用户名: 密码: 验证码:
固体废弃物粉煤灰的资源化利用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究着力解决固体废弃物粉煤灰的资源化利用难题。以杭州热电厂和半山电厂粉煤灰为例,首先对比研究了循环流化床锅炉脱硫灰(CFB灰)和普通煤粉锅炉粉煤灰(PC灰)的特性;然后针对普通粉煤灰的特性,进行干法脱铁和湿法除炭预处理;最后对粉煤灰进行综合利用研究,主要包括以粉煤灰为原料制取白炭黑、氧化铝,合成沸石分子筛以及制备微晶玻璃等.主要研究内容和结果如下:
     (1)对比研究了脱硫灰和普灰的特性,研究结果表明:脱硫灰烧失量、氧化钙含量相对较高.普灰以莫来石和石英为主相,含有较高的无定形相;脱硫灰则以石英、方解石和硬石膏为主相,玻璃相少见。SEM观察发现,普灰颗粒以规则球形为主,而脱硫灰几乎无球形颗粒。
     (2)粉煤灰干法磁选脱铁结果表明,分析仪倾角和电流强度分别为30°和2.5A时磁选效果最好.与粗选工艺相比,粗选-扫选工艺较粗选-精选脱铁率提高明显。磁性颗粒主相为石英、莫来石和磁赤铁矿相。粉煤灰湿法除炭结果表明,捕收剂为轻柴油用量800g/t时,除炭率高达82.53%.起泡剂为仲辛醇用量600g/t时,除炭率可达80.03%.物相分析显示浮选产物主要为炭,同时夹杂有少量莫来石.炭粒微观形貌呈多孔球状,与玻璃、硅酸盐呈连生体产出。
     (3)粉煤灰碱融实验表明,同时添加助剂碳酸钠和氯化钠可有效降低粉煤灰的晶相转变温度。实验接着以粉煤灰碱融物为原料,分别通过盐酸酸浸和氨水沉淀法制取了白炭黑和γ-Al2O3. TG-DTA和SEM分析表明,γ-MPS对白炭黑的改性效果优于硬脂酸。实验后续还以制备的沉淀SiO2为硅源,采用化学包覆法成功制备了硅钛复合物。
     (4)以粉煤灰为原料,分别采用水热法和碱融法合成了方钠石和钾霞石。方钠石为规则球形,钾霞石颗粒表面生长有大量立态生长的片状结晶。TG-DTA分析表明,合成的沸石产物均具有良好的热稳定性.水煮侵蚀实验说明钾霞石具有较高的钾保持率。实验还研究了粉煤灰在LiOH·H2O碱液中的水热反应行为,并以碱融法合成了Li-ABW沸石。
     (5)以粉煤灰和LiOH·H2O为原料制得Li2Al2Si3O10为主晶相的微晶玻璃。SEM观察发现,产物颗粒相互紧锁,形成烧结完好致密化的微观结构。研究还以粉煤灰和(MgCO3)4·Mg(OH)2·5H2O为原料,采用固态烧结法制备了α-堇青石,并探讨了LiOH·H2O和TiO2对堇青石烧结性能的影响。当LiOH·H2O添加量为10%时,β-锂辉石固熔体和尖晶石相开始形成。扫描电镜观察发现,随著Li+离子掺入量的增多,晶体轮廓逐渐光滑;同时增浓作用增强,试样气孔和微晶体粒度明显减少。当Ti02添加量从4%增至10%时,Low quartz和Rutile相开始形成,同时堇青石和尖晶石含量有所降低。
This study was aimed to settle the utilization problem of solid waste coal fly ash. Taking fly ash from Hangzhou thermal power plant and banshan power plant, firstly the characterization of two different ashes, namely desulfurization ash derived from circulating fluidized bed boiler (CFB ash) and pulverized coal ash (PC ash) were studied. Then, the dry process iron removal and wet process carbon separation were conducted based on the characterization of the PC ash. Its comprehensive utilization was studied at last, which included the preparation of precipitated silica and aluminium, synthesis of zeolite molecular sieves and the preparation of glass-ceramic. The main contents and results were as follows:
     (1) The characterization of CFB ash and PC ash were comparatively studied and the results were as follows:The loss on ignition (LOI) and CaO contents of CFB ash were higher than that of PC ash. The main phase of PC ash was mullite and quartz, including large quantity of amorphous phase. As compared, the main phase of CFB ash was quartz, calcite and anhydrite with small amount of glass phase. The SEM observation revealed that the PC ash manifested as regular sphere-like particle, while the regular particle was rare to be observed in the CBF ash.
