用户名: 密码: 验证码:
低渗储集体的形成演化及其对油藏分布的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低渗透储层在全国的油气勘探和开发中的地位非常重要。由于沉积、成岩相带变化快,非均质性强,形成以低孔、低渗、低含油饱和度、油层规模小、油水分异程度低为主要特点的低渗油藏。因此,分析、评价低渗透储层的形成、演化及其对油藏分布的影响,具有重要理论意义和较大实用价值。位于鄂尔多斯盆地陕北斜坡西部的张天渠-韩渠油田,在延长组长2段主要发育低渗透砂岩储层,是进行低渗储层成因及对油水分布影响研究的理想地区,本文以该地区作为重点解剖对象,以低渗储集体宏观分布及其内部组成精细刻画为基础,从宏观和微观角度分析低渗透储集体演化与油藏分布特点。研究中以岩心观察为基础,综合利用测井、试油、试采等原始资料和储量计算结果,研究低渗透储集体宏观几何形态(平面和垂向)对油藏分布的影响;利用薄片观察、扫描电镜、图像分析、压汞分析等测试方法与资料,研究低渗储集体物性及其演化对油藏分布的影响;结合油藏油水性质变化的研究,重点分析低渗油藏形成的主控因素,在上述研究的基础上,总结低渗透储集体成因对油藏分布规律的影响。
     研究分析表明:(1)低渗透储集体具有独特的油藏地质特征,低渗油藏物性致密,其中多发育2-5m的油水同层,纯油层几乎不发育,油藏类型和分布受控沉积相和成岩作用的综合影响,油藏内易出现油水倒置的油水分布特征;(2)低渗储集体为不同时期的条带状和椭圆状砂体单元呈多边式和垂积式叠加形成具有一定连通性和连续性的砂岩连通体,其内部空间受隔夹层分割影响,平面和层间非均质性较强;(3)张-韩地区低渗砂岩,较之常规砂岩具有粒度细结构成熟度低、成分成熟度低的特点,是低渗砂岩致密的物质基础,在初始沉积环境和后期演化过程中均不利于孔隙的形成和保存。(4)低渗储集体储集空间以次生溶蚀孔隙为主,发育溶蚀-残余孔隙型和溶蚀-微孔隙型等2种组合类型;受微观非均质性的影响,孔隙度为正态分布,渗透率呈非正态的对数分布,随着渗透率的降低,其与孔隙度的相关性越差;(5)张-韩地区低渗砂岩成岩程度较强,成岩事件类型复杂,压实作用是物性降低的主要因素,胶结作用是次要因素,后期的溶解作用对物性的改善程度较大。砂岩在经历了不同的成岩演化过程后最终形成四类不同物性特征的成岩相砂体,其中多数属于特低—超低渗级别。(6)低渗储层背景下,微构造和较强的层内非均质性是低渗油藏的形成主要宏观因素;较高的束缚水饱和度(20%-40%以上),厚度较大的油水过渡带,渗透率的方向性是造成低渗油藏油水分布复杂的的微观因素。
Lowly permeability sandstone reservoirs play a significant part on Chinese hydrocarbon exploration and development activity.Owing to quickly change of the sedimentary and diagenetic facies,strong heterogeneity, the lowly permeability reservoirs characteristiced by lowly porosity, lowly permeability, low oil saturation, small reservoir thickness, bad separation of oil and water. Thus, it has important theoretical and more practical value in analyzing and evaluating the origin and evolution of low permeability sandstone reservoir and its influence on oilfield distribution. Lowly permeability sandstone reservoirs where developed in Chang 2 division of Zhang-han oilfield is the ideal study area for research on origin of lowly permeability sandstone reservoir and its influence on oil and water distribution. The region was taken as the key object to analyse in this paper, the origin and evolution of low permeability reservoir and oilfield distribution were researched from the macroscopic and microcosmic perspective based on refined description of its macroeconomic distribution and microscopic composition. All research based on the core observation, and the influence of lowly permeability reservoir macro geometric shape (plane and vertical) on the oilfield distribution was researched by the comprehensive utilization of logging, well testing, producing test and the reserves calculation. The affect of physical property and its evolution to oilfield distribution was researched by micro-pore structure analysis, cast thin section observation, scanning electron microscopy and other test method and material. The key factors that control the distribution of oilfield were emphatically analyzed combing the research of oil-water propertie variation in low permeability reservoirs, finally, the law of oilfield distribution that influenced by the origin and evolution of lowly permeability sandstone reservoir bed was summarized on the basis of the study.
