用户名: 密码: 验证码:
配比及粒径对煤粉燃尽特性影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃煤电站中,如何保证锅炉有较高的热效率一直是各个发电企业共同关心的问题。影响锅炉热效率的主要因素有两个:排烟损失和机械不完全燃烧损失。但是,排烟损失的降低受到尾部受热面传热温差小和烟气露点温度等条件的限制,只能在一定程度上提高锅炉热效率。因此,如何使机械不完全燃烧损失降低成为提高锅炉效率的主要途径。在实际电站运行中,机械不完全燃烧损失的降低就是提高煤粉的燃尽特性。它与锅炉的安全、经济、环保运行密切相关。
     本文根据广东某电厂来煤的实际情况,实验煤种由煤1、煤2、煤3、煤4四种单煤组成。本文研究目的是确定它们之间有代表性的16个配比以及它们各自四个不同粒径煤样对燃尽特性的影响。
     本文首先通过常规煤质分析(工业分析、元素分析、热值分析等)对样品进行燃尽特性好坏的初步判断,并利用由煤质分析数据拟合得到的燃尽指数进行初步判定,进而利用热重分析仪进行试验,求出与燃尽特性相关的指数和反应动力学参数活化能。在此基础上,利用煤燃烧国家重点实验室的沉降炉试验台架对样品进一步分析。配比对燃尽特性的影响和粒径对燃尽特性的影响都是通过这种实验方法来研究的。同时,通过建立简化的炭粒燃烧模型求解粒径对燃尽时间的影响。本文采用了多种实验方法及理论分析,最后得出煤1:煤3=3:2时燃尽特性最优,煤2:煤4=1:4时燃尽特性最差,而煤2的燃尽特性对粒径不敏感。
How to ensure a higher boiler thermal efficiency in a coal-fired power plant have been issues of common concern. In the power plant operation, there are two main factors impact the boiler thermal efficiency. The one is as the form of smoke heat loss, the other one is as the form of mechanical loss of incomplete combustion. However, to reduce the smoke heat loss is confined by the small temperature difference in the tail heating surface and the flue gas dew-point temperature. In this case, how to reduce the mechanical loss of incomplete combustion is the main way to improve the boiler thermal efficiency. In the power plant operation, the way to improve the thermal efficiency is to improve the burnout characteristics of pulverized coal. It is bound up with the safety、economic & environment protected run of a utility boiler .
     In this paper, the laboratory samples are from a power plant in Guangdong province, they are Coal 1, Coal 2, Coal 3, Coal 4. The samples of the study consisted of 16 different ratio blended coals and different particle size coals.
     First of all, we took the conventional analysis with the samples, such as proximate analysis, ultimate analysis, heating value analysis and so on. Furthermore, we took the thermo-gravimetric analysis. From this analysis, we can get some index of burnout characteristic and activation energy for these samples. Then we do some experiment in the drop tube furnace which is a model of a utility boiler in the SKLCC. Meanwhile, we establish a simplified mathematical modeling of empirical formula to get the burnout time of pure carbon.The conclusion of this thesis is that the coal 1 and coal 3 in the ratio of 3:2 is the best, the coal 2 and coal 4 in the ratio of 1:4 is the worst and the coal 2 is not so sensitive to the particle size than others.