     (2) The results of iron removal by magnetic separation experiment showed that the magnetic separation efficiency was higher when the dip angle and current intensity of the analyzer was 30°and 2.5A, respectively. Compared to roughing dressing, the iron removal efficiency of roughing-scavenging dressing was higher than that of roughing-fine dressing. The main phases of magnetic particle were quartz, mullite and maghemite. The study of wet process carbon separation indicated that the carbon removal efficiency attained 82.53% when the dosage of light diesel oil collector was 800g/t. The removal efficiency was 80.03% when the amount of sec-octyl alcohols was selected as 600g/t. The phase analysis of floated product showed that carbon was the prevailing phase with little amount of mullite. The carbon was an intergrowth of glass and silicate manifested as spherical porous shape.
     (3) The results of alkaline fusion study showed that the phase transformation temperature decreased after adding sodium carbonate and sodium chloride into the coal fly ash. Thereafter, the precipitated silica andγ-Al2O3 were prepared using the alkaline fused product as material through hydrochloric acid extracting and ammonia precipitation method, respectively. The TG-DTA and SEM analysis indicated that the y-MPS showed good modification effect on precipitated silica compared with that of stearic acid. At last, the titania-silica composite was successfully prepared using precipitated silica as the silica source by chemical coating method.
     (4) The sodalite and kaliophilite were prepared using coal fly ash as material by hydrothermal and fusion method, respectively. The synthesized sodalite was regular sphere shape. As compared, there were many plate-like crystals developed on the surface of kaliophilite particle. The TG-DTA analysis showed that the synthesized zeolites had remarkable thermal stability. The leaching test confirmed that the kaliophilite possessed high potassium retention rate. The hydrothermal treatment of coal fly ash in LiOH·H2O alkaline solution was also studied and the Li-ABW zeolite was synthesized by fusion method.
     (5) The glass-ceramic with major phase Li2Al2Si3O10 was prepared through sintering coal fly ash with LiOH·H2O powder. SEM observation revealed that the product particle interlocked together with dense well-sintered microstructure. The a-cordierite glass-ceramic was also prepared by solid state sintering method using coal fly ash and (MgCO3)4·Mg(OH)2·5H2O powder as precursors. As the LiOH·H2O additive amount reached 10%,β-spodumene and spinel phases developed. SEM observations revealed that the contour of crystal grains became smooth with the doping of Li+ion. In addition to this feature, the densification process improved and the sample's porosity and grain size decreased notably. As the TiO2 contents increased from 4% to 10%, low quartz and rutile were formed. Simultaneously, the amounts of indialite and spinel decreased.
引文
Acar A C, Yucel H, Culfaz A. The synthesis and sodium-silver ion exchange of sodalites[J]. Chemical Engineering Communications,2003,190(5-8):861-882.
    Alemany L J, Pardo E, Martin F, et al. Photodegradation of phenol in water using silica-supported titania catalysts[J]. Applied Catalysis B,1997,13(3-4):289-297.
    Anthony E J, Granat stein D L. Sulfation phenomena in fluidized bed combustion systems[J]. Progress in Energy Combustion Science,2001,27(2):215-236.
    Arnault L, Gerland M, Rivier A. Microstructural study of two LAS-type glass-ceramics and their parent glass[J]. Journal of Materials Science,2000, 35(9):2331-2345.
    Barbieri L, Leonelli C, Manfredini T, et al. Nucleation and crystallization of a lithium aluminosilicate glass[J]. Journal of Ameican Ceramic Society,1997,80(12): 3077-3083.