     The result of research show that:(1) Lowly permeability reservoir characteristic with special geological reservoir features, as almost no oil layer developed in poor physical properties and lowly permeability sandstone reservoir, and the thickness of oil-water layer mainly distribute from 2 to 5 m,the types of reservoir be controlled by synthesis influence of sedimentary facies and diagenesis, It's easier to occur the oil/water inversion within the reservoir; (2) Lowly permeability sandstone reservoirs is connected and outspread sandstone bed that be composed of multilateral and vertical superposition of a ribbon and elliptic sand body unit at different phases. And its plane and interlayer heterogeneity are stronger owing to the division of isolated layer; (3) The lowly permeability sandstone of Zhang-han oilfield characteristic with finer grain size, lower mineral and compositional maturity compare to convention sandstone, is the material base of the compacted lowly permeability sandstone, and go against the formation and preservation of the pore through the initial sedimentary environment to later evolution; (4) The secondary dissolved pores is the main pore spaces in lowly permeability reservoir, and combined with residual intergranular pores and micro-porosity formed two kinds of pore compile including dissolved-residual pore type and dissolved-micropore type. Influenced by microscopic heterogeneity, the porosity is in normal distribution, and the permeability is in non-normal and logarithm distribution. And the lower permeability value is, the correlation between porosity and permeability is poorer; (5) The diagenesis degree is strong in lowly permeability sandstone of Zhang-han oilfield, the types of diagenesis is various, compaction is the main factor that reduced the reservoir quality of the sandstones.cementation is less important factor, dissolution contributes more to physical property,In four diagenetic facies formed in sandstone pass through different diagenesis, predominant sandstones with these diagenetic facies are belong to level of ultra-lowly permeability; (6) Micro structure and strong inner heterogeneity are main macroscopical factors that contribute to the formation of lowly permeability reservoirs under the background of low permeability; Higher bound water saturation (20% to 40%), larger thickness of oil-water transitional zone, directional permeability are microscopic factors that perplex the distribution of oil and water within Low-permeability reservoir.
引文
[1]王震亮,张小莉.“十一五”国家科技支撑计划二级课题下属专题《低(超低)渗透储层物性空间分布的定量描述方法及油水分布规律》,西北大学,2007
    [2]杨县超,王震亮.“十一五”国家科技支撑计划二级课题《低(超低)渗透油藏精细描述关键技术与剩余油分布预测模型研究》,陕西延长石油(集团)有限责任公司,2007
    [3]任战利.《韩渠—张天渠油区延安组,延长组油层组油藏描述报告》,延长油矿管理局定边石油钻采公司,2004;
    [1]A.J. Mallon_,R.E.Swarbrick. Diagenetic characteristics of low permeability,non-reservoir chalks from the Central North Sea[J]. Marine and Petroleum Geology,2008,25(6)::1097-1108
    [2]Ajdukiewicz J M, Nicholson P H,Esch W L. Prediction of deep reservoir quality using early diagenetic process models in the Jurassic Norphlet Formation,Gulf of Mexico [J]. AAPG Bulletin,2010;94, (8):1189-1227.
    [3]Allen P A,and Allen J R. Basin analysis principles and application[M].Oxford London:Blackwell scientific publication,1990.
    [4]Berg R R.Capillary pressure in stratigraphic traps [J].AA PG Bulletin,1975,59:939-959.
    [5]Berger A,Gier S,et al. Porosity-preserving chlorite cements in shallow-marine volcaniclastic sandstones:Evidence from Cretaceous sandstones of the Sawan gas field,Pakistan[J].AAPG Bulletin,2009,93(5):595-615
    [6]Bloch S,Franks S G. Preservation of shallow plagioclase dissolution porosity during burial; implications for porosity prediction and aluminum mass balance [J].AAPG Bulletin,1993, 77(9):1488-1501.
    [7]Buckley J S. Effective wettability of minerals exposed to crude oil [J].Colloid and Interface Science,2001,6(3):191-196
    [8]Catalan L,Xiao W F,Chatzis I,et al.An experimental study of secondary oil migration [J].AA PG Bulletin,1992,76 (5):638-650.
    [9]Chen D X,Pang X Q, Jiang Z X,et al. Reservoir characteristics and their effects on hydrocarbon accumulation in lacustrine turbidites in the Jiyang Super-depression,Bohai Bay Basin,China[J]. Marine and Petroleum Geology,2009,26:149-162
    [10]Chi G, Gilesb P S, Williamson M A,et al. Diagenetic history and porosity evolution of Upper Carboniferous sandstones from the Spring Valley#1 well,Maritimes Basin,Canada-implications for reservoir development[J]. Journal of Geochemical Exploration,802003,80:171-191
    [11]Dembicki H J,Anderson M J.Secondary migration of oil Experiments supporting efficient movement of separate,buoyant oil phase along limited conduits [J]AAPG Bulletin, 1989,73(8):1018-1021.
    [12]Dow W G.Kerogen studies and geological interpretation [J]. Journal of Geochemical Exploration. 1977,7(2):79-99.
