用户名: 密码: 验证码:
含液多孔介质中失稳现象理论研究及应变局部化的有限元—无网格耦合方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究含液多孔介质的失稳现象,诸如基坑工程或隧洞的开挖过程中可能出现的地基沉降甚至坑壁垮塌;以及边坡或堤坝由地震或暴雨所引发的滑动破坏(通常称为滑坡现象或边坡失稳)具有很重要的工程和理论意义。本论文从理论分析和数值模拟两个方面致力于研究在静、动力荷载作用下含液(特别是饱和)多孔介质中驻波间断、颤振失稳和应变局部化等破坏现象和过程。
     在多孔介质受到冲击或爆炸等高频模态占主导地位的脉动荷载作用时,人们需要研究介质中应力波的传播过程。工程中许多多孔材料为塑性应变软化材料。在应力波的传播过程中,介质内某处的受力状态将首先达到材料的极限承载能力,并伴随以在介质中局部狭窄区域内急剧发生非弹性应变为特征的应变局部化现象和承载能力的急剧下降。
     本论文基于饱和与非饱和含液多孔介质的非线性动力.渗流耦合模型(广义Biot模型)。计及介质中流固两相的惯性耦合,具体考虑模拟介质压力相关弹塑性本构行为的非关联Drucker-Prager准则,忽略液相和固相颗粒的压缩性。详细分析了二维情况下含液饱和多孔介质在动力荷载作用下波传播过程的间断和失稳,导出了在波传播过程中产生驻波间断和动力颤振失稳的临界条件。驻波间断是由于应变软化导致材料失稳的结果,它并不一定意味着完全丧失波通过间断面在介质中继续传播的能力。颤振失稳则是因为模拟含液多孔介质固体骨架的非关联塑性本构行为所致,它可以先于驻波间断、即在塑性硬化阶段发生;但它仅可能在含液多孔介质中发生,对于固体材料即使为非关联塑性连续体也不可能发生颤振失稳现象。
     波的逸散性意味着波的相速度随频率而变化。这一性质与正确模拟波在因应变软化引起的应变局部化区域中的传播密切相关。本论文基于上述耦合模型,对单轴应变一维情况讨论了非线性饱和—非饱和多孔介质中波传播过程的失稳现象和逸散性。分析了流固粘性耦合、流固惯性耦合、流固混合体的压缩性、孔隙饱和度及固体骨架材料在高应变速率下粘弹塑性本构行为等因素对失稳与逸散性的影响。由此所获得的结果和结论将为克服含液多孔介质在强动荷载作用下波传播过程数值模拟的困难提供理论基础和线索。
     实验观察表明,在粘性土等多孔介质材料中因应变软化引起的在局部区域发生并急剧发展塑性变形的剪切带具有一定的宽度。此外,剪切带的萌发、发展直至最终形成是一个渐进破坏过程。为数值模拟和再现这一渐进破坏过程,本论文工作中作为正则化机制引入梯度塑性模型。对饱和多孔介质(也能作为退化情况用于固体材料)提出了一个归结为线性互补问题(Linear Complementary Problem)求解过程的梯度塑性连续体有限元—无网格耦合方法。
     为模拟材料的弹塑性本构行为,对固体材料和饱和多孔介质分别采用von-Mises准则和非关联Drucker-Prager准则。利用在积分点上定义的离散塑性乘子值和采用基于移动最小二乘(Moving Least-Square)的无网格法插值近似假定塑性乘子场。而位移和压力场则利用定义在节点上的离散值采用有限元法插值近似。因而可充分发挥无网格法与有限元法的各自优势,而避免它们的各自缺点。
     通过建立平衡方程的弱形式实现空间离散化,结合在积分点上逐点满足而不是积分意义下满足非局部本构方程和屈服条件,导出相应的线性互补问题标准型。并通过Lexico-Lemke算法求解。发展了一个基于向后欧拉返回映射积分方案和利用Newton-Raphson方法的全局迭代过程的一致性算法,使得空间离散的平衡方程和在每个积分点上的非局部本构方程和屈服准则在每次全局迭代中同时满足。值得强调指出,所提出方法在保证二阶收敛率的同时无需形成非局部一致性切线刚度矩阵;另外,对于非关联塑性模型,所导出的为线性互补问题求解的全局广义刚度阵仍保持对称。数值结果表明,所发展的模型和一致性算法能正确模拟由应变软化引起的以应变局部化为特征的渐进破坏过程。
The study of instability phenomena occurring in saturated porous media,such as the subsidence of soil foundation,the collapse of pit walls in the pit construction or the excavation process of tunnels,the landslide of soil slopes and dikes subjected to earthquake or rainstorm loads,is of great significance in sciences and engineering.The present dissertation devotes to the failure phenomena and processes in the saturated(particularly fully saturated) porous media subjected to static and dynamic loads,i.e.stationary discontinuity,flutter instability and strain localization.
     The wave propagation problems have to be investigated while the high frequency modes of the loading pulse dominate the response of the porous media due to impact or explosive loading.A great number of engineering porous materials are classified as plastic strainsoftening materials.The stress and strain states at some local points where traveling waves through will first reach the limit load-carrying capability.Which follow to occur are strain localization characterized by intensely increasing inelastic deformation into narrow bands around the local points and a reduction of the load-carrying capability due to strain-softening.
     The present work is carried out on the basis of the non-linear coupled hydro-dynamic model named after the generalized Biot model for saturated and unsaturated porous media. The inertial coupling between the solid skeleton and pore fluid is incorporated into the model to account for the response to the excitation with high frequency modes.In what follows the non-associated Drucker-Prager criterion is particularly considered to simulate the pressure dependent elasto-plastic constitutive behavior in the media.With no consideration of compressibility of solid grains and the pore fluid,the discontinuity and instability of the wave propagation in saturated poro-elastoplastic media are analyzed for the plane strain problems in detail.The critical conditions for the stationary discontinuity and flutter instability to occur in the wave propagation in poro-elastoplastic media are derived and formulated.It is found that stationary discontinuity can be regarded as a result of material instability due to strain softening and does not necessarily mean that the media will entirely lose the ability to wave propagation passing through the surface of discontinuity.Flutter instability stems from non-associated plasticity used to simulate the non-linear constitutive behavior of the solid skeleton of the porous medium and may occur prior to the stationary discontinuity,i.e.at the plastic strain hardening stage.This phenomenon can only occur for saturated porous medium. In the solids even when non-associated plasticity is considered,no flutter instability may occur.
     The dispersivity of wave propagation implies that phase velocity of a single harmonic wave is a function of the angle frequency.This property of wave propagation is intrinsically related to a correct simulation of wave propagation in the zone where the strain localization due to strain softening occurs.Based on the coupled hydro-dynamic model mentioned above, the instability and dispersivity of wave propagation in inelastic saturated/unsaturated porous media in one dimensional problem are analyzed.The effects of the following factors on the instability and dispersivity are discussed.They are the viscous and inertial couplings between the solid and fluid phases,compressibility of the mixture composed of solid grains and pore fluid,degree of saturation,visco-plastic(rate dependent inelastic) constitutive behavior of the solid skeleton under high strain rate.The results and conclusions obtained by the present work will provide some bases and clues for overcoming the difficulties in numerical modeling of wave propagation in the media subjected to strong and shock loadings.
     It has been experimentally observed in many engineering materials such as in the clay that a shear band of intense plastic deformation caused by strain softening possesses a finite width.In addition,the threshold and evolution of the shear band until its final formation is a progressive failure process.To numerically simulate and reproduce the progressive process the gradient plasticity model is introduced as a regularization mechanism in the present work. A coupled finite element and meshfree method attributed to a solution procedure of linear complementary problem(LCP) for gradient plasticity continuum for both saturated porous medium and the solid is presented.
     The von-Mises criterion and non-associated Drucker-Prager criterion are respectively adopted to model elasto-plastic constitutive behaviors in the solid and the saturated porous medium.With the mesh-free(MF) method based on moving least-square approximation (MLS) procedure,the plastic multiplier field is assumed and approximately interpolated in terms of its discretized values defined at the integration points.Whereas the displacements and pore pressure fields are discretized in terms of their discretized values defined at the nodal points with finite element(FE) interpolation approximations.Hence,respective advantages of both FE and MF methods are exploited and their respective weak points are avoided.
     The weak form of the equilibrium equation along with the non-local constitutive equation and the non-local yield criterion locally enforced at each integration point are combined to mathematically educe a normal form of LCP solved by means of Lexico-Lemke algorithm.A consistent algorithm based on backward-Euler return mapping integration scheme with a global iterative procedure based on the Newton-Raphson method is devised to simultaneously satisfy at each iteration the discretized momentum conservation equation as well as the non-local constitutive equation and non-local yield criterion at each of local integration points.It is remarked that there is no need to derive non-local consistent tangent elasto-plastic modulus matrix in the proposed method while the second convergence rate for the solution of the boundary problem of gradient plasticity continuum is still retained. Moreover,the global generalized stiffness matrix for the LCP solver derived by the proposed method remains symmetric even for the non-associated plasticity model.The numerical results demonstrate the validity of the proposed model and numerical method in the simulation of progressive failure process characterized with the strain localization problem due to strain softening.