    Barrer R M, White E A. The hydrothermal chemistry of silicates. Part I. Synthetic lithium aluminosilicates[M]. Journal of Chemical Society:London,1951.
    Barrer R M. Hydrothermal chemistry of zeolites[M]. Academic Press:London,1982.
    Barroso M N, Gomez M F, Arrua L A, et al. Hydrogen production by ethanol reforming over NiZnAl catalysts[J]. Applied Catalysis A:General,2006,304: 116-123.
    Baur W H, Fischer R X. A historical note on the sodalite framework:The contribution of Frans Maurits Jaeger[J]. Microporous and Mesoporous Materials,2008, 116(1-3):1-3.
    Behr-Andres C B, Hutzler N J. Characterization and use of fluidized-bed-combustion coal ash[J]. Journal of Environmental Engineer,1994,120(6):1488-1506.
    Bhagat S D, Rao A V. Surface chemical modification of TEOS based silica aerogels synthesized by two step (acid-base) sol-gel process[J]. Applied Surface Science, 2006,252(12):4289-4297.
    Bibby D M, Dale M P. Synthesis of silica-sodalite from non-aqueous systems[J]. Nature,1985,317(12):157-158.
    Braunbarth C M, Behrens P, Felsche J, et al. Synthesis and characterization of two new silica sodalites containing ethanolamine or ethylenediamine as guest species: [C2H7NO]2[Si6O12]2 and [C2H8N2]2[Si6O12]2[J].Zeolites,1996,16(2-3):207-217.
    Campbell J. The concept of net shape for castings[J]. Materials & Design,2000,21(4): 373-380.
    Carlos A, Rios R, Craig D, et al. A comparative study of two methods for the synthesis of fly ash-based sodium and potassium type zeolites[J]. Fuel,2009, 88(8):1403-1416.
    Carpenter M A, Cellai D. Microstructures and high-temperature phase transitions in kalsilite[J]. American Mineralogist,1996,81(5-6):561-584.
    Chen G H, Liu X Y. Fabrication, characterization and sintering of glass ceramics for low-temperature co-fired ceramic substrates[J]. Journal of Materials Science: Materials in Elelctronics,2004,15(9):595-600.
    Chen G H. Effect of ZnO addition on properties of cordierite-based glass-ceramics[J]. Journal of Materials Science:Materials in Electronics,2007,18(12):1253-1257.
    Chen L S, Fu S L. Densification and dielectric properties of cordierite-lead borosilicate glasses [J]. Journal of Applied Physics,1992,31(12A):3917-3921.
    Chen Y X, Wang K, Lou L P. Photodegradation of dye pollutants on silica gel supported TiO2 particles under visible light irradiation[J]. Journal of Photochemistry and Photobiology A,2004,163(1-2):281-287.
    Cheng P, Zheng M P, Jin Y P, et al. Preparation and characterization of silica-doped titania photocatalyst through sol-gel method[J]. Materials Letters,2003,57(20): 2989-2994.
    Choi C L, Park M, Lee D H, et al. Salt-thermal zeolitization of fly ash[J]. Environmental Science & Technology,2001,35(13):2812-2816.
    Cioffi R, Pernice P, Aronne A, et al. Glass-Ceramics from fly ash with added Li2O[J]. Journal of the European Ceramic Society,1994a,13(2):143-148.
    Cioffi R, Pernice P, Aronne A, et al. Glass-Ceramics from fly ash with added MgO and TiO2[J]. Journal of the European Ceramic Society,1994b,14(6):517-521.
    Cooper E R, Andrews C D, Wheatley P S, et al. Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues[J]. Nature,2004, 430(7003):1012-1016.
    Dasmahapatra G P, Pal T K, Bhattacharya B. Continuous separation of hexavalent chromium in a packed bed of fly ash pellets[J]. Chemical Engineer Technology, 1998,21(1):89-95.