    [13]Dutton S P. Calcite cement in Permian deep-water sandstones,Delaware Basin,west Texas: Origin,distribution, and effect on reservoir properties[J].AAPG Bulletin,2009,93(5):765-787 [14] Ehrenberg S N. Preservation of anomalously high porosity in deeply buried sandstones by grain-coating chlorite:Examples from the Nor wegian continental shelf[J].AAPG Bulletin, 1993,77(7):1260-1286.
    [15]Ehrenberg S N. Relationship between diagenesis and reservoir quality in sandstones of the Gam Formation, Haltenbanken, mid-Norwegian continental shelf[J], AAPG Bulletin, 1990.74(10):1538-1558
    [16]Ehrenberg, Nadeau P H, Aqrawi A A M. A comparison of Khuff and Arab reservoir potential throughout the Middle East[J]. AAPG Bulletin,2007,91(3):275-286
    [17]Eichhubl P,Davatzes N C,et al. Structural and diagenetic control of fluid migration and cementation along the Moab fault,Utah[J].AAPG Bulletin,2009,93(5):653-681
    [18]England D A.The movement entrapment of petroleum fluid in the subsurface [J].Journal of Geological Society,Landon,1987,114:327-347.
    [19]France A B,Araujo L M,Maynard J B,et al. Secondary porosity formed by deep meteoric leaching:Botucatu eolicanite,southern South America [J].AAPG Bulletin,2003,87(7):1073-1082-
    [20]Franks S G.,Horst Z. Origin and timing of late diagenetic illite in the Permian-Carboniferous Unayzah sandstone reservoirs of Saudi Arabia [J]. AAPG Bulletin,2010;94, (8):1133-1159.
    [21]Gao C,Wang Z L,Deng J,et al. Physical property and origin of lowly permeable sandstone reservoirin Chang 2 division,Zhang-Han oilfield,Ordos Basin[J]. Energy Exploration & Exploitation,2009,27(5):367-389
    [22]Gvirtzman H, Stanislavsky E. Palaeohydrology of hydrocarbon maturation,migration and accumulation in the Dead Sea Rift[J]. Basin Research,2000,12:79-93
    [23]Hubbert M K.Entrapment of petroleum under hydrodynamic conditions [J]AA PG Bulletin,1953, 37:1954-2026.
    [24]J.L. Luo,S. Morad,A. Salem,et al. Impact of diagenesis on reservoir-quality evolution in fluvial and lacustrine-deltaic sandstones:evidence from Jurassic and Triassic sandstones from the ordos basin,China[J]. Journal of Petroleum Geology,2009,32(1):79-102
    [25]J.M.Ajdukiewicz,P.H.Nicholson,W.L.Esch. Prediction of deep reservoir quality using early diagenetic process models in the Jurassic Norphlet Formation,Gulf of Mexico [J]. AAPG Bulletin,2010;94, (8):1189-1227.
    [26]Joanna M.Ajdukiewicz, Lander R H. Sandstone reservoir quality prediction:The state of the art [J]. AAPG Bulletin,2010;94, (8):1083-1091.
    [27]Johnson R A,David A B. The utility of continual reservoir description;an example from Bindley Field,western Kansas[J]. AAPG Bulletin,1994,35(3):143-154
    [28]Katz J B,Pheifer R N,Schunk D.Interpretation of discontinues vitrinite reflectance profile [J]. AA PG Bulletin,1988,72(8):926-931.
    [29]Lander R H, Bonnell L M.. A model for fibrous illite nucleation and growth in sandstones [J]. AAPG Bulletin,2010;94, (8):1161-1187.
    [30]Laubach S E, Gale J F.Obtaining fracture information for low-permeability (tight) gas sandstones from sidewall cores[J]. Journal of Petroleum Geology,2006,29(2):147-158
    [31]Luo J L, Morad S, Salem A,et al. Impact of diagenesis on reservoir-quality evolution in fluvial and lacustrine-deltaic sandstones:evidence from Jurassic and Triassic sandstones from the ordos basin,China[J]. Journal of Petroleum Geology,2009,32(1):79-102
    [32]Magara K.Compaction and fluid migration,practical petroleum geology [M]. Amesterdam: Elsevier Scientific Publishing Company,1978:1-319.
    [33]Man H N,Jing X D. Network modeling of strong and intermediate wettability on electrical resistively and capillary pressure[J]. Advance in Walter Resource,2001,24:345-363
    [34]Marchand A M E, Haszeldine R S,Quartz cementation inhibited by crestal oil charge:Miller deep water sandstone,UK North Sea[J]. ClayMinerals.2000.35(6) 201-210
    [35]Martin B,John P,Darren M,et al. Evolution of hydrocarbon migration style in a fractured reservoir deduced from fluid inclusion data,Clair Field,west of Shetland,UK[J]. Marine and Petroleum Geology,2008,25:153-172
    [36]Monreal F R, Villar H J, Baudino R,et al. Modeling an atypical petroleum system:A case study of hydrocarbongeneration,migration and accumulation related to igneous intrusionsin the Neuquen Basin,Argentina[J]. Marine and Petroleum Geology,2009,26:590-605
    [37]Morad S,Khalid A R, Ketzer J M,et al. The impact of diagenesis on the heterogeneity of sandstone reservoirs:A review of the role of depositional facies and sequence stratigraphy [J]. AAPG Bulletin,2010;94, (8):1267-1309.