引文
[1]姚文涛,徐浩,葛琳.中国的能源现状及发展前景展望.科技促进发展, 2009(1): 189
    [2]倪维斗,陈贞,李政.我国能源现状及某些重要战略对策.中国能源, 2008, 30(12): 5-9
    [3] BP世界能源统计2008
    [4]中国电力企业联和会http://www.cec.org.cn/
    [5]中国能源网http://www.china5e.com/
    [6]中国华能集团公司网站. http://www.chng.com.cn/minisite/
    [7] Barranco R. Andrés Rojas Juan Barraza etal. A new char combustion kinetic model 1. Formulation. Fuel, 2009: 1-5
    [8] D.FO?? RTSCH, U. SCHNELL, K. R. G. HEIN. R. H. ESSENHIGH. The Mass Transfer Coefficient for the Combustion of Pulverized Carbon Particles. Combustion and Flame, 2001, 126(3): 1662-1668
    [9] Field MA, Gill DW, Morgan BB, Hawksley PGW. Combustion of pulverized coal. BCURA, 1967
    [10] Field M A. Pulverized coal combustion[M]. New York: Plenum Press, 1987
    [11] Javier Pallares, Inmaculada Araudo, Luis Ignacio Diez. Numerical prediction of unburned carbon levels in large pulverized coal utility boilers. Fuel, 2005(84): 2364-2371
    [12] Javier Ballester, Santiago Jiménez. Kinetic parameters for the oxidation of pulverised coal as measured from drop tube tests. Combustion and Flame, 2005(142): 210-222
    [13] ROBERT HURT, JIAN-KUAN SUN, MELISSA LUNDEN. A kinetic model of carbon burnout in pulverized coal combustion. Combustion and Flame, 1998(113): 181-197
    [14] Jensen PT, Mitchell RE. High temperature char reactivity measurements in the sandia laminar Flow Reactor. Energy Research Project No. 1323/87-16, Ministry of the Environment, Geological Survey of Denmark, 1993
    [15] Atsushi Makino, Chung K. Law, An analysis of the transient combustion and burnout time of carbon particles. Proceedings of the Combustion Institute, 2009(32):2067-2074
    [16] Artos V, Scaroni AW. TGA and drop tube reactor studies of combustion of coal blends. Fuel, 1993, 72(7): 927
    [17] Selle SJ, Dorris HL, Sobule JA. Blending of eastern and western coal: results of a test burn at Joppa station. 16th Biennial Symposium: Low rank Fuels, Billings, 1991: 113-124
    [18]煤粉燃烧.章明川,许方洁,许传凯译.北京:水利电力出版社, 1989
    [19]韩才元,徐明厚,周怀春等著.煤粉燃烧.北京:科学出版社, 2001(5): 29
    [20]方立军,高正阳,阎维平.利用热重对电厂混煤燃尽特性的实验研究.华北电力技术, 2001(1): 7-9
    [21]高正阳,方立军,王涛等.混煤燃烧动力学参数的热重试验研究.锅炉技术, 2000, 31(11): 9-12
    [22]高正阳,方立军,刘同欣.无烟煤与贫煤掺混燃烧特性的一维炉实验研究.华北电力技术, 2002(6): 13-15
    [23]高正阳,方立军,周健等.混煤燃烧特性的热重试验研究.动力工程, 2002, 22(3): 1764-1767
    [24]邱建荣,郭嘉,曾汉才等.混煤燃烧特性的试验研究及燃烧特性指数的确定[J].热能动力工程, 1993, 8(4): 169-173
    [25]邱建荣,马毓义,曾汉才等.混煤特性的综合性试验研究.动力工程, 1993, 13(5): 32-36
    [26]韩晓强,陈晓平,崔亚兵.锅炉飞灰含碳量偏高的热重研究,洁净煤技术, 2005, 11(3): 62-64
    [27]李庆钊,赵长遂,武卫芳等.基于TG-FTI R研究O2 /CO2气氛下烟煤的燃烧特性.东南大学学报. 2007, 37(6): 990-995
    [28]侯栋歧,冯金梅.混煤煤粉着火和燃尽特性的实验研究.电站系统工程, 1995, 11(1): 46-50
    [29]于海龙、姜秀民.颗粒粒度对油页岩燃烧特性的影响,动力工程, 2007(8): 640-644