    Dawson W J. Hydrothermal synthesis of advanced ceramic powders[J]. Ameican Ceramic Society Bulletin,1988,67(10):1673-1678.
    de Lambilly H, Klein L C. Crystallization on lithium aluminosilicate gels[J]. Journal of Non-Crystalline Solids,1988,102(1-3):269-274.
    de Lambilly H, Klein L C. Effect of methanol concentration on lithium aluminosilicate gels[J]. Journal of Non-Crystalline Solids,1989,109(1):69-78.
    Denis A, Grzegorczyk W, Gac W, et al. Steam reforming of ethanol over Ni/support catalysts for generation of hydrogen for fuel cell applications[J]. Catalysis Today, 2008,137(2-4):453-459.
    Dong J X, Wang X Y, Xu H, et al. Hydrogen storage in several microporous zeolites[J]. International Journal of Hydrogen Energy,2007,32(18):4998-5004.
    Einarsrud M A, Kirkedelen M B, Nilsen E, et al. Structural development of silica gels aged in TEOS[J]. Journal of Non-Crystalline Solids,1998,231(1-2):10-16.
    Erol M, Genc A, Ovecoglu M L, et al. Characterization of a glass-ceramic produced from thermal powder plant fly ashes[J]. Journal of the European Ceramic Society, 2000,20(12):2209-2214.
    Fan Y M, Yin S H, Wen Z Y, et al. Activation of fly ash and its effects on cement properties[J]. Cement and Concrete Research,1999,29(4):467-472.
    Fatsikostas A N, Kondarides D I, Verykios X E. Steam reforming of biomass-derived ethanol for the production of hydrogen for fuel cell applications[J]. Chemical Communications,2001,9:851-852.
    Fernandez A M, Ibanez J L, Llavona M A, et al. Leaching of aluminum in Spanish clays, coal mining wastes and coal fly ashes by sulphuric acid[J]. Light Metals: proceeding of Sessions, TMS Annual Meeting, Warren dale, Pennsylvania, USA, 1998.
    Fernandez-Pereira C, Luna Galiano Y, Vale J, et al. Zeolitisation of pulverised coal fly ash[J]. In:Proceedings of Progres Workshop on Novel Products from Combustion Residues, Morella, Spain,2001.
    Foner H A, Robl T L, Hower J C, et al. Characterization of fly ash from Israel with reference to its possible utilization[J]. Fuel,1999,78(2):215-223.
    Frusteri F, Freni S, Chiodo V, et al. Potassium improved stability of Ni/MgO in the steam reforming of ethanol for the production of hydrogen for MCFC[J]. Journal of Power Sources,2004b,132(1-2):139-144.
    Frusteri F, Freni S, Chiodo V, et al. Steam reforming of bio-ethanol on alkali-doped Ni/MgO catalysts:hydrogen production for MC fuel cell[J]. Applied Catalysis A: General,2004a,270(1-2):1-7.
    Fujishima A, Honda K. Electrochemcal photolysis of water at a semiconductor electrode[J]. Nature,1972,238(5338):37-38.
    Ganguli D, Chatterjee M. Ceramic Powder Preparation:A Handbook[M]. Kluwer Academic Publishers:Boston,1997.
    Gao X, Wachs I E. Titania-silica as catalysts:molecular structural characteristics and physico-chemical properties[J]. Catalysis Today,1999,51(2):233-254.
    Gorlov Y P, Ustenko A A, Sardarov B S, et al. Material based on heat-resistant fiber made from power station fly ash[J]. Glass and Ceramics,1979,36(10):539-542.
    Gregg S J, Sing K S W. Adsorption Surface Area and Porosity[M]. Academic Press: London,1991.
    Herreros B, Klinowski J. Influence of the source of silicon and aluminum in the hydrothermal synthesis of sodalite[J]. Journal of the Chemical Society, Faraday Transactions,1995,91(7):1147-1154.
    Ho S F, Klein L C, Caracciolo R. Analysis of precursor residues in lithium alumnosilicate gels using XPS and RGA[J]. Journal of Non-Crystalline Solids, 1990,120(1-3):267-274.
    Holler H, Wirsching U. Zeolite formation from fly ash[J]. Fortschr Mineral,1985, 63(1):21-43.