引文
[1]Coulomb CA.Essai sur une application des rcgles de maximis et minimis a quelques problcrnes de statiquc,relatifs a l'architccture.Memoires dc Mathematiquc et de Physique,prcsentcs a l'Acadcmic,Royale des Sciences par divers Savans,ct lus dans ses Asscmblces,Paris,1773.
    [2]Wood DM.Soil Behaviour and Critical State Soil Mechanics.Cambridge:Cambridge University Press,1990.
    [3]Rankine WMJ.On Stability of Loose Earth.Philosophic Transactions of Royal Society,London,1857.
    [4]Terzaghi K.Die berechnung der durchl ssigkeitsziffer des tones aus dem verlauf der hydrodynamischen spannungserscheinungen.Akademic Der Wissenchafton in Wien.1923,132(3-4):125-128.
    [5]Terzaghi K.Erdbaumechanik auf Bodenphysikalischer Grundlage.Vienna:Dueticke,1925.
    [6]Terzaghi K.Theoretical Soil Mechanics.New York:John Wiley & Sons,1943.
    [7]Biot MA.General theory of three-dimensional consolidation.Journal of Applied Physics.1941,12:155-164.
    [8]Biot MA.Theory of propagation of elastic waves in a fluid saturated porous solid.Journal of the Acoustical Society of America.1956,28:168-191.
    [9]Biot MA.Mechanics of deformation and acoustic propagation in porous media.Journal of Applied Physics.1962,33:1482-1498.
    [10]Truesdell C.Sulle basi della termomeccanica.Rendiconti della classe di Scienze Fisiche.1957,22:33-38.
    [11]Truesdell C,Toupin R.The classical field theories.Handbuch der Physik,Berlin,1960.
    [12]Bowen RM.Theory of mixtures.Continuum Physics,Vol Ⅲ,New York,1976.
    [13]Bowen RM.Compressible porous media models by use of the theory of mixtures.International Journal of Engineering Science.1982,20(6):697-735.
    [14]Zienkiewicz OC.Basic formulation of static and dynamic behaviours of soil and other porous media Applied Mathematics and Mechanics.1982,3(5):457-468.
    [15]Prevost JH.Mechanics of continuous porous media.International Journal of Engineering Science.1980,18(6):787-800.
    [16]Zienkiewicz OC,Shiomi T.Dynamic behaviour of saturated porous media:The generalized Biot formulation and its numerical solution.International Journal for Numerical and Analytical Methods in Geomechanics.1984,8(1):71-96.
    [17]Zienkiewicz OC,Chan AHC,Pastor DK,et al.Static and dynamic behaviour of soils:a rational approach to quantitative solutions,Part I:Fully saturated problems.Proc R Soc London,London,1990.
    [18]Zienkiewicz OC,Xie YM,Schrefler BA,et al.Static and dynamic behaviour of soils:a rational approach to quantitative solutions,Part Ⅱ:Semi-saturated problems.Proc R Soc London,London,1990.
    [19]Fredlund DG,Rahardjo H.Soil mechanics for unsaturated soils.New York:John Wiley & Sons,1993.
    [20]Li XK.Finite element analysis for immiscible two-phase fluid flow in deforming porous media and an unconditionally stable staggered solution.Communications in Applied Numerical Methods.1990,6(2):125-135.
    [21]Li XK,Zienkiewicz OC,Xie YM.A numerical model for immiscible two-phase fluid flow in a porous medium and its time domain solution.International Journal for Numerical Methods in Engineering.1990,30(6):1195-1212.
    [22]Li XK,Zienkiewicz OC.Multiphase flow in deforming porous media and finite element solutions.Computers & Structures.1992,45(2):211-227.
    [23]Li XK,Thomas HR,Fan YQ.Finite element method and constitutive modelling and computation for unsaturated soils.Computer Methods in Applied Mechanics and Engineering.1999,169:135-159.
    [24]李锡夔,范益群.非饱和土变形及渗流过程的有限元分析.岩土工程学报.1998,20(4):20-24.
    [25]李锡夔.非饱和土中的有效应力.大连理工大学学报.1997,37:381-385.
    [26]杨代泉,沈珠江.非饱和土—维固结简化计算.岩土工程学报.1991,13(5):70-78.
    [27]沈珠江.非饱和土简化固结理论及其应用.水利水运工程学报.2003,4:1-6.
    [28]Thomas HR,King SD.Coupled temperature/capillary potential variations in unsaturated soil.Journal of Engineering Mechanics,ASCE.1991,11:2475-2491.
    [29]Thomas HR,Li CLW.Modelling transient heat and moisture transfer in unsaturated soils using a parallel computing approach.International Journal for Numerical and Analytical Methods in Geomechanics.1995,19:345-366.
    [30]Thomas HR,He Y,Onofrei C.An examination of the validation of a model of the hydro/thermo/mechanical behaviour of engineered clay barriers.International Journal for Numerical and Analytical Methods in Geomechanics.1998,22:49-71.
    [31]Schrefler BA,Zhan X.Multiphase flow in deforming for water flow and airflow in deformable porous media.Water Resources Research.1993,29:155-167.
    [32]Schrefler BA.F.E.in environmental engineering:Coupled thermo-hydro-mechanical processes in porous media including pollutant transport.Archives of Computational Methods in Engineering.1995,2-3:1-54.
    [33]Schrefler BA,Scotta R.A fully coupled dynamic model for two-phase fluid flow in deformable porous media.Computer Methods in Applied Mechanics and Engineering.2001,190:3223-3246.
    [34]Lewis RW,Majorana CE,Schrefler BA.Coupled finite element model for the consolidation of non-isothermal elastoplastic porous media.Transport in Porous Media.1986,1:155-178.
    [35]Lewis RW,Schrefler BA.The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media.Chichester:John Wiley & Sons,1998.
    [36]Lewis RW,Nithiarasu P,Seetharamu KN.Fundamentals of the Finite Element Method for Heat and Fluid Flow.New York:John Wiley & Sons,2004.
    [37]Li XK,Wu WH,Zienkiewicz OC.Implicit characteristic Galerkin method for convection-diffusion equations.International Journal for Numerical Methods in Engineering.2000,47(10):1689-1708.
    [38]Li XK,Liu ZJ.Mixed finite element method for coupled thermo-hydro -mechanical process in unsaturated poroelastoplastic media at large strains.Int.Conf.on Computational Methods for Coupled Problems in Science and Engineering,Greece,2005.
    [39]Drucker DC,Prager W.Soil mechanics and plasticity analysis or limit design.Quarterly Applied Mathematics.1952,10:157-165.
    [40]van Eekelen HAM.Isotropic yield surface in three dimensions for use in soil mechanics.International Journal for Numerical and Analytical Methods in Geomechanics.1980,4:98-101.
    [41]Roscoe KH,Schofield AN,Wroth CP.On the yielding of soils.Geotechnique.1958,8(1):22-53.
    [42]Roscoe KH,Burland JB.On the generalized stress strain behaviour of wet clay.Engineering Plasticity,London,1968.
    [43]Alonso EE,Gens A,Josa A.A constitutive model for partially saturated soils.Geotechnique.1990,40(3):405-430.
    [44]Gens A,Alonso EE.A framework for the behaviour of unsaturated expansive clays.Canadian Geotechnieal Journal.1992,29:1013-1032.
    [45]沈珠江.广义吸力和非饱和土的统一变形理论.岩土工程学报.1996,18:1-8.
    [46]沈珠江.理论土力学.北京:中国水利水电出版社,2000.
    [47]陈正汉,谢定义.非饱和土固结的混合理论.应用数学与力学.1993,2:127-136.
    [48]陈正汉,王永胜,谢定义.非饱和土的有效应力探讨.岩土工程学报.1994,16:63-69.
    [49]陈正汉.岩土力学的公理化理论体系.应用数学和力学.1994,10:901-910.
    [50]郑颖人,刘元雪.塑性位势理论的发展及其在岩土本构模型中的应用.现代力学与科技进步文集.1997,1:115-118.
    [51]郑颖人.岩土塑性力学的新进展——广义塑性力学.岩土工程学报.2003,25(1):1-10.
    [52]殷宗泽.一个土体的双屈服面应力—应变关系.岩土工程学报.1988,6(4):24-40.
    [53]殷宗泽,卢海华,朱俊高.土体的椭圆一抛物双屈服面模型及其柔度矩阵.水利学报.1996,12:23-28.