    [38]Nabawy B S. Pore-throat characterization in highly porous and permeable sandstones[J]. AAPG Bulletin,2009,93(3):719-739
    [39]Neal R P.Hydrodynamic entrapment of oil and gas in Bisti field,San Juan County,New Mexico [J].AA PG Bulletin,1961,45:315-329.
    [40]Nelson P H. Pore-throat sizes in sandstones,tight sandstones,and shales[J]. AAPG Bulletin,2009,93(3):329-340
    [41]Olav W. Modeling Quartz Cementation and Porosity in Middle Jurassic Brent Group Sandstones of the Kvitebjφrn Field,Northern North Sea[J]. AAPG Bulletin,2000,84 (9).1325-1339.
    [42]Pauld D. Lundegard,Sandstone porosity loss~a "big picture"view of the importance of compaction[J].Journal of sedimentary petrology,1992,62 (2),250-260
    [43]Paxton S T,Szabo J M. Construction of an intergranular volume compaction curve for evaluating and predicting compaction and porosity loss in rigid-grain sandstone reservoirs[J]. AAPG Bulletin,2002,86(12):2047-2067
    [44]Paxton S T,Szabo J M.Construction of an intergranular volume compaction curve for evaluating and predicting compaction and porosity loss in rigid-grain sandstone reservoirs[J].AAPG Bulletin,2004,v.86,p.2047-2067
    [45]Pittman E D,Larese R E,Heald M T.Clay coats:occurrence and relevance to preservation of porosity[A].In:Houseknecht D W,Human E D,eds.Origin,Diagenesis,and petrophysics of clay minerals in sandstones[C].SEPM,Special Publication No 47,1992.241-255
    [46]Pittman E D,Larese R E.Compaction of lithic sands experimental results and applications[J].AAPG Bulletin,1991,75(8):1279-1299
    [47]Ramm M K,BjOrlykke. Porosity/depth trends in reservoir sandstones:assessing the quantitative effects of varying pore pressure,temperature history and mineralogy,Norwegian shelf area[J].Clay Minerals,1994,29 (4):475-490.28.
    [48]Richard G H,Kenneth D R. Seimentology and sequence strgtigra and river-delta deposystems. Pennsylvanian Mintum Formation. Colorado [J].AAPG Bulletin,2003,87(7):1169-1191
    [49]Rick C T,Tony M C,Robert B L,et al. Reservoir quality modeling of tight-gas sands in Wamsutter field:Integration of diagenesis,petroleum systems,and production data [J]. AAPG Bulletin,2010;94, (8):1229-1266.
    [50]Salman B,Robert H L.Anomalously high porosity and permeability in deeply buried sandstone reservoirs:Origin and predictability [J]. AAPG Bulletin,86,(2).301-328
    [51]Scherer M. Parameters influencing porosity in sandstone:a model for sandstone porosity prediction [J]. AAPG Bulletin,1987,71 (5),485-491
    [52]Scherer M. Parameters influencing porosity in sandstones:Amodel for sandstone porosity prediction [J]. AAPG Bulletin,1987,71:485-491
    [53]Shanley K W,Robert M. Factors controlling prolific gas production from low-permeability sandstone reservoirs:Implications for resource assessment,prospect development,and risk analysis[J]. AAPG Bulletin,2004,88(8):1083-1121
    [54]Spencer C W. Review of characteristics of low permeability gas reservoirs in Western United States [J]. AAPGBulletin,1989,73(5):613-629
    [55]Surdam R C,Crossey L J,Hagen E S,et al. Organic-inorganic and sandstone diagenesis [J]. AAPG Bulletin,1989,73 (1):1-23.
    [56]Thomas R T,Melvyn R G,Lori A H,et al. Sandstone diagenesis and reservoir quality prediction: Models,myths,and reality [J]. AAPG Bulletin,2010;94, (8):1093-1132.
