nails. ACI structural. Journal,1999.2: 183-192.
    [84]严宗达.塑性力学[M].天津:天津大学出版社,1987.
    [85]毕继红.工程弹塑性力学[M].天津:天津大学出版社,2003.
    [86]郑宏,俞茂宏.钢构件考虑损伤的有限元分析[J].甘肃工业大学学报,2003,29(l): 104-108.
    [87]宋玉普.多种混凝土材料的本构关系和破坏准则[M].北京:中国水利水电出版社,2002.
    [88]闫光杰.200Mpa级活性粉末混凝土(RPC200)的破坏准则与本构关系研究[D].北京:北京交通大学土木建筑工程学院,2005.
    [89] Chen A C T,Chen W F. Constitutive Relations for Concrete[J]. Journal of Engineering Mechanics, 1975, 101(4):465-481.
    [90]许锦峰.带有知识和数据库的随动不均匀强(软)化混凝土本构模型[D].北京:清华大学土木与水利工程学院,1989.
    [91] Han D J, Chen W F. Strain-Space Plasticity Formulation for Hardening- Softening Materials with Elastoplastic Coupling[J]. Intenrational Jounral of Solids and Structures, 1986,22(8):935-950.
    [92] Stevens D J, Liu Dajin. Strain-Based Constitutive Model with Mixed Evolution Rules for Concrete[J]. ASCE, 1992,118(EM6):867-873.
    [93] Bazant Z P ,Shich C L .Hysteretic Fracturing Endochronic Theory for Concrete[J]. ASCE, 1980, 106(EM5):546-557.
    [94] Krajcinovic D. ,Fonseka G.U.. Continuous Damage Thoery of Brittle Materials[J]. App. Mech. 1981(48):809-824.
    [95]黄真.钢筋混凝土三维非线性有限元方法[D].天津:天津大学建筑工程学院,1998.
    [96] Krajcinovic D. ,Fonseka G.U.Continuous Damage Thoery of Brittle Materials[J]. App. Mech. 1981(48):809-824.
    [97] Bazant Z P, Kim S S. Plastic-Fracture Theory for Concrete[J]. ASCE, 1979,105(EM3):768-772.
    [98] Oliver J, Oiler S and Onate E. A Plastic-Damage Model for Concrete[J]. International Journal of Solids and Structuers, 1989,25(3):114-118.
    [99]过镇海.混凝土的强度和本构关系—原理与应用[M].北京:中国建筑工业出版社,2004.
    [100]宋玉普.多种混凝土材料的本构关系和破坏准则[M].北京:中国水利水电出版社,2002.
    [101]陈惠发著,余天庆等译.土木工程材料的本构方程(第一、二卷)[M].武汉:华中科技大学出版社,2001.
    [102]徐有邻.变形钢筋一混凝土粘结锚固性能的试验研究:[工学博士学位论文口北京:清华大学,1990.
    [103]刘劲松,刘红军, ABAQUS钢筋混凝土有限元分析,装备制造技术, 2009. 6
    [104]张国丽,苏军,基于ABAQUS的钢筋混凝土非线性分析,科学技术与工程, 2008. 10
    [105]王丽,邓思华,基于ABAQUS的混凝土梁受弯破坏实验非线性分析,土木建筑工程信息技术,2010.2(1):64-67.
    [106]周凯敏,昊炎海.ABAQUS在钢筋混凝土开孔梁模拟中的应用[C].第十三届全国工程建设计算机应用学术会议论文集,佛山,2006.
    [107]梁悴贤,韩大建. ABAQUS在钢管混凝土模拟中的运用综述[C].第十四届全国工程设计计算机应用学术会议论文集,杭州,2008.
    [108]庄茁,张帆,岑松, ABAQUS非线性有限元分析与实例,科学出版社, 2005
    [109] ABAQUS Analysis User’s Manual, ABAQUS Inc, 2006.
    [110]庄茁,由小川,廖剑晖等.基于ABAQUS的有限元分析和应用[M].北京:清华大学出版社,2009.
    [111]吴建营.基于损伤能释放率的混凝土弹塑性损伤本构模型及其在结构非线性分析中的应用[D].上海:同济大学,2004.
    [112]张骥.混凝土塑性-损伤本构模型研究[D].武汉:华中科技大学, 2010.
    [113]雷拓,钱江,刘成清.混凝土损伤塑性模型应用研究[J].结构工程师,2008, 24(2): 22-27.
    [114]方秦,还毅,张亚栋.ABAQUS混凝土塑性损伤模型的静力性能分析[J].解放军理工大学学报(自然科学版),2007, 8 ( 3) ; 254-260.