    [54]殷宗泽.土力学与地基.北京:中国水利水电出版社,1999.
    [55]徐永福,刘松玉.非饱和土强度理论及其工程应用.南京:东南大学出版社,1999.
    [56]徐永福,傅德明.非饱和膨胀土结果强度研究.工程力学.1999,16(4):73-77.
    [57]吴世明,周健,杨挺.岩土工程新技术.北京:中国建筑工业出版社,2001.
    [58]周健,白冰,杨挺.土动力学理论与计算.北京:中国建筑工业出版社,2001.
    [59]周健,吴世明,徐建平.环境与岩土工程.北京:中国建筑工业出版社,2001.
    [60]Roscoe KH.The influence of strains in soil mechanics.Geotechnique.1970,20(2):129-170.
    [61]Arthur JFR,Dunstan T,A1-Ani Q,et al.Plastic deformation and failure in granular media.Geotechnique.1977,27(1):53-74.
    [62]Vardoulakis I.Shear band inclination and shear modulus of sand in biaxial tests.International Journal for Numerical and Analytical Methods in Geomechanics.1980,4:103-119.
    [63]Desmes J,Viggiani G.Strain localization in sand:an overview of the experimental results obtained in Grenoble using stereophotogrammetry.International Journal for Numerical and Analytical Methods in Geomechanics.2004,28:279-321.
    [64]Louis L,Wong TF,Baud P.Imaging strain localization by X-ray radiography and digital image correlation:Deformation bands in Rothbach sandstone.Journal of Structural Geology.2007,29:129-140.
    [65]郑捷,陈融.岩石变形局部化的实验研究.地球物理学报.1983,26(6):554-562.
    [66]潘一山,杨小彬,马少鹏.岩石变形破坏局部化的白光数字散斑相关方法研究.岩土工程学报.2002,24(1):98-100.
    [67]郭莹,郭承侃,陆尚模.土力学.大连:大连理工大学出版社,2003.
    [68]Desrues J,Chambon R,Mokni M,et al.Void ratio evolution inside shea r bands in triaxial sand specimens studied by computed tomography.Geotechnique.1996,46:529-546.
    [69]Gudehus G,N(u|¨)bel K.Evolution of shear bands in sand.Geotechnique.2004,54(3):187-201.
    [70]Loret B,Harireche O.Acceleration waves,flutter instabilities and stationary discontinuities in inelastic porous media.Journal of the Mechanics and Physics of Solids.1991,39(5):569-606.
    [71]Li XK,Zhang JB,Zhang HW.Stationary discontinuity and flutter instability of wave propagation in elasto-plastic saturated porous media.Acta Mechanica Sinica.2001,17(4):366-382.
    [72]Li XK,Zhang JB,Zhang HW.Instability of wave propagation in saturated poroelastoplastic media.International Journal for Numerical and Analytical Methods in Geomechanics.2002,26(6):563-578.
    [73]Hadamard J.Lecons sur la propagation des ondcs et les equations de 1' hydrodynamique.Librarie Scientifique,A Hermann,Paris,1903.
    [74]Hill R.A general theory of uniqueness and stability in elastic-plastic solids.Journal of the Mechanics and Physics of Solids.1958,6(3):236-249.
    [75]Thomas TY.Plastic Flow and Fracture in Solids.New York:Academic Press,1961.
    [76]Mandel J.Conditions de stabilit(?) et postulat de Drucker.Proc.IUTAM Symp.Rhcology and Soil Mechanics,Berlin,1966.
    [77]Vardoulakis I,Sulem J.Bifurcation Analysis in Geomechanics.London:Blackie Academic &Professional,1995.
    [78]Rice JR.The initiation and growth of shear bands.Proc.Symp.On Role of Plasticity in Soil Mechanics,Cambridge,1973.
    [79]Hill R,Hutchinson JW.Bifurcation phenomena in the plane tension test.Journal of the Mechanics and Physics of Solids.1975,23(4-5):239-264.
    [80]Rice JR.On the stability of dilatant hardening for saturated rock mass.Journal of Geophysical Research.1975,80:1531-1536.
    [81]Rudnicki JW,Rice JR.Conditions for the localization of deformation in pressure-sensitive dilatant materials.Journal of the Mechanics and Physics of Solids.1975,23(6):371-394.
    [82]Vardoulakis I.Bifurcation analysis of the triaxial test on sand samples.Acta Mechanica.1979,32:35-54.
    [83]Vardoulakis I,Graf B.Calibration of constitutive models for granular materials using data from biaxial experiments.Geotechnique.1985,35(3):299-317.
    [84]Loret B,Prevost JH.Dynamic strain localization in elasto-(visco-)plastic solids,Part 1.General formulation and one-dimensional examples.Computer Methods in Applied Mechanics and Engineering.1990,83(3):247-273.
    [85]Loret B,Prevost JH.Dynamic Strain Localization in Fluid-Saturated Porous Media.Journal of Engineering Mechanics,ASCE.1991,117(4):907-922.
    [86]Pictruszczak S.Undrained Response of Granular Soil Involving Localized Deformation.Journal of Engineering Mechanics,ASCE.1995,121(12):1292-1297.
    [87]Benallal A,Comi C.Material instabilities in inelastic saturated porous media under dynamic loadings.International Journal of Solids and Structures.2002,39:3693-3716.
    [88]Zhang HW,Schrefler BA.Uniqueness and localisation analysis of elastic-plastic saturated porous media.International Journal for Numerical and Analytical Methods in Geomechanics.2001,25:29-48.
    [89]杨强,陈新,周维垣.岩土材料弹塑性损伤模型及变形局部化分析.岩石力学与工程学报.2004,23(21):3577-3583.
    [90]黄茂松,钱建固.平面应变条件下饱和土体分叉后的力学性状.工程力学.2005,22(1):48-53.
    [91]钱建固,黄茂松.轴对称状态下土体剪切带触发形成的分叉理论.岩土工程学报.2003,25(4):400-404.
    [92]钱建固,黄茂松.土体应变局部化现象的理论解析.岩土力学.2005,26(3):432-436.
    [93]Vermeer PA.A simple shear-band analysis using compliances.Proc.IUTAM Conf.on Deformation and Failure of Granular Materials,Delft,1982.
    [94]王学滨,潘一山.剪切带倾角尺度律与局部化启动跳跃稳定研究.岩土力学.2002,23(4):446-449.
    [95]李蓓,赵锡宏,董建国.上海粘性土剪切带倾角的试验研究.岩土力学.2002,23(4):423-427.
    [96]门福录.波在饱水孔隙弹性介质中的传播问题.地球物理学报.1965,14(2):107-114.
    [97]门福录.波在饱含流体的孔隙水介质中的传播问题.地球物理学报.1981,24(1):64-75.
    [98]Bowen RM.Plane progressive waves in a heat conducting fluid saturated porous materiall with relaxing porosity.Acta Mechanica.1983,46:189-206.
    [99]刘占芳,李德源,严波.饱和多孔介质中的非均匀平面波.岩土力学.1999,20(4):32-35.
    [100]刘占芳,黄民战,李德源.含液饱和多孔介质中瑞利型波的弥散和衰减.重庆大学学报.2000,23:7-9.
    [101]刘占芳,姜乃斌,李思平.饱和多孔介质—维瞬态波动问题的解析分析.工程力学.2006,23(7):19-24.
    [102]刘凯欣,刘颖.含液饱和多孔介质中三维应力波的传播.力学学报.2003,35(4):469-473.
    [103]刘颖.冲击荷载作用下含液饱和多孔介质中应力波传播问题的研究:(Doctoral Dissertation).大连:大连理工大学.2002.
    [104]Hill R.Acceleration waves in solids.Journal of the Mechanics and Physics of Solids.1962,10(1):1-16.
    [105]Loret B,Simoes FME,Martins JAC.Growth and decay of acceleration waves in non-associative elastic-plastic fluid-saturated porous media.International Journal of Solids and Structures.1997,34:1583-1608.
    [106]Loret B,Rizzi E.On the effects of inertial coupling on the wave-speeds of elastic-plastic fluid-saturated porous media.Material Instabilities in Solids,New York,1998.
    [107]Runesson K,Perle D,Sture S.Effect of pore fluid compressibility on localization in elastic-plastic porous solids under undrained conditions International Journal of Solids and Structures.1996,33(10):1501-1518.
    [108]Sluys LJ.Wave propagation,localisation and dispersion in softening solids:(Doctoral Dissertation).Delft:Delft University of Technology,1992.
    [109]Sluys IA,de Borst R,M(u|¨)hlhaus HB.Wave propagation,localization and dispersion in a gradient-dependent medium.International Journal of Solids and Structures.1993,30(9):1153-1171.
    [110]Gajo A.The effects of inertial coupling in the intetpretation of dynamic soil tests.Geotechnique.1996,46(2):245-257.