    [57]Wang H,Zhao W D. A Modified Alternating-Direction Finite Volume Method for Modeling Secondary Hydrocarbon Migration and Accumulation Processes [J].Wiley Periodicals, 2003,19(2):254-270
    [58]Wang Z L,Chen H L. The distribution and evolution of fluid pressure and its influence on natural gas accumulation in the Upper Paleozoic of Shenmu-Yulin area, Ordos Basin[J]. Science in China Press D:Earth Sciences,2007,50:59-74
    [59]Wei C T, Qin Y,Geoff G X, et al. Simulation study on evolution of coalbed methane reservoir in Qinshui basin,China[J]. International Journal of Coal Geology,2007,72:53-69
    [60]Zeng L B, Liu H T. The key geological factors influencing on development of low-permeability sandstone reservoirs:A case study of the Taizhao Area in the Songliao Basin,China[J]. Energy Exploration & Exploitation,2009,27(6):425-437
    [61]Zhang C,Xie X N,Jiang T,et al. Hydrocarbon migration and accumulation along a long-term growth fault:Example from the BZ25-1 oilfield of Bohai basin,eastern China[J]. Journal of Geochemical Exploration,2006,89:460-464
    [62]Zheng S Y,Patrick W M. Uncertainty in well test and core permeability analysis;a case study in fluvial channel reservoirs,northern North Sea,Norway[J]. AAPG Bulletin,2005,84(12):1929-1954
    [63]曹剑,张义杰.油气储层自生高岭石发育特点及其对物性的影响[J],矿物学报,2005,25(4):367-373
    [64]陈丽华,魏宝和,何锦发.电子探针波谱及能谱分析在石油地质上的应用[J].北京:石油工业出版社,1991:44-52
    [65]陈丽华,魏宝和,缪昕.扫描电镜在石油地质上的应用.北京:石油工业出版社,1990:12-30
    [66]陈全红,李可永,张道锋,等.鄂尔多斯盆地本溪组—太原组扇三角洲沉积与油气聚集的关系[J],中国地质,2010,37(2):421-429
    [67]陈全红,李文厚,高永祥,等.鄂尔多斯盆地上三叠统延长组深湖沉积与油气聚集意义[J],中国科学D辑:地球科学,2007,37(增刊Ⅰ):39-48
    [68]程时清,陈平中.利用试井压力描述储层非均质性[J].石油与天然气地质,1995,16(3):285-289.
    [69]邓秀芹,刘新社,李士祥.鄂尔多斯盆地三叠系延长组超低渗透储层致密史与油藏成藏史[J].石油与天然气地质,2009.30,(2):156-161.
    [70]丁白涛,雷利.微构造油藏勘探实例[J].石油勘探与开发,2004,31(2):84-87
    [71]窦伟坦,侯明才,陈洪德,等.鄂尔多斯盆地三叠系延长组油气成藏条件及主控因素研究[J].成都理工大学学报,2008.35,(6):686-692.
    [72]费卫红,李忠,孙海山,东濮凹陷桥口-白庙地区砂岩石英增生及其对流体活动的反映[J].地质科学,2000,35(1):152-163
    [73]付晓飞,王朋岩,吕延防,等.松辽盆地西部斜坡构造特征及对油气成藏的控制[J].地质科学,2007.42(2):209-222.
    [74]傅强,李益.哪尔多斯盆地三叠系延长组长8一-长7油层组高分辨率层序地层格架及其地质愈义[J].现代地质,2006,20(4):579-584
    [75]郭彦如,刘化清,李相博,等.大型坳陷湖盆层序地层格架的研究方法体系—以鄂尔多斯盆地中生界延长组为例[J],沉积学报,2008,26(3):384-391
    [76]郭泽清,李本亮,张林.低幅度构造天然气成藏的闭合度下限探讨-以柴达木盆地三湖地区为例[J].地质科学,2008,43(1):34-49
    [77]何自新,付金华,席胜利,等.苏里格大气田成藏地质特征[J].石油学报,2003,24(2):6-11.
    [78]阂琪,金贵孝,荣春龙.低渗透油藏开发新技术[C].石油工业出版社,1998.
    [79]贺承祖,华明琪.储层孔隙结构的分形几何描述[J].石油与天然气地质,1998,19(1):15-21.
    [80]贺伟,钟孚勋,贺承祖,等.储层岩石孔隙结构的分形结构和应用[J].天然气工业,2000,20(2):67-70.
    [81]黄思静,张萌.砂岩孔隙成因对孔隙度/渗透率关系的控制作用-以鄂尔多斯盆地陇东地区三叠系延长组为例[J],成都理工大学学报,2004,31(6):648-653
    [82]黄志龙,江青春,席胜利,等.鄂尔多斯盆地陕北斜坡带三叠系延长组和侏罗系油气成藏期研究[J].西安石油大学学报,2009.24,(1):21-24.
    [83]贾承造,赵文智,邹才能,等.岩性地层油气藏地质理论与勘探技术[J].北京,石油工业出版社,2008
    [84]贾文瑞,李福恺,肖敬修.低渗透油田开发部署中几个问题的研究田[J].石油勘探与开发,1995,22(4):47-51.
    [85]金强,JamesR Browton用生产井信息确定储层非均质性[J].石油大学学报:自然科学版,1999,23(2):18-21.