    Hollman G G, Steenbruggen G, Janssen-Jurkovieova. A two-step process for the synthesis of zeolites from coal fly ash[J]. Fuel,1999,78(10):1225-1230.
    Hong S S, Lee M S, Park S S, et al. Synthesis of nanosized TiO2/SiO2 particles in the microemulsion and their photocatalytic activity on the decomposition of p-nitrophenol[J]. Catalysis Today,2003,87(1-4):99-105.
    Hrubesh L W. Aerogel application[J]. Journal of Non-Crystalline Solids,1998,225(1): 335-342.
    Iannazzo V, Neri G, Galvagno S, et al. Oxidative dehydrogenation of isobutane over V2O5-based catalysts prepared by grafting vanadyl alkoxides on TiO2-SiO2 supports[J]. Applied Catalysis A:General,2003,246(1):49-68.
    Inada M, Eguchi Y, Enomoto N, et al. Synthesis of zeolite from coal fly ashes with different silica-alumina composition[J]. Fuel,2005,84(23):299-304.
    Inada M, Tsujimoto H, Eguchi Y, et al. Microwave-assisted zeolite synthesis from coal fly ash in hydrothermal process[J]. Fuel,2005,84(12-13):1482-1486.
    Ingo G M, Riccucci C, Bultrini G, et al. Thermal and microchemical characterization of sol-gel SiO2, TiO2 and x SiO2-(1-x)TiO2 ceramic materials[J]. Journal of Thermal Analysis and Calorimetry,2001,66(1):37-46.
    Janssen A H, Koster A J, de Jong K P, et al. On the shape of the mesopores in zeolite Y:a three-dimensional transmission electron microscopy study combined with texture analysis[J]. The Journal of Physical Chemistry B,2002,106(46): 11905-11909.
    Jozewicz W, Rochelle G T. Fly ash recycle in dry scrubbing[J]. Environmental Progress,2006,5(4):219-224.
    Kalra N, Jain M C, Joshi H C, et al. Fly ash as a soil conditioner and fertilizer[J]. Bioresource Technology,1998,64(3):163-167.
    Kawatra S K, Eisele T C, Banerjee D. High-carbon fly-ash binders for iron ore pellets[J]. In:Iron and Steel Society,1998 ICSTI/Ironmaking Conference Proceedings, Toronto, Ontario, Canada, The Iron and Steel Society, Warrendale, Pennsylvania, USA,1998.
    Keijsper J, den Ouden C J J, Post M F M. Synthesis of high-silica sodalite from aqueous systems; a combined experimental and model-based approach[J]. In: Zeolites:Facts, Figures, Future. Jacobs PA, van Santen RA (eds). Elsevier: Amsterdam,1989.
    Kerr I S. Crystal structure of a synthetic lithium zeolite[J]. Z Kristallogr Kristallgeom Kristallphys Kristallchem,1974,139(3-5):186-195.
    Kniess C T, de Lima J C, Prates P B, et al. Dilithium dialuminium trisilicate phase obtained using coal bottom ash[J]. Journal of Non-Crystalline Solids,2007, 353(52-54):4819-4822.
    Kokubo T, Tashiro M. Glass formation in the systems (Na2O, K2O or BaO)-TiO2-Al2O3[J]. Bulletin of the Institute for Chemical Research, Kyoto University,1975,52:633-640.
    Kumar A H, Mcmillan P W, Tummala R R. Glass-ceramic structures and sintered multilayer substrate thereof with circuit patterns of gold, silver or copper[P]. US 4413061,1981.
    Laokula P, Maensirib S. Synthesis, characterization and sintering behavior of nanocrystalline cordierite ceramics[J]. Advances in Science and Technology, 2006,45:242-247.
    Li F H, Zhai J P, Fu X R, et al. Characterization of fly ashes from circulating fluidized bed combustion (CFBC) boilers cofiring coal and petroleum coke[J]. Energy and Fuels,2006,20(4):1411-1417.