    [111]Dunin SZ,Mikhailov DN,Nikolayevskii VN.Longitudinal waves in partially saturated porous media:the effect of gas bubbles.PMM Journal of Applied Mathematics and Mechanics.2006,70(2):251-263.
    [112]Weingartner B,Osinov VA,Wu W.Effect of inherent anisotropy on acceleration wave speeds in hypoplasticity.International Journal of Engineering Science.2008,46(3):286-292.
    [113]Li XK,Zhang JB,Zhang HW.Instability and dispersivity of wave propagation in inelastic saturated/unsaturated porous media.Applied Mathematics and Mechanics.2002,23(1):35-52.
    [114]Zhang HW,Zhou L,Schrefler BA.Material instabilities of anisotropic saturated multiphase porous media.European Journal of Mechanics,A/Solids.2005,24(5):713-727.
    [115]Needleman A.Material rate dependence and mesh sensitivity in localization problems.Computer Methods in Applied Mechanics and Engineering.1988,67(1):69-85.
    [116]Hu P.Rate-dependent quasi-flow comer theory for elastic/visco-plastic materials.International Journal of Solids and Structures.2004,41(5-6):1263-1284.
    [117]张洪武,秦建敏.基于率相关模型的多孔介质应变局部化基本理论.科学通报.2005,50(24):2713-2719.
    [118]de Borst R.Simulation of strain localization:a reappraisal of the Cosserat continuum.Engineering Computations.1991,8:317-332.
    [119]de Borst R,Sluys LJ.Localization in a Cosserat continuum under static and dynamic loading conditions.Computer Methods in Applied Mechanics and Engineering.1991,90:805-827.
    [120]de Borst R.A generalisation of the J2-flow theory for polar continua.Computer Methods in Applied Mechanics and Engineering.1993,103:347-362.
    [121]M(u|¨)hlhaus HB,Vardoulakis I.The thickness of shear,bands in granular materials.Geotechnique.1987,37(3):271-283.
    [122]M(u|¨)hlhans HB.Application of Cosserat theory in numerical,solutions of limit load problems.Ingenieur-Archiv.1989,59:124-137.
    [123]Dietsche A,Steinmann P,Willam K.Micropolar elasticity and its role in localization.International Journal of Plasticity.1993,9:813-831.
    [124]Steinmann P.A micropolar theory of finite deformation and finite rotation multiplicative elastoplasticity.International Journal of Solids and Structures.1994,31(8):1063-1084.
    [125]Steinmann P.Theory and numerics of ductile micropolar elastoplastic damage.International Journal for Numerical Methods in Engineering.1995,38:583-606.
    [126]Matti R,Marcella V.Use of couple-stress theory in elasto-plasticity.Computer Methods in Applied Mechanics and Engineering.1996,136:205-224.
    [127]Papanastasiou P,Vardoulakis I.Numerical treatment of progressive localization in relation to borehole stability.International Journal for Numerical and Analytical Methods in Geomechanics.1992,16:389-424.
    [128]Cramer H,Findeiss R,Steinl G,et al.An approach to the adaptive finite element analysis in associated and non-associated plasticity considering localization phenomena.Computer Methods in Applied Mechanics and Engineering.1999,176(1-4):187-202.
    [129]Li XK,Tang HX.A consistent return mapping algorithm for pressure-dependent elastoplastic Cosserat continua and modelling of strain localisation.Computers & Structures.2005,83(1):1-10.
    [130]Bazant ZP,Pijaudier-Cabot G.Nonlocal continuum damage,localization instability and convergence.Journal of Applied Mechanics,ASME.1988,55:287-293.
    [131]M(u|¨)hlhaus HB,Aifantis EC.A variational principle for gradient plasticity.International Journal of Solids and Structures.1991,28(7):845-857.
    [132]Zbib HM,Aifantis EC.On the gradient-dependent theory of plasticity and shear banding.Acta Mechanica.1992,92:209-225.
    [133]de Borst R,M(u|¨)hlhaus HB.Gradient-dependent plasticity:Formulation and algorithmic aspects.International Journal for Numerical Methods in Engineering.1992,35(3):521-539.
    [134]Li XK,Cescotto S.Finite element method for gradient plasticity at large strains.International Journal for Numerical Methods in Engineering.1996,39(4):619-633.
    [135]Comi C,Perego U.A generalized variable formulation for gradient dependent softening plasticity.International Journal for Numerical Methods in Engineering.1996,39:3731-3755.
    [136]Zhang HW,Schrefler BA.Gradient-dependent plasticity model and dynamic strain localisation analysis of saturated and partially saturated porous media:one dimensional model.European Journal of Mechanics,A/Solids.2000,19:503-524.
    [137]钟万勰,张洪武,吴承伟.参变量变分原理及其在工程中的应用.北京:科学出版社,1997.
    [138]Pamin J,Askes H,de Borst R.Two Gradient Plasticity Theories Discretized with the Element-Free Galerkin Method.Computer Methods in Applied Mechanics and Engineering.2003,192:2377-2403.
    [139]Fleck NA,Muller GM,Ashby MF,et al.Strain gradient plasticity:theory and experiment.Acta Metallurgica et Materialia.1994,42:475-487.
    [140]黄克智,邱信明,姜汉卿.应变梯度理论的新进展(一)——偶应力理论和SG理论.机械强度.1999,21(2):81-87.
    [141]黄克智,邱信明,姜汉卿.应变梯度理论的新进展(二)——基于细观机制的MSG应变梯度塑性理论.机械强度.1999,21(3):161-165.
    [142]Pietruszczak S,Niu X.On the description of localized deformation.International Journal for Numerical and Analytical Methods in Geomechanics.1993,17:791-805.
    [143]陈刚,潘一山.岩石应变局部化的二维应变梯度塑性解析分析.岩石力学与工程学报.2004,23(11):1785-1791.
    [144]王学滨.考虑应变梯度及刚度劣化的剪切带局部变形分析.工程力学.2006,23(10):101-106.
    [145]黄茂松,钱建固,吴世明.饱和土体应变局部化的复合体理论.岩土工程学报.2002,24(1):21-25.
    [146]黄茂松,贾苍琴,钱建固.岩土材料应变局部化的有限元分析方法.计算力学学报.2007,24(4):465-471
    [147]Liszka T,Orkisz J.Finite differece method for arbitrary irregular meshes in non-linear problems of applied mechanics.IV SMiRt,San Francisco,1977.
    [148]Perrone N,Kao R.A general fmite difference method for arbitrary meshes.Computers & Structures.1975,5(1):45-57.
    [149]Lucy LB.A numerical approach to the testing of the fission hypothesis.The Astronomical Journal.1977,8(12):1013-1024.
    [150]Gingold R.A,Monaghan JJ.Smoothed particle hydrodynamics:Theory and application to non-spherical stars.Royal Astronomical Society,Monthly Notices.1977,181:375-389.
    [151]Swegle JW,Hicks DL,Attaway SW.Smoothed particle hydrodynamics stability analysis.Journal of Computational Physics.1995,116(1):123-134.
    [152]Chen JK,Beraun JE,Jih CJ.An improvement for tensile instability in smoothed particle hydrodynamics.Computational Mechanics.1999,23(4):279-287.
    [153]Monaghan JJ,Gingold GA.Shock simulation by the particle method SPH.Journal of Computational Physics.1983,52(2):374-389.
    [154]Gingold RA,Monaghan JJ.Kernel estimates as a basis for general particle methods in hydrodynamics.Journal of Computational Physics.1982,46:429-453.
    [155]Monaghan JJ.Particle method for hydrodynamics.Computer Physics Report.1985,3:71-124.
    [156]Swegle JW,Attaway SW.On the feasibility of using smoothed particle hydrodynamics for underwater explosion calculations.Computational Mechanics.1995,17:151-168.
    [157]Johnson GR,Stryk RA,Beissel SR.SPH for high velocity impact computations.Computer Methods in Applied Mechanics and Engineering.1996,139:347-373.
    [158]Johnson GR,Beissel SR,Stryk RA.A generalized particle algorithm for high velocity impact computations.Computational Mechanics.2000,25:245-256.
    [159]Libersky LD,Petschek AG.High strain lagrangian hydrodynamics:A three dimensional sph code for dynamic material response.Journal of Computational Physics.1993,109:67-75.
    [160]Randles PW,Libersky LD.Smoothed particle hydrodynamics:Some recent improvements and applications.Computer Methods in Applied Mechanics and Engineering.1996,139:375-408.
    [161]张锁春.光滑质点流体动力学(SPH)方法(综述).计算物理.1996,13(4):385-397.
    [162]贝新源,岳宗五.三维SPH程序及其在斜高速碰撞问题的应用.计算物理.1997,14(2):155-166.