    [30]周臻,刘亮,王艳玲等.煤粉粒径对燃烧特性影响的试验研究.热力发电, 2007(3):35-38
    [31]朱建忠,吕当振,姚洪.烟煤混煤特性的实验研究.发电设备, 2007(6): 421-425
    [32]朱予东,王运泽,欧宗现等.应用局部投影网络预测燃料分级燃烧锅炉的飞灰含碳量.热能动力工程, 2008, 5: 266-268
    [33]乐晓萍. 300MW机组锅炉飞灰可燃物偏高的原因及对策[J].江西电力, 2003(3): 46-48
    [34]范从振.锅炉原理.北京:中国电力出版社, 1986
    [35]周新刚,刘志超,路春美等.燃煤电厂锅炉飞灰含碳量影响因素分析及对策.节能, 2005(9): 45-47
    [36]樊泉桂主编.锅炉原理.北京:中国电力出版社, 2004: 95
    [37]刘联胜主编.燃烧理论与技术.北京:化学工业出版社, 2008. 2
    [38]孙学信.燃煤锅炉实验技术与方法[M].北京:中国电力出版社, 2002
    [39]刘心志,李强,冯连琨.煤粉锅炉飞灰热损失的研究.热力发电, 1999(2)
    [40]郭嘉,曾汉才.大型电站混煤燃烧特性的研究与探讨.能源研究与利用, 1994(3): 39-41
    [41]叶学民,彭波.燃煤电站锅炉飞灰含碳量偏高的原因分析及解决措施.锅炉技术, 2004, 35(3): 49-51,58
    [42]郑敏.煤粉浓度及氧浓度变化下煤粉燃尽特性的热分析研究: [硕士学位论文].浙江大学, 2007
    [43]王莺歌.大型电站锅炉飞灰含碳量的调整与控制.东北电力技术, 2007(11):24-28
    [44]庄军.飞灰含碳量超标的影响及控制.上海电力, 2000(3): 20-22
    [45] Barnes. The Slagging of Blends of Power Station Coals. Proceeding, effects of coal quality on power plants, 1993: 45-62
    [46]大型煤粉锅炉燃烧设备性能设计方法.哈尔滨普华煤燃烧技术开发中心编.哈尔滨工业大学出版社2002.8
    [47]苏胜,李培生,孙学信等.污泥基本特性及其与煤混烧的热重研究.热力发电, 2004(9): 69-74
    [48] Vyazovkin S. Alternative description of process kinetics[J]. Thermochim ect, 1992, 211(1): 181-187
    [49]刘建忠,冯展管,张保生等.煤燃烧反应活化能的两种研究方法的比较.动力工程, 2006.2:121-124
    [50]周俊虎,平传娟,杨为娟等.混煤燃烧反应动力学参数的热重研究.中国动力工程学报, 2005. 4:207-210
    [51] Coats A W, Redfern J P. Kinetic Parameters from thermo-gravimetric data[J]. Nature, 1964, 201(1)
    [52] H. Y. Shi. Kinetic Study of Fire Combustible Pyrolysis[J]. Zhejiang University, Hangzhou, 2004: 20-21
    [53] R. Z. Hu. Thermal Analysis Kinetics, Science Press of China, Beijing, 2001: 28-29
    [54]郑明东,姚伯元.动力煤的燃烧特性研究.燃料化学学报. 1996, 24(6): 565-570
    [55] J. W. Cumming. Reactivity assessment of Coals Via a Weighted Mean Activation Energy. Fuel, 1984, 63(10): 1436-1440
    [56]朱堃.混煤燃尽特性实验研究及优化配比: [硕士学位论文].华中科技大学大学图书馆, 2007
    [57]周臻,刘亮,王艳玲等.煤粉粒径对燃烧特性影响的试验研究.热力发电, 2007(3): 36-38
    [58] Smoot L D, Smith P J. Coal Combustion and Gasification. Plenum Press, 1985
    [59]周向阳,郑楚光,马毓义.大型炉膛燃烧过程的模型预示.华中理工大学学报, 1994. 22(3): 11-15
    [60] Jeffrey J. Murphy, Christopher R. Shaddix. Combustion kinetics of coal chars in oxygen-enriched environments. Combustion and Flame, 2006(144): 710-729
    [61]代纪邦,金晶,李立等.超细煤粉燃尽时间的计算和实验研究.洁净煤技术, 2007(3): 53-55
    [62]钟晓亮.未燃炭随飞灰粒径分布规律的实验研究. [硕士学位论文].华北电力大学图书馆, 2006
    [63]谢峻林,何峰,宋彦保.水泥分解炉工况下煤焦的燃尽动力学过程研究.燃料化学学报, 2002, 30(3): 223-228
    [64]李永兴,陈春元,孙家庆.电站锅炉炉膛出口温度计算方法的研究与改进.动力工程, 1992(5): 19-25
    [65]刘明锐.炉膛压力与燃烧、节能、环保的关系.应用能源技术, 2008(6): 28-29
    [66]陈炳华,张颉,孙锐等.运行参数对锅炉煤粉着火燃烧和飞灰含碳量影响的数值研究.动力工程, 2004, 24(4): 470-476
    [67]梁清阳.煤炭筛分试验中应注意的几个问题.山西焦煤科技, 2004(4): 41-42

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700