    Liberatori J W C, Ribeiro R U, Zanchet D, et al. Steam reforming of ethanol on supported nickel catalysts[J]. Applied Catalysis A:General,2007,327(2): 197-204.
    Lin C F, His H C. Resource recovery of waste fly ash:synthesis of zeolite-like materials[J]. Environmental Science & Technology,1995,29(4):1109-1117.
    Lin D C, Xu X W, Zuo F, et al. Crystallization of JBW, CAN, SOD and ABW type zeolite from transformation of meta-kaolin[J]. Microporous and Mesoporous Materials,2004,70(1-3):63-70.
    Liu Z Y, Quan X, Fu H B, et al. Effect of embedded-silica on microstructure and photocatalytic activity of titania prepared by ultrasound-assisted hydrolysis[J]. Applied Catalysis B,2004,52(1):33-40.
    Lusvardi G, Malavasi G, Menabue L, et al. A computational tool for the prediction of crystalline phases obtained from controlled crystallization of glasses[J]. Journal of Physical Chemistry B,2005,109(46):21586-21592.
    Ma B G, Meng Q, Peng J, et al. The compositions, surface texture, absorption, and binding properties of fly ash in China[J]. Fuel,1999,25(4):423-432.
    Ma M S, Ni W, Wang Y L, et al. The effect of TiO2 on phase separation and crystallization of glass-ceramics in CaO-MgO-Al2O3-SiO2-Na2O system[J]. Journal of Non-Crystalline Solids,2008,354(52-54):5395-5401.
    Maeda M, Yamasaki S. Effect of silica addition on crystallinity and photo-induced hydrophilicity of titania-silica mixed films prepared by sol-gel process[J]. Thin Solid Films,2005,483(1-2):102-106.
    Marino F, Baronetti G, Jobbagy M, et al. Cu-Ni-K/y-AlO3 supported catalysts for ethanol steam reforming. Formation of hydrotalcite-type compounds as a result of metal-support interaction[J]. Applied Catalysis A:General,2003,238(1): 41-54.
    Maroto-Valer M M, Zhang Y, Andresen J M, et al. Routes for the development of value added products from high carbon fly ashes[J]. ACS. Fuel Chemistry, Preprints,2001,46(1):316-317.
    Matjie R H, Bunt J R, Van Heerden. Extraction of alumina from coal fly ash generated from a selected low rank bituminous South African coal[J]. Minerals Engineering,2005,18(3):299-310.
    McCarthy M J, Dhir R K. Towards maximising the use of fly ash as a binder[J]. Fuel, 1999,78(2):121-132.
    McMurphy L M, Rayburn A L. Nuclear alterations of maize plants grown in soil contaminated with coal fly ash[J]. Archives of Environmental Contamination and Toxicology,1993,25(4):520-524.
    Menzies N W, Aitken R L. Evaluation of fly ash as a component of potting substrates[J]. Scientia Horticulturae,1996,67(1-2):87-89.
    Molina A, Poole C. A comparative study using two methods to produce zeolite from fly ash[J]. Minerals Engineering,2004,17(2):167-173.
    Morin S, Ayrault P, Gnep N S, et al. Influence of the framework composition of commerical HFAU zeolites on their activity and selectivity in m-xylene transformation[J]. Applied Catalysis A:General,1998,166(2):281-292.
    Moriyama R, Takeda S, Onozaki M, et al. Large-scale synthesis of artificial zeolite from coal fly ash with a small charge of alkaline solution[J]. Fuel,2005,84 (12-13):1455-1461.
    Murase K, Nishikawa K, Ozaki T, et al. Recovery of vanadium, nickel and magnesium from a fly ash of bitumen-in-water emulsion by chlorination and chemical transport[J]. Journal of Alloys and Compounds,1998,264(1):156-160.
    Murayama N, Yamamoto H, Shibata J. Mechanism of zeolite synthesis from coal fly ash by alkali hydrothermal reaction[J]. International Journal of Mineral Processing,2002a,64(1):1-17.