    [163]Nayroles B,Touzot G,Villon P.Generalizing the finite element method:Diffuse approximation and diffuse elements.Computational Mechanics.1992,10:307-318.
    [164]Lancaster P,Salkauskas K.Surfaces generated by moving least spuares methods.Mathematics of Computation.1981,37(155):141-158.
    [165]Belytschko T,Lu YY,Gu L.Element free Galerkin methods.International Journal for Numerical Methods in Engineering.1994,37:229-256.
    [166]Beissel S,Belytschko T.Nodal integration of the element-free Galerkin method.Computer Methods in Applied Mechanics and Engineering.1996,139:49-74.
    [167]Chen JS,Wu CT,Yoon S,et al.A stabilized conforming nodal integration for Galerkin mesh-free methods.International Journal for Numerical Methods in Engineering.2001,50:435-466.
    [168]Chen JS,Wu CT,Yoon S.Non-linear version of stabilized conforming nodal integration for galerkin mesh-free methods.International Journal for Numerical Methods in Engineering.2002,53:2587-2615.
    [169]Smolinski P,Palmer T.Procedures for multi-time step integration of element-free Galerkin methods for diffusion problems.Computers & Structures.2000,77:171-183.
    [170]Chung H J,Belytschko T.An error estimate in the EFG method.Computational Mechanics.1998,21:91-100.
    [171]Gavete L,Falcon S,Ruiz A.An error indicator for the element free Galerkin method.European Journal of Mechanics,A/Solids.2001,20:327-341.
    [172]Gavete L,Gavete ML,Alonso B,et al.A posteriori error approximation in EFG method.International Journal for Numerical Methods in Engineering.2003,58(15):2239-2263.
    [173]Krysl P,Belytschko T.Element-flee Galerkin method convergence of the continuous and discontinuous shape functions.Computer Methods in Applied Mechanics and Engineering.1997,148:257-277.
    [174]Lee SH,Boon YC.An improved crack analysis technique by element-free Galerkin method with auxiliary supports.International Journal for Numerical Methods in Engineering.2003,56:1291-1314.
    [175]Kanok NW,Barry W,Saran YK.On elimination of shear locking in the element-free Galerkin method.International Journal for Numerical Methods in Engineering.2001,52:705-725.
    [176]杨玉英,李晶.无网格Galerkin方法中权函数的研究.塑性工程学报.2005,12(4):4-9.
    [177]Lee CK,Zhou CE.On error estimation and adaptive refinement for element free Galerkin method:Part Ⅰ:Stress recovery and a posteriori error estimation.Computers & Structures.2004,82:413-428.
    [178]Lee CK,Zhou CE.On error estimation and adaptive refinement for element free Galerkin method:Part Ⅱ:Adaptive refinement.Computers & Structures.2004,82:429-443.
    [179]Krongauz Y,Belytschko T.Enforcement of essential boundary conditions in meshless approximations using Finite elements.Computer Methods in Applied Mechanics and Engineering.1996,131:133-145.
    [180]Gunther FC,Liu WK.Implementation of boundary conditions for meshless methods.Computer Methods in Applied Mechanics and Engineering.1998,163:205-230.
    [181]Zhu T,Atluri SN.A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method.Computational Mechanics.1998,21:211-222.
    [182]Chen JS,Wang HP.New boundary condition treatments in meshfree computation of contact problems.Computer Methods in Applied Mechanics and Engineering.2000,187:441-468.
    [183]Wagner GJ,Liu WK.Application of essential boundary conditions in mesh-free methods:A corrected collocation method.International Journal for Numerical Methods in Engineering.2000,47:1367-1379.
    [184]Wagner G J,Liu WK.Hierarchical enrichment for bridging scales and mesh-flee boundary conditions.International Journal for Numerical Methods in Engineering.2001,50:507-524.
    [185]Zhang X,Liu X,Lu MW,et al.Imposition of essential boundary conditions by displacement constraint equations in meshless methods.Communications in Numerical Methods in Engineering.2001,17(3):165-178.
    [186]Han WM,Wagner GJ,Liu WK.Covergence analysis of a hierarchical enrichment of dirichlet boundary conditions in a mesh-free method.International Journal for Numerical Methods in Engineering.2002,53:1323-1336.
    [187]Sonia FM,Antonio H.Imposing essential boundary conditions in mesh-free methods.Computer Methods in Applied Mechanics and Engineering.2004,193:1257-1275.
    [188]赵光明,宋顺成.无网格边界条件实现方法的研究进展.科技通报.2005,21(6):644-650.
    [189]Belytschko T,Krongauz Y,Fleming M,et al.Smoothing and accelerated computations in the element free Galerkin method.Journal of Computational and Applied Mathematics.1996,74(1-2):111-126.
    [190]Belytschko T,Fleming M.Smoothing,enrichment and contact in the element-free Galerkin method.Computers & Structures.1999,71:173-195.
    [191]Liu WK,Jun S,Zhang YF.Reproducing kernel particle methods.International Journal for Numerical Methods in Fluids.1995,20:1081-1106.
    [192]Liu WK,Chen Y.Wavelet and multiple scale reproducing kernel method.International Journal for Numerical Methods in Fluids.1995,21:901-931.
    [193]Liu WK,Chen Y,Chang CT.Advances in multiple scale kernel particle methods.Computational Mechanics.1996,18:73-111.
    [194]Liu WK,Chen Y,Aziz UR.Generalized multiple scale reproducing kernel particle methods.Computer Methods in Applied Mechanics and Engineering.1996,139:91-157.
    [195]Chen JS,Pan C,Wu CT.Reproducing kernel particle methods for large deformation analysis of non-linear structures.Computer Methods in Applied Mechanics and Engineering.1996,139:195-227.
    [196]Chen JS,Pan C,Wu CT.Large deformation analysis of rubber based on a reproducing kernel particle method.Computational Mechanics.1997,19:211-227.
    [197]Chen JS,Yoon S,Wang HP.An improved reproducing kernel particle method for nearly incomprssible finite elasticity.Computer Methods in Applied Mechanics and Engineering.2000,181:117-145.
    [198]Chen JS,Wang HP,Yoon S.Some recent improvements in meshfree methods for incompressible finite elasticity boundary value problems with contact.Computational Mechanics.2000,25:137-156.
    [199]Jun S,Liu WK,Belytschko T.Explicit reproducing kernel particle methods for large deformation problems.International Journal for Numerical Methods in Engineering.1998,41:137-166.
    [200]Li SF,Hao W,L.WK.Numerical simulations of large deformation of thin shell structures using meshfree methods.Computational Mechanics.2000,25:102-116.
    [201]Liu WK,Jun S,Li SF.Reproducing kernel particle methods for structural dynamics.International Journal for Numerical Methods in Engineering.1995,38:1655-1679.
    [202]Uras RA,Chang CT,Chen Y.Multiresolution reproducing kernel particle methods in acoustics.Journal of Computational Acoustics.1997,5:71-94.
    [203]Liu WK,Jun S.Multiresolution reproducing kernel particle method for computational fluid dynamics.International Journal for Numerical Methods in Fluids.1997,24:1391-1415.
    [204]Gunther FC,Liu WK,Diachin D.Multi-scale meshfree parallel computations for viscous,compressible flows.Computer Methods in Applied Mechanics and Engineering.2000,190:279-303.
    [205]Wagner GJ,Liu WK.Turbulence simulation and multiple scale subgrid models.Computational Mechanics.2000,25:117-136.
    [206]Atluru NR.A reproducing kernel particle method for meshless anaylsis of microelectromechanical systems.Computational Mechanics.1999,23:324-338.
    [207]Chen JS,Roque CMOL,Pan C.Analysis of metal forming process based on meshless method.Journal of Materials Processing Technology.1998,80:642-646.
    [208]Chen JS,Pan C,Roque CMOL.A Lagrangian reproducing kernel particle method for metal forming analysis.Computational Mechanics.1998,22:289-307.
    [209]Sambridge M,Braun J,Mcqueen M.Geophysical parameterization and interpolation of irregular data using natural neighbours.Geophysical Journal International.1995,122:837-857.
    [210]Sibson R.A vector identity for the dirichlet tesselations.Mathematical Proceedings of the Cambridge Philosophical Society.1980,87:151-155.
    [211]Sukumar N,Moran B,Belytschko T.The natural elements method in solid mechanics.International Journal for Numerical Methods in Engineering.1998,43:839-887.
    [212]Sukumar N,Moran B,Semenov AY,et al.Natural Neighbour Galerkin methods.International Journal for Numerical Methods in Engineering.2001,50:1-27.
    [213]Onate E,Idelsohn S,Zienkiewicz OC.A finite point method in computational mechanics:Applications to convective transport and fluid flow.International Journal for Numerical Methods in Engineering.1996,39:3839-3866.