    [115]张劲,王庆扬,胡守营等. ABAQUS混凝土损伤塑性模型参数验证[J].建筑结构,2008,38(8):127-130.
    [116] Lubliner J, J Oliver, S Oller, E Ovate. A Plastic-Damage Model for Concrete, International Journal ofSolids and Structures, 1989, 25, 299-329.
    [117] Lee J, Fenves G L. Plastic-Damage Model for Cyclic Loading of Concrete Structures, Journal ofEngineering Mechanics, 1998,124(8):892-900.
    [118] RichartF E, Brandtzaeg A, Brown R L. A study of thefailure of concrete under combined compressive stresses[R]. Bulletin No.185, Engineering ExperimentStation,Unviersity of Illinois, Urbana, 1928.
    [119] Imran I, Pantazopoulou S J. Experimental study of plainconcrete under triaxial stress [J]. ACI materials Journal, 1996, 93(6): 589~601.
    [120] Ansari F, Li Q. High-strength concrete subjected totriaxial compression [J]. ACIMaterials Journal, 1998, 95(6): 747~755.
    [121] Candappa D C, Sanjayan J G, Setunge S. Completetriaxial stress-strain curves of high-strength concrete[J].Journal of Materials in Civil Engineering, 2001, 13(3): 209~215.
    [122]闫东明,林皋,三向应力状态下混凝土强度和变形特性研究[J].中国工程科学,2007,9(6) :64-70.
    [123] MacGregor J G, Breen J E, Pfrang E O. Design of Slender Concrete Coulumns. ACI, 1970, 67(1):6-28.
    [124]国家建委建筑科学研究院建筑结构研究所.钢筋混凝土偏心受压构件的向弯曲.国家建委建筑科学研究院主编.钢筋混凝土结构研究报告选集.北京:中国建筑工业出版社,1977.182-200.
    [125]陈家夔等.钢筋混凝土构件偏心距增大系数η值计算.中国建筑科学研究院编.钢筋混凝土结构设计与构造—1985年设计规范背景资料汇编.1985.69-J87.
    [126]美国钢筋混凝土房屋建筑规范(1992).中国建筑科学研究院译.北京:1993.
    [127] Comite Euro-international du Beton. Bulletin D'information No.213/214 CEB- FIP Model Code 1990(Concrete Structures), Lausanne, May 1993.
    [128]孙训方,方孝淑,关来泰等.材料力学[M].北京,高等教育出版社,1993.
    [129]郭明,混凝土塑性损伤模型损伤因子研究及其应用[J].土木工程与管理学报, 2011,28 (3): 128-163.
    [130]曹鹏,混凝土塑性损伤模型及其ABAQUS子程序开发[D].沈阳:沈阳工业大学,2009.
    [131]李敏,李宏男.ABAQUS混凝土损伤塑性模型的动力性能分析[J].防灾减灾工程学报,2011,31(3):299-330.
    [132]沈新普,冯金龙,郭丽丽.混凝土塑性损伤ABAQUS用户子程序开发[J].沈阳工业大学学报,2008,30(6): 693-699.
    [133]杨璐,沈新普,孙光.混凝土弹塑性损伤本构理论的研究[J].沈阳工业大学学报,2005,27(3): 321-324.
    [134]张伟,伍鹤皋,苏凯.ABAQUS在大体积钢筋混凝土非线性有限元分析中的应用评述[J].水力发电学报, 2005,24(5): 70-74.
    [135] Banon H, Biggs J M, Irvine H M. Seismic damage inreinforced concrete frames[J]. Journal of StructuralEngineering, ASCE, 1981, 107(9): 1713-1729.
    [136] Stephal JE, Yao JT P. Damage assessment using response measurement [J]. Journal of Structural Engineering, ASCE, 1987, 113(4): 787-801.
    [137] WangM L, Shan S P. Reinforced concrete hystereticmodelbesed on the damage concept [J]. Earthquake Engineeringand StructuralDynamics, 1987, 15(8): 993-1003.
    [138] Chung Y S, Meyer C, Shinozuka M. Seismic damage assessment of RC members [R].NUCC Report 87-0022NY: State University of New York atBuffalo, 1987.
    [139] M. Nakashima and M. Wakabyashi. Analysis and Design Steel Braces andBraced Frames in Building Structures, in Stability and Ductility of SteelStructures under Cyclic Loading. Y. Fukumoto and G.C. Lee (Eds), CRC Press, Boca Raton, FL. 1992, 309-321.
    [140]《建筑抗震试验方法规程》(JGJ 101-96)[S].北京:中国建筑工业出版社,1997,9-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700