    Murayama N, Yamamoto H, Shibata J. Zeolite synthesis from coal fly ash by hydrothermal reaction using various alkali sources[J]. Journal of Chemical Technology& Biotechnology,2002b,77(3):280-286.
    Nakamura M, Kobayashi M, Kuzuya N, et al. Hydrophilic property of SiO2/TiO2 double layer films[J]. Thin Solid Films,2006,502(1-2):121-124.
    Naskar M K, Chatterjee M. A novel process for the synthesis of cordierite (Mg2Al4Si5O18) powders from rice husk ash and other sources of silica and their comparative study[J]. Journal of the European Ceramic Society,2004,24: 3499-3508.
    Ni M, Leung D Y C, Leung M K H. A review on reforming bio-ethanol for hydrogen production[J]. International Journal of Hydrogen Energy,2007,32(15): 3238-3247.
    Nowak W. Clean coal fluidized-bed technology in Poland[J]. Applied Energy,2003, 74(3-4):405-413.
    Padovan M, Genoni F, Leofanti G, et al. Preparation of catalysts V[M]. Elsevier: Amsterdam,1990.
    Pauling L. The structure of sodalite and helvite[J]. Zeitschrift fur Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie,1930,74:213-225.
    Pickles C A, Mclean A, Alcock C N, et al. Plasma recovery of metal values from fly ash[J]. Can Metal Q,1990,29(3):193-200.
    Pisciella P, Pelino M. Thermal expansion investigation of iron rich glass-ceramic[J]. Journal of the European Ceramic Society,2008,28(16):3021-3026.
    Pu Y Y, Fang J Z, Peng F, et al. Microemulsion synthesis of nanosized SiO2/TiO2 particles and their photocatalytic activity[J]. Chinese Journal of Catalysis,2007, 28(3):251-256.
    Querol X, Plana F, Alastuey A, et al. Synthesis of Na-zeolites from fly ash[J]. Fuel, 1997,76(8):793-799.
    Rawson H. Inorganic Glass-Forming Systems[M]. Academic Press:London and New York,1967.
    Rayalu S S, Udhoji J S, Munshi K N, et al. Highly crystalline zeolite-a from fly ash of bituminous and lignite coal combustion[J]. Journal of Hazardous Materials,2001, 88(1):107-201.
    Renedo M J, Fernandez J. Preparation, characterization, and calcium utilization of fly ash/Ca(OH)2 sorbents for dry desulfurization at low temperature[J]. Industrial and Engineering Chemistry Research,2002,41(10):2412-2417.
    Reser M K. Phase Diagrams of Ceramics[M]. Journal of the American Ceramic Society, Fig.712,1964.
    Riello P, Canton P, Comelato N, et al. Nucleation and crystallization behavior of glass-ceramics materials in the Li2O-Al2O3-SiO2 system of interest for their transparency properties[J]. Journal of Non-Crystalline Solids,2001,288(1-3): 127-139.
    Rinco J M, Romero M, Boccaccini A R. Microstructural characterisation of a glass and a glass-ceramic obtained from municipal incinerator fly ash[J]. Journal of Materials Science,1999,34(18):4413-4423.
    Robson H. Verified Syntheses of Zeolitic Materials[M],2nd edition, Elsevier: Amsterdam,2001.
    Rohatgi, P K, Guo, R Q. Opportunities of using fly ash particles for synthesis of composites[C]. Proceedings of the 59th Annual American Power Conference, Chicago,1997.
    Sadriye K, Aysegul E H, Hanzade H A, et al. Investigation of the relation between chemical composition and ash fusion temperature for soke turkish lignites[J]. Petroleum Science and Technology,1993,11(9):1231-1249.
    Sanchez-Sanchez M C, Navarro R M, Fierro J L G. Ethanol steam reforming over Ni/MxOy-Al2O3(M=Ce, La, Zr and Mg) catalysts:Influence of support on the hydrogen production[J]. International Journal of Hydrogen Energy,2007, 32(10-11):1462-1471.
    Saroja D M, Murugesan V, Rengaraj K, et al. Utilization of fly ash as filler for unsaturated polyester resin[J]. Journal of applied polymer science,1998,69(7): 1385-1391.