    [214]Onate E,Idelsohn S.A mesh-free finite point method for advective-diffusive transport and fluid flow problems.Computational Mechanics.1998,21:283-292.
    [215]Onate E,Perazzo F,Miquel J.A finite point method for elasticity problems.Computers & Structures.2001,79:2151-2163.
    [216]Melenk JM,Babuska I.The partition of unity finite element methods:Basic theory and application.Computer Methods in Applied Mechanics and Engineering.1996,139:263-288.
    [217]Babuska I,Melenk JM.The partition of unity methods.International Journal for Numerical Methods in Engineering.1997,40:727-758.
    [218]Strouboulis T,Babuska I,Copps K.The design and analysis of the generalized finite element method.Computer Methods in Applied Mechanics and Engineering.2000,181:43-69.
    [219]Duarte CA,Babuska I,Oden JT.Generalized finite element methods for three dimensional structural mechanics problems.Computers & Structures.2000,77:215-232.
    [220]Duarte CA,Oden JT.Hp clouds:A h-p meshless method.Numerical Methods for Partial Differential Equations.1996,12:673-705.
    [221]Duarte CA,Oden JT.An h-p adaptive method using clouds.Computer Methods in Applied Mechanics and Engineering.1996,139:237-262.
    [222]Atluri SN,Zhu T.A new Meshless Local Petrov-Galerkin(MLPG) approach in computational mechanics.Computational Mechanics.1998,22:117-127.
    [223]Atluri SN,Kim HG,Cho JY.A critical assessment of the truly Meshless Local Petrov-Galerkin (MLPG) and Local Boundary Integral Equation(LBIE) methods.Computational Mechanics.1999,24:348-372.
    [224]Atluri SN,Cho JY,Kim HG.Analysis of thin beams,using the Meshless Local Petrov-Galerkin method with generalized moving least squares interpolations.Computational Mechanics.1999,24:334-347.
    [225]Atluri SN,Zhu T.The Meshless Local Petrov-Galerkin(MLPG) approach for solving problems in elasto-statics.Computational Mechanics.2000,25:169-179.
    [226]Zhu T,Zhang J,Atluri SN.A meshless Local Boundary Integral Equation(LBIE) method for solving nonlinear problems.Computational Mechanics.1998,22:174-186.
    [227]Zhu T,Zhang J,Atluri SN.A Local Boundary Integral Equation(LBIE) method in computational mechanics and a meshless discretization approach.Computational Mechanics.1998,21:223-235.
    [228]Atluri SN,Sladek J,Sladek V.The Local Boundary Integral Equation(LBIE) and its meshless implementation for linear elasticity.Computational Mechanics.2000,25:180-198.
    [229]Wendland H.Meshless Galerkin method using radial basis functions.Mathematics of Computation.1999,68:1521-1531.
    [230]Zhang X,Song KZ,Lu MW.Meshless methods based on collocation with radial basis function.Computational Mechanics.2000,26:333-343.
    [231]Bonet J,Kulasegaram S.Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations.International Journal for Numerical Methods in Engineering.2000,47:1189-1214.
    [232]Zhang X,Liu XH,Song KZ.Least-square collocation meshless method.International Journal for Numerical Methods in Engineering.2001,51:1089-1100.
    [233]张雄,胡炜,潘小飞.加权最小二乘无网格法.力学学报.2003,35:425-431.
    [234]Liu GR,Gu YT.A point interpolation method for two-dimensional solids.International Journal for Numerical Methods in Engineering.2001,50:937-951.
    [235]Wang JG,Liu GR.A point interpolation meshless method based on radial basis functions.International Journal for Numerical Methods in Engineering.2002,54:1623-1648.
    [236]Hao S,Park HS,Liu WK.Moving particle finite element method.International Journal for Numerical Methods in Engineering.2002,53(8):1937-1958.
    [237]Idelsohn SR,Onate E,Calvo N,et al.The meshless finite dement method.International Journal for Numerical Methods in Engineering.2003,58:893-912.
    [238]Liu WK,Han WM,Lu HS,et al.Reproducing kernel element method.Part ⅰ:Theoretical formulation.Computer Methods in Applied Mechanics and Engineering.2004,193:933-951.
    [239]Liu GR.Mesh Free Methods:Moving Beyond the Finite Element Method.New York:CRC Press,2002.
    [240]Li SF,Liu WK.Meshfree particle methods.Berlin:Springer-Verlag,2004.
    [241]Griebel M,Marc A.Meshfree methods for partial differential equations.Berlin:Springer-Verlag,2005.
    [242]张雄,刘岩.无网格法.北京:清华大学出版社,2004.
    [243]刘更,刘天祥,谢琴.无网格法及其应用.西安:西北工业大学出版社,2005.
    [1]Chung JH.Numerical simulation of hydro-thermo-mechanical behavior of concrete structures exposed to elevated temperatures:(Doctoral Dissertation).Florida:University of Florida,2003.
    [2]Bear J,Zaslavsky D,Irmay S.Physical principles of water percolation and seepage.UNESCO,Paris,1968.
    [3]刘成宇.土力学.北京:中国铁道出版社,2000.
    [4]龚晓南.土力学.浙江大学出版社,1995.
    [5]Terzaghi K.Die berechnung der durchl ssigkeitsziffer des tones aus dem verlauf der hydrodynamischen spannungserscheinungen.Akademic Der Wissenchafton in Wien.1923,132(3-4):125-128.
    [6]Terzaghi K.Erdbaumechanik auf Bodenphysikalischer Grundlage.Vienna:Dueticke,1925.
    [7]Terzaghi K.Theoretical Soil Mechanics.New York:John Wiley & Sons,1943.
    [8]Zienkiewicz OC,Shiomi T.Dynamic behaviour of saturated porous media:The generalized Biot formulation and its numerical solution.International Journal for Numerical and Analytical Methods in Geomechanics.1984,8(1):71-96.
    [9]Ostashev NA.The law of distribution of moisture in soils and methods for the study of same.Proceedings of the 1 st International conference on soil mechanics and foundation engineering,1936.
    [10]Boulichev V.Apparature for testing compressibility and capillary properties of soils.Proceedings of the 1 st International conference on soil mechanics and foundation engineering,1936.
    [11]Bishop AW,Morgensterm NR.Stability coefficients for earth slopes.Geotechnique.1960,10:129-147.
    [12]Bishop AW,Blight GE.Some aspects of effective stress in saturated and unsaturated soils.Geotechnique.1963,13(3):177-197.
    [13]Fredlund DG,Rahardjo H.Soil mechanics for unsaturated soils.New York:John Wiley & Sons,1993.
    [14]Black DK,Croney D.Pore water pressure and moisture content studies under experimental pavements.Proceedings of the 4th International conference on soil mechanics and foundation engineering,1957.
    [15]Willarns AB.Studies of shear strength and bearing capacity of some partially saturated sands.Proceedings of the 4th International conference on soil mechanics and foundation engineering,1957.
    [16]Aitchison GD.Separate rote of site investigation quantification of soil properties and selection of operational environment in the determination of foundation design of expansive soils.Proceedings of the 3rd Asian Regional International conference on soil mechanics and foundation engineering,1967.
    [17]Lewis RW,Schrefler BA.The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media.Chichester:John Wiley & Sons,1998.
    [18]李锡夔.非饱和土中的有效应力.大连理工大学学报.1997,37:381-385.
    [19]陈正汉,王永胜,谢定义.非饱和土的有效应力探讨.岩土工程学报.1994,16:63-69.
    [20]沈珠江.广义吸力和非饱和土的统—变形理论.岩土工程学报.1996,18:1-8.
    [21]Fredlund DG,Morgenstern NR.Stress state variables for unsaturated soils.Journal of the Geotechnieal Engineering Division,ASCE.1977,103:427-446.
    [22]Alonso EE,Gens A,Josa A.A constitutive model for partially saturated soils.Geotechnique.1990,40(3):405-430.
    [23]Gens A,Alonso EE.A framework for the behaviour of unsaturated expansive clays.Canadian Geotechnical Journal.1992,29:1013-1032.
    [24]Biot MA.General theory of three-dimensional consolidation.Journal of Applied Physics.1941,12:155-164.
    [25]Biot MA.Theory of propagation of elastic waves in a fluid saturated porous solid.Journal of the Acoustical Society of America.1956,28:168-191.
    [26]Biot MA.Mechanics of deformation and acoustic propagation in porous media.Journal of Applied Physics.1962,33:1482-1498.
    [27]Zienkiewicz OC,Chan AHC,Pastor DK,et al.Static and dynamic behaviour of soils:a rational approach to quantitative solutions,Part Ⅰ:Fully saturated problems.Proc R Soc London,London,1990.