    [86]景贵成,刘福海,俞理.天然低渗岩芯分形维数变化原因分析[J].岩石力学与工程学报,2005,24(6):921-924
    [87]鞠杨,杨永明,宋振铎,等.岩石孔隙结构的统计模型[J],中国科学,2008,38(7):1026-1041
    [88]旷红伟,高振中,王正允,等.一种独特的隐蔽油藏——夏9井区成岩圈闭油藏成因分析及其对勘探的启迪[J],岩性油气藏,2008,20(1):8-14
    [89]李道品,低渗透油田开发概论[M],大庆石油地质与开发,1997,16(3):33-37
    [90]李德生.重新认识鄂尔多斯盆地油气地质学[J],石油勘探与开发,2004,31(6):1-7
    [91]李凤杰,王多云,张庆龙,等.鄂尔多斯盆地陇东地区延长组沉积相特征与层序地层分析[J],沉积学报,2006,24(4):549-554
    [92]李立诚.准噶尔盆地近地表结构复杂条件下低幅度和岩性、地层圈闭的勘探[J].新疆石油地质,2000.21(6):453-456.
    [93]李留仁,赵艳艳,李忠兴,等.多孔介质微观孔隙结构分形特征及分形系数的意义[J].石油大学学报,2004,28(3):105-107
    [94]李明诚,李剑.“动力圈闭”—低渗透致密储层中油气充注成藏的主要作用[J],石油学报,2010,31(5):718-722
    [95]李胜利,赵舒,付菊,等.利用鄂尔多斯盆地镇泾油田沉积微相展布与演化规律分析油田开发调整方向[J],地学前缘,2008,15(1):85-92
    [96]李文厚,庞军刚,曹红霞,等.鄂尔多斯盆地晚三叠世延长期沉积体系及岩相古地理演化[J],西北大学学报(自然科学版):2009,39(3):501-506
    [97]李相博,刘化清,陈启林,等.大型坳陷湖盆沉积坡折带特征及其对砂体与油气的控制作用—以鄂尔多斯盆地三叠系延长组为例[J],沉积学报,2010,28(4):717-729
    [98]李艳,范宜仁,邓少贵,等.核磁共振岩心实验研究储层孔隙结构[J],勘探地球物理进展,2008,31(2):129-132
    [99]李忠,刘嘉庆.沉积盆地成岩作用的动力机制与时空分布研究若干问题及趋向[J],沉积学报,2009,27(5):837-848
    [100]林春明,蒋维三,李从先.杭州湾地区全新世典型生物气藏特征分析[J].石油学报,1997.18(3):44-50.
    [101]林春明,朱嗣昭,黄志诚,蒋维三.浙江沿海平原第四系生物气特征和成藏条件[J].南京大学学报(自然科学版),1999.35(3):286-295.
    [102]林光荣:邵创国等.低渗气藏水锁伤害及解除方法研究[J],石油勘探与开发,2003,30(6):117-118
    [103]刘化清,袁剑英,李相博.鄂尔多斯盆地延长期湖盆演化及其成因分析[J].岩性油气藏,2007,19(1):52-56
    [104]刘建清,赖兴运,于炳松.库车凹陷克拉2气田深层优质储层成因及成岩作用模式[J].沉积学报,2005,23(3),412-42
    [105]刘立,于均民,孙晓明,等.热对流成岩作用的基本特征与研究意义[J].地球科学进展,2000,15(5):583-585
    [106]卢文忠.中国东南沿海、长江中下游地区第四系浅层天然气分布及勘探前景[J].天然气工业,1998.18(3):25-29.
    [107]罗蛰潭,王允诚.油气储集层的孔隙结构[M].北京:科学出版社,1986,21-43.
    [108]马新仿,张世诚,朗兆新.储层岩石孔隙结构的分形研究[J].中国矿业,2003,12(9):46-48
    [109]梅志超,彭荣华,杨华,等.陕北上三叠统延长组含油砂体的沉积环境,石油与天然气地质,1988,9(3):261-267
    [110]孟元林,王志国,杨俊生,等.成岩过程综合模拟及其应用[J].石油实验地质,2003,25(2):211-220
    [111]倪新锋,陈洪德,韦东晓.鄂尔多斯盆地三叠系延长组层序地层格架与油气勘探[J],中国地质,2007,34(1):73-80
    [112]彭彩珍,李治平,郭彬程.低渗透油藏毛管压力曲线特征分析及应用[J].西南石油学院学报,2002,24(2):21-24.
    [113]秦红,王多云,李树同,等.鄂尔多斯盆地镇北地区三叠系延长组长3油层组储油砂体成因及成藏特征研究[J].天然气地球科学,2006.17,(3):391-396.