    [28]Zienkiewicz OC,Xie YM,Schrefler BA,et al.Static and dynamic behaviour of soils:a rational approach to quantitative solutions,Part Ⅱ:Semi-saturated problems.Proc R Soc London,London,1990.
    [29]Li XK,Zienkiewiez OC,Xie YM.A numerical model for immiscible two-phase fluid flow in a porous medium and its time domain solution.International Journal for Numerical Methods in Engineering.1990,30(6):1195-1212.
    [30]Li XK.Finite element analysis for immiscible two-phase fluid flow in deforming porous media and an unconditionally stable staggered solution.Communications in Applied Numerical Methods.1990,6(2):125-135.
    [31]Thomas HR,King SD.Coupled temperature/capillary potential variations in unsaturated soil.Journal of Engineering Mechanics,ASCE.1991,11:2475-2491.
    [32]Schrefler BA,Zhan X.Multiphase flow in deforming for water flow and airflow in deformable porous media.Water Resources Research.1993,29:155-167.
    [33]杨代泉,沈珠江.非饱和土—维固结简化计算.岩土工程学报.1991,13(5):70-78.
    [1]余同希.塑性力学.北京:高等教育出版社,1989.
    [2]陈惠发,Salub AF.土木工程材料的本构方程.武汉:华中科技大学出版社,2001.
    [3]Drucker DC,Prager W.Soil mechanics and plasticity analysis or limit design.Quarterly Applied Mathematics.1952,10:157-165.
    [4]de Borst R,M(u|¨)lalhaus HB.Gradient-dependent plasticity:Formulation and algorithmic aspects.International Journal for Numerical Methods in Engineering.1992,35(3):521-539.
    [5]Li XK,Cescotto S.Finite element method for gradient plasticity at large strains.International Journal for Numerical Methods in Engineering.1996,39(4):619-633.
    [6]Comi C,Perego U.A generalized variable formulation for gradient dependent softening plasticity.International Journal for Numerical Methods in Engineering.1996,39:3731-3755.
    [1]Hill R.Acceleration waves in solids.Journal of the Mechanics and Physics of Solids.1962,10(1):1-16.
    [2]Bazant ZP,Belytschko T.Wave propagation in a strain,softening bar:exact solution.Journal of Engineering Mechanics,ASCE.1985,111(3):381-389.
    [3]Sluys LJ.Wave propagation,localisation and dispersion in softening solids:(Doctoral Dissertation).Delft:Delft University of Technology,1992.
    [4]Sluys LJ,de Borst R,M(?)hlhaus HB.Wave propagation,localization and dispersion in a gradient-dependent medium.International Journal of Solids and Structures.1993,30(9):1153-1171.
    [5]Rudnicki JW,Rice JR.Conditions for the localization of deformation in pressure-sensitive dilatant materials.Journal of the Mechanics and Physics of Solids.1975,23(6):371-394.
    [6]Rice JR.On the stability of dilatant hardening for saturated rock mass.Journal of Geophysical Research.1975,80:1531-1536.
    [7]Loret B,Prevost JH.Dynamic strain localization in fluid-saturated porous media.Journal of Engineering Mechanics.1993,117 907-922.
    [8]Pietruszczak S.Undrained Response of Granular Soil Involving Localized Deformation.Journal of Engineering Mechanics,ASCE.1995,121(12):1292-1297.
    [9]Gajo A.The effects of inertial coupling in the intetpretation of dynamic soil tests.Geotechnique.1996,46(2):245-257.
    [10]Runesson K,Peric D,Sture S.Effect of pore fluid compressibility on localization in elastic-plastic porous solids under undrained conditions International Journal of Solids and Structures.1996,33(10):1501-1518.
    [11]Biot MA.General theory of three-dimensional consolidation.Journal of Applied Physics.1941,12:155-164.
    [12]Biot MA.Theory of propagation of elastic waves in a fluid saturated porous solid.Journal of the Acoustical Society of America.1956,28:168-191.
    [13]Biot MA.Mechanics of deformation and acoustic propagation in porous media.Journal of Applied Physics.1962,33:1482-1498.
    [14]Zienkiewicz OC,Shiomi T.Dynamic behaviour of saturated porous media:The generalized Biot formulation and its numerical solution.International Journal for Numerical and Analytical Methods in Geomechanics.1984,8(1):71-96.
    [15]Li XK,Zienkiewicz OC,Xie YM.A numerical model for immiscible two-phase fluid flow in a porous medium and its time domain solution.International Journal for Numerical Methods in Engineering.1990,30(6):1195-1212.
    [16]Li XK,Zienkiewicz OC.Multiphase flow in deforming porous media and finite element solutions.Computers & Structures.1992,45(2):211-227.
    [17]Lewis RW,Sukirman Y.Finite element modelling for simulating the surface subsidence above a compacting hydrocarbon reservoir.International Journal for Numerical and Analytical Methods in Geomechanics.1993,18:619-639.
    [18]Lewis RW,Schrefler BA.The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media.Chichester:John Wiley & Sons,1998.
    [19]Meroi EA,Schrefler BA.Large strain static and dynamic semi-saturated soil behavior.International Journal for Numerical and Analytical Methods in Geomechanics.1995 19 81-106.
    [20]Alonso EE,Gens A,Josa A.A constitutive model for partially saturated soils.Geotechnique.1990,40(3):405-430.
    [21]Gens A,Alonso EE.A framework for the behaviour of unsaturated expansive clays.Canadian Geotechnical Journal.1992,29:1013-1032.
    [22]Li XK,Thomas HR,Fan YQ.Finite element method and constitutive modelling and computation for unsaturated soils.Computer Methods in Applied Mechanics and Engineering.1999,169:135-159.
    [23]Duxbury P,Li XK.Development of elasto-plastic material models in a natural coordinate system Computer Methods in Applied Mechanics and Engineering.1996,135(3-4):283-306.
    [24]Li XK,Cescotto S.Finite element method for gradient plasticity at large strains.International Journal for Numerical Methods in Engineering.1996,39(4):619-633.
    [1]Hadamard J.Lecons sur la propagation des ondes et les equations de l' hydrodynamique.Librarie Scientifique,A Hermann,Paris,1903.
    [2]Hill R.A general theory of uniqueness and stability in elastic-plastic solids.Journal of the Mechanics and Physics of Solids.1958,6(3):236-249.
    [3]Thomas TY.Plastic Flow and Fracture in Solids.New York:Academic Press,1961.
    [4]Rice JR.The localization of plastic deformation.Proc.14th IUTAM Congress,Amsterdam,1976.
    [5]Rudnicki JW,Rice JR.Conditions for the localization of deformation in pressure-sensitive dilatant materials.Journal of the Mechanics and Physics of Solids.1975,23(6):371-394.
    [6]Rice JR.On the stability of dilatant hardening for saturated rock mass.Journal of Geophysical Research.1975,80:1531-1536.
    [7]Loret B,Prevost JH.Dynamic strain localization in fluid-saturated porous media.Journal of Engineering Mechanics.1993,117 907-922.
    [8]Pietruszczak S.Undrained Response of Granular Soil Involving Localized Deformation.Journal of Engineering Mechanics,ASCE.1995,121(12):1292-1297.
    [9]Hill R.Acceleration waves in solids.Journal of the Mechanics and Physics of Solids.1962,10(1):1-16.
    [10]Bazant ZP,Belytschko T.Wave propagation in a strain,softening bar:exact solution.Journal of Engineering Mechanics,ASCE.1985,111(3):381-389.
    [11]Sluys LJ.Wave propagation,localisation and dispersion in softening solids:(Doctoral Dissertation).Delft:Delft University of Technology,1992.
    [12]Sluys LJ,de Borst R,Miihlhaus HB.Wave propagation,localization and dispersion in a gradient-dependent medium.International Journal of Solids and Structures.1993,30(9):1153-1171.
    [13]Loret B,Harireche O.Acceleration waves,flutter instabilities and stationary discontinuities in inelastic porous media.Journal of the Mechanics and Physics of Solids.1991,39(5):569-606.
    [14]Runesson K,Peric D,Sture S.Effect of pore fluid compressibility on localization in elastic-plastic porous solids under undrained conditions International Journal of Solids and Structures.1996,33(10):1501-1518.
    [15]Gajo A.The effects of inertial coupling in the intetpretation of dynamic soil tests.Geotechnique.1996,46(2):245-257.
    [16]Biot MA.General theory of three-dimensional consolidation.Journal of Applied Physics.1941,12:155-164.
    [17]Biot MA.Theory of propagation of elastic waves in a fluid saturated porous solid.Journal of the Acoustical Society of America.1956,28:168-191.
    [18]Biot MA.Mechanics of deformation and acoustic propagation in porous media.Journal of Applied Physics.1962,33:1482-1498.
    [19]Zienkiewicz OC,Shiomi T.Dynamic behaviour of saturated porous media:The generalized Biot formulation and its numerical solution.International Journal for Numerical and Analytical Methods in Geomechanics.1984,8(1):71-96.
    [1]Bazant ZP,Belytschko T.Wave propagation in a strain,softening bar:exact solution.Journal of Engineering Mechanics,ASCE.1985,111(3):381-389.
    [2]Sluys LJ.Wave propagation,localisation and dispersion in softening solids:(Doctoral Dissertation).Delft:Delft University of Technology,1992.
    [3]Sluys LJ,de Borst R.M(u|¨)hlhaus HB.Wave propagation,localization and dispersion in a gradient-dependent medium.International Journal of Solids and Structures.1993,30(9):1153-1171.
    [4]de Borst R.Numerical methods for bifurcation analysis in geomechanics.Ingenieur-Archiv 1989,59:160-174.
    [5]Needleman A.Material rate dependence and mesh sensitivity in localization problems.Computer Methods in Applied Mechanics and Engineering.1988,67(1):69-85.
    [6]de Borst R,Sluys LJ.Localization in a Cosserat continuum under static and dynamic loading conditions.Computer Methods in Applied Mechanics and Engineering.1991,90:805-827.
    [7]de Borst R.Simulation of strain localization:a reappraisal of the Cosserat continuum.Engineering Computations.1991,8:317-332.
    [8]Eringen AC,Edelen DGB.On non-local elasticity.International Journal of Engineering Science.1972,10:233-248.
    [9]Lasry D,Belytschko T.Localization limiters in transient problems.International Journal of Solids and Structures.1988,24:581-597.
    [10]Aifantis EC.On the microstructural origin of certain inelastic models.Journal of Engineering Materials and Technology,ASME.1984,106:326-330.
    [11]Aifantis EC.The physics of plastic deformation.International Journal of Plasticity.1987,3:211-247.
    [12]de Borst R,M(u|¨)hlhaus HB.Gradient-dependent plasticity:Formulation and algorithmic aspects.International Journal for Numerical Methods in Engineering.1992,35(3):521-539.
    [13]M(u|¨)hlhaus HB,Aifantis EC.A variational principle for gradient plasticity.International Journal of Solids and Structures.1991,28(7):845-857.
    [14]Li XK,Cescotto S.Finite element method for gradient plasticity at large strains.International Journal for Numerical Methods in Engineering.1996,39(4):619-633.
    [15]Pamin J,Askes H,de Borst R.Two Gradient Plasticity Theories Discretized with the Element-Free Galerkin Method.Computer Methods in Applied Mechanics and Engineering.2003,192:2377-2403.
    [16]Belytschko T,Lu YY,Gu L.Element free Galerkin methods.International Journal for Numerical Methods in Engineering.1994,37:229-256.
    [17]Belytschko T,Kronganz Y,Organ D,et al.Meshless methods:an overview and recent developments.Computer Methods in Applied Mechanics and Engineering.1996,139:3-47.
    [18]Manzari MT,Regueiro RA.Gradient plasticity modeling of geomaterials in a meshfree environment.Part Ⅰ:Theory and variational formulation.Mechanics Research Communications.2005,32:536-546.
    [19]Chen JS,Wu CT,Belytschko T.Regularization of material instabilities by meshfree approximations with intrinsic length scales.International Journal for Numerical Methods in Engineering.2000,47:1303-1322.
    [20]Li SF,Liu WK.Numerical simulations of strain localization in inelastic solids using mesh-free methods.International Journal for Numerical Methods in Engineering.2000,48:1285-1309.
    [21]Zhang X,Yao ZH,Zhang ZF.Application of MLPG in Large Deformation Analysis.Acta Mechanica Sinica.2006,22 331-340.
    [22]Gu YT,Wang QX,Lain KY.A meshless local Kriging method for large deformation analyses.Computer Methods in Applied Mechanics and Engineering.2007 196 1673-1684.
    [23]钟万勰,张洪武,吴承伟.参变量变分原理及其工程中的应用.北京:北京出版社,1997.
    [24]Comi C,Perego U.A generalized variable formulation for gradient dependent softening plasticity.International Journal for Numerical Methods in Engineering.1996,39:3731-3755.
    [25]Zhang HW,Schrefler BA.Gradient-dependent plasticity model and dynamic strain localisation analysis of saturated and partially saturated porous media:one dimensional model.European Journal of Mechanics,A(?)Solids.2000,19:503-524.
    [26]Lancaster P,Salkauskas K.Surfaces generated by moving least spuares methods.Mathematics of Computation.1981,37(155):141-158.
    [27]Murty KG.Linear Complementarity,Linear and Nonlinear Programming.Berlin:Helderman-Verlag,1988.
    [28]Nayroles B,Touzot G,Villon P.Generalizing the finite element method:Diffuse approximation and diffuse elements.Computational Mechanics.1992,10:307-318.
    [29]张雄,刘岩.无网格法.北京:清华大学出版社,2004.
    [30]Belytschko T,Krongauz Y,Fleming M,et al.Smoothing and accelerated computations in the element free Galerkin method.Journal of Computational and Applied Mathematics.1996,74(1-2):111-126.
    [31]Belytschko T,Fleming M.Smoothing,enrichment and contact in the element-free Galerkin method.Computers & Structures.1999,71:173-195.
    [32]Zhu T,Atluri SN.A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method.Computational Mechanics.1998,21:211-222.
    [33]Sonia FM,Antonio H.Imposing essential boundary conditions in mesh-free methods.Computer Methods in Applied Mechanics and Engineering.2004,193:1257-1275.
    [34]Zhang X,Liu X,Lu MW,et al.Imposition of essential boundary conditions by displacement constraint equations in meshless methods.Communications in Numerical Methods in Engineering.2001,17(3):165-178.
    [35]Wagner GJ,Liu WK.Application of essential boundary conditions in mesh-free methods:A corrected collocation method.International Journal for Numerical Methods in Engineering.2000,47:1367-1379.
    [36]Huerta A,Mendez SF.Enrichment and coupling of the finite element and meshless methods.International Journal for Numerical Methods in Engineering.2000,48:1615-1636.
    [37]Dolbow J,Belytschko T.Numerical integration of the Galerkin weak form in meshfree methods.Computational Mechanics.1999,23:219-230.
    [38]Li XK,Duan QL.Meshfree iterative stabilizaed Taylor-Galerkin and characteristic-based split(CBS) algorithms for incompressible N-S equations.Computer Methods in Applied Mechanics and Engineering.2006,195:6125-6145.
    [39]Zhang X,Lu MW,Wegner JL.A 2-D meshless model for jointed rock structures.International Journal for Numerical Methods in Engineering.2000,47:1649-1661.
    [40]Beissel S,Belytschko T.Nodal integration of the element-free Galerkin method.Computer Methods in Applied Mechanics and Engineering.1996,139:49-74.
    [41]Chen JS,Wu CT,Yoon S,et al.A stabilized conforming nodal integration for Galerkin mesh-free methods.Intemational Journal for Numerical Methods in Engineering.2001,50:435-466.
    [42]Chen JS,Wu CT,Yoon S.Non-linear version of stabilized conforming nodal integration for galerkin mesh-free methods.International Journal for Numerical Methods in Engineering.2002,53:2587-2615.
    [43]Kaljevic I,Saigal S.An improved element free Galerkin formulation.International Journal for Numerical Methods in Engineering.1997,40:2953-2974.
    [1]Zienkiewicz OC,Shiomi T.Dynamic behaviour of saturated porous media:The generalized Biot formulation and its numerical solution.International Journal for Numerical and Analytical Methods in Geomechanics.1984,8(1):71-96.
    [2]Needleman A.Material rate dependence and mesh sensitivity in localization problems.Computer Methods in Applied Mechanics and Engineering.1988,67(1):69-85.
    [3]Li XK,Cescotto S.Finite element method for gradient plasticity at large strains.International Journal for Numerical Methods in Engineering.1996,39(4):619-633.
    [4]Li XK,Tang HX.A consistent return mapping algorithm for pressure-dependent elastoplastic Cosserat continua and modelling of strain localisation.Computers.& Structures.2005,83(1):1-10.
    [5]de Borst R,M(u|¨)hlhaus HB.Gradient-dependent plasticity:Formulation and algorithmic aspects.International Journal for Numerical Methods in Engineering.1992,35(3):521-539.
    [6]Pamin J.Gradient-dependent plasticity in numerical simulation of localization phenomena:(Doctoral Dissertation).Delft:Delft University of Technology,1994.
    [7]Pamin J,Askes H,de Borst R.Two Gradient Plasticity Theories Discretized with the Element-Free Galerkin Method.Computer Methods in Applied Mechanics and Engineering.2003,192:2377-2403.
    [8]Murty KG.Linear Complementarity,Linear and Nonlinear Programming.Berlin:Helderman-Verlag,1988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700