    [114]邱隆伟,赵伟,刘魁元.碱性成岩作用及其在济阳坳陷的应用展望[J],油气地质与采收率2007,14(2):10-15
    [115]裘亦楠,薛叔浩.油气储层评价技术[M].北京:石油工业出版社,1997:58-59
    [116]屈世显,张建华,等.分形与分维及在地球物理学中的应用[J].西安石油学院学报,1991,6(2):8-13
    [117]寿建峰等.砂岩动力成岩作用[M].北京:石油工业出版社,2005
    [118]宋子齐,程国建,杨立雷,等.利用测井资料精细评价特低渗透储层的方法[J],石油实验地 质,2006,28(6):595-599
    [119]孙小平,石玉江,姜英昆.长庆低渗透砂岩气层测井评价方法[J],石油勘探与开发,2000,27(5):115-119
    [120]孙玉善,申银民,徐迅,等.应用成岩岩相分析法评价和预测非均质性储层及其含油性—以塔里木盆地哈得逊地区为例[J].沉积学报,2002,20(1),55-59
    [121]孙肇才.鄂尔多斯盆地北部地质构造格局及前中生界油气远景[J].石油学报,1980,1(3):7-17
    [122]唐玮,唐仁骐,白喜俊.分形理论在油层物理学中的应用[J],石油学报,2008,29(1):92-96
    [123]唐曾熊.油气藏的开发分类及描述[M].北京:石油工业出版社,1994.
    [124]田昌炳,罗凯,朱怡翔.低效气藏资源特征及高效开发战略思考[J].天然气工业,2004,24(1):4-6
    [125]王昌勇,郑荣才,王成玉,等.鄂尔多斯盆地姬塬地区延长组中段岩性油藏成藏规律研究[J].岩性油气藏,2010.22,(2):84-94.
    [126]王道富鄂尔多斯盆地特低渗透油田开发.2007,石油工业出版社
    [127]王道富,付金华,雷启鸿,等.鄂尔多斯盆地低渗透油气田勘探开发技术与展望[J].岩性油气藏,2007,19(3):126-130
    [128]王道富,朱义吾,李忠兴.鄂尔多斯盆地低渗透油气田开发技术[北京].石油工业出版社,1998,47-213.
    [129]王宏波,郑希民,冯明,鄂尔多斯盆地三叠系延长组层序地层与生储盖组合特征,天然气地球科学,2006,17(5):677-681
    [130]王建民,周卓明.顺宁油田低渗透砂岩储层沉积特征与控油因素[J].石油与天然气地质,2001,22(2):146-149,164.
    [131]王居峰,郭彦如,张延玲,等.鄂尔多斯盆地三叠系延长组层序地层格架与沉积相构成,现代地质,2009,23(5):803-808
    [132]王衍琦,张绍平,应风祥.阴极发光显微镜在储层研究中的应用.北京:石油工业出版社,1996:29-70
    [133]王震亮,陈荷立,王飞燕,等.鄂尔多斯盆地中部上古生界天然气运移特征分析,石油[J],勘探与开发,1998,25(6):1-4
    [134]王震亮,陈荷立.神木-榆林地区上古生界流体压力分布演化及对天然气成藏的影响[J],中国科学,2007,37(增刊):49-61
    [135]王震亮,孙明亮,张立宽,等.川西地区须家河组异常压力演化与天然气成藏模式[J],地球科学,2004,29(4):433-439
    [136]王震亮,张立宽,孙明亮,等.鄂尔多斯盆地神木-榆林地区上石盒子组-石千峰组天然气成藏机理[J],石油学报,2004,25,25(3):37-43
    [137]王志章,何刚.储层流动单元划分方法与应用[J].天然气地球科学.2010,21(3):362-366
    [138]夏同星,明君.精细油藏描述技术在渤海A油田建设中的应用[J],天然气工业,2007,27(3):384-386
    [139]谢然红,肖立志,张建民,等.低渗透储层特征与测井评价方法[J],中国石油大学学报(自然科学版):2006,30(1):47-55
    [140]严衡文,皮广农,吴震滨,等.我国陆相低渗透砂岩油层的粒度和孔隙系统的特征[A].低渗透油气田研究与实践[C].石油工业出版社,1998,11-19.
    [141]杨百全,黄华梁,李玉华,等.低渗透储层特征参数研究与应用[J],天然气工业,2001,21(2):32-35
    [142]杨帆,于兴河,李胜利,等.低孔低渗构造岩性油藏油水倒置成因研究[J],中国矿业大学学报,2010,39(5):747-752
    [143]杨华,窦伟坦,喻建,等.鄂尔多斯盆地低渗透油藏勘探新技术[J].中国石油勘探,2003,8(1):32-41.
    [144]杨华,张文正.论鄂尔多斯盆地长7段优质油源岩在低渗透油气成藏富集中的主导作用:地质地球化学特征[J].地球化学,2005,34(2):147-153.
    [145]杨俊杰.低渗透油气藏勘探开发技术[M].北京:石油工业出版社,1993:32-40.
    [146]杨俊杰.鄂尔多斯盆地构造演化与油气分布规律[M].北京,石油工业出版社,2002
    [147]杨双定.鄂尔多斯盆地致密砂岩气层测井评价新技术[J],天然气工业,25(9):44-47
    [148]杨晓宁,陈洪德,寿建峰,等.碎屑岩次生孔隙形成机制[J].大庆石油学院学报,2004,28(1):4-6
    [149]杨学文,高振中,尚建林.准噶尔盆地夏9井区成岩圈闭油藏特征[J],石油学报,2007,28(6):47-51
    [150]杨昀.鄂尔多斯盆地南部中生界成岩圈闭[J],石油勘探与开发,1996,23(3):34-39
    [151]姚合法,林承焰,靳秀菊,等.多参数判别流动单元的方法探讨[J],沉积学报,2006,21(1):90-95
    [152]应凤祥,罗平,何东博,等.中国含油气盆地碎屑岩储集层成岩作用与成岩数值模拟[M]北京:石油工业出版社,2004
    [153]袁静,姜在兴.东营凹陷下第三系沙三下亚段孔店组沉积、成岩和油气成藏综合模式[J].矿物岩石,2000,20(1):57-60
    [154]袁静,张善文.东营凹陷深层溶蚀孔隙的多重介质成因机理和动力机制[J],沉积学报2007,25(6):840-846
    [155]曾溅辉,孔旭,程世伟,等.低渗透砂岩油气成藏特征及其勘探启示[J],现代地质,2009,23(4):755-760
    [156]曾溅辉.正韵律砂层中渗透率级差对石油运移和聚集影响的模拟实验研究[J].石油勘探与开发,2000.37,(4):102-105.
    [157]张金亮,司学强;陕甘宁盆地庆阳地区长8油层砂岩成岩作用及其对储层性质的影响,沉积学报[J],2004,22(2):225-233
    [158]张小莉,查明,王鹏.单砂体高部位油水倒置分布的成因机制[J],沉积学报,2006,24(1):148-152
    [159]张小莉,查明,杨懿.惠民凹陷沙河街组三段岩性油藏储层孔隙结构特征及油气意义[J],石油与天然气地质,2007,28(2):287-292
    [160]张志强,郑军卫.低渗透油气资源勘探开发技术进展[J],地球科学进展,2009,24(8):854-864
    [161]赵澄林,胡爱梅,陈碧珏,等.中华人民共和国石油天然气行业标准,油气储层评价方法(SY/T6285-1997)[S].北京:石油工业出版社,1998:16.
    [162]赵杰,姜亦忠,王伟男,等.用核磁共振技术确定岩石孔隙结构的实验研究]J].测井技术,2003,27(3):185-188.
    [163]赵靖舟,王永东,孟祥振,等.鄂尔多斯盆地陕北斜坡东部三叠系长2油藏分布规律[J].石 油勘探与开发,2007.34,(1):23-27.
    [164]赵文智.中国含油气系统基本特征与评价方法[M].北京,石油工业出版社,2003
    [165]赵重远.华北克拉通沉积盆地形成与演化及其油气赋存[M],西安:西北大学出版社,1990
    [166]赵追,赵全民,孙冲,等.陆相断陷湖盆的成岩圈闭—以泌阳凹陷下第三系核桃园组三段为例[J],石油与天然气地质,2001,22(2):154-157
    [167]郑浚茂,应风祥,煤系地层(酸性水介质)的砂岩储层特征及成岩模式[[J].石油学报,1997,18(4):19-24
    [168]中华人民共和国能源部.SY/T5477-92中华人民共和国石油天然气行业标准—碎屑岩成岩阶段划分规范.北京:石油工业出版社,1993:1-5
    [169]钟宝荣,王泽中,李龙浇,等.储层孔隙结构分形分析计算机实现[J].石油与天然气地质,1995,16(4):379-383.
    [170]钟大康,朱筱敏.早期碳酸盐胶结作用对砂岩孔隙演化的影响-以塔里木盆地满加尔凹陷志留系砂岩为例[J],沉积学报,2007,25(6):885-890
    [171]周东升,刘光祥.深部砂岩异常孔隙的保存机制研究[J],石油实验地质,2004,26(1):40-45
    [172]周守信,徐严波,李士伦,等.致密泥质砂岩储层的物性预测方法及应用[J],天然气工业,2004,24(1):39-42
    [173]朱国华.碎屑岩储集层孔隙的形成、演化和预测[J].沉积学报,1992,10(3),114-124
    [174]朱国华.陕甘宁盆地西南部上三盛系延长统低渗透砂体和次生孔隙砂体的形成[J].沉积学报,1985,3(2),1-20
    [175]朱筱敏,王英国.济阳坳陷古近系储层孔隙类型与次生孔隙成因[J],地质学报,2007,81(2):198-203
    [176]邹才能,陶士振,薛叔浩.“相控论”的内涵及其勘探意义[J].,石油勘探与开发,2005,12,32(6),7-12
    [177]邹才能,陶士振,张响响,等.中国低孔渗大气区地质特征、控制因素和成藏机制[J],中国科学D辑:地球科学,2009,39(11):1607-1624

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700