    Savrun E, Scott W D, Harris D C. The effect of titanium doping on the high-temperature rhombohedral twinning of sapphire[J]. Journal of Materials Science,2001,36(9):2295-2301.
    Schoeman B J. Analysis of the nucleation and growth of TPA-silicate-1 at elevated temperatures with the emphasis on colloidal stability[J]. Microporous and Mesoporous Materials,1998,22(1-3):9-22.
    Shao H, Liang K M, Zhou F, et al. Characterization of cordierite-based glass-ceramics produced from fly ash[J]. Journal of Non-Crystalline Solids,2004,337(2): 157-160.
    Shearer J A, Smith G W, Moulton D S, et al. Hydration process for reactivating spent limestone and dolomite sorbents for reuse in fluidized-bed coal combustion[C]. Proceedings of the 6th International Conference on Fluidized Bed Combustion, ASME, New York,1980.
    Shigemoto N, Hayashi H, Miyaura K. Selective formation of Na-X zeolite from coal fly ash by fusion with sodium hydroxide prior to hydrothermal reaction[J]. Journal of Materals Science,1993,28 (17):4781-4786.
    Shukla K N, Mishra L C. Effect of fly ash extract on growth and development of corn and soybean seedlings[J]. Water, Air,& Soil Pollution,1986,27(1-2):155-167.
    Song C S, Subramani V. Advances in catalysis and processes for hydrogen production from ethanol reforming[J]. Catalysis,2007,20:65-106.
    Srinivas D, Satyanarayana C V V, Potdar H S, et al. Structural studies on NiO-CeO2-ZrO2 catalysts for steam reforming of ethanol [J]. Applied Catalysis A: General,2003,246(2):323-334.
    Steenbruggen G, Hollman G G. The synthesis of zeolites from fly ash and the properties of the zeolite products[J]. Journal of Geochemical Exploration,1998, 62(1-3):305-309.
    Stovesonline. What is coal and how is it formed[EB/ON]. http://www.stovesonline.co.uk/how-coal-formed.html.
    Strnad Z. Glass-ceramic Materials:Glass Science and Technology[M]. Elsevier Science Publishing Company:New York,1986.
    Thomson T. A chemical analysis of Sodalite, a new mineral from Greenland[J]. Journal of natural Philosophy, Chemistry and the Arts,1811,29:285-292.
    Tummala R R. Ceramic and glass-ceramic packaging in the 1990s[J]. Journal of the American Ceramic Society,1991,74(5):895-908.
    Vaidya P D, Rodrigues A E. Insight into steam reforming of ethanol to produce hydrogen for fuel cells[J]. Chemical Engineering Journal,2006,117(1):39-49.
    van de Goor G, Behrens P, Felsche J. (C3H6O2)2,(Si6O12)2, a new silica sodalite synthesized, using 1,3-dioxolane as template[J]. Microporous Materials,1994, 2(6):501-514.
    van den Berg A W C, Bromley S T, Jansen J C. Thermodynamic limits on hydrogen storage in sodalite framework materials:a molecular mechanics investigation[J]. Microporous and Mesoporous Materials,2005,78(1-4):63-71.
    Vassilev S V, Vassileva C G. A new approach for the classification of coal fly ashes based on their origin, composition, properties, and behavior[J]. Fuel,2007,86 (10-11):1490-1512.
    Velu S, Suzuki K, Vijayaraj M, et al. In situ XPS investigations of Cu1-xNixZnAl-mixed metal oxide catalysts used in the oxidative steam reforming of bio-ethanol[J]. Applied Catalysis B:General,2005,55(4):287-299.
    Viraraghavan T, Dronamraju M M. Utilization of coal ash in water pollution control[J]. International Journal of Environmental Studies,1992,40(1):79-85.
    Vorres K S. Effect of composition on melting behavior of coal fly ash[J]. Journal of Engineering for Power-Transactions of the ASME,1979,101(4):497-499.
    Wang M, Liu S W, Xiu Z L, et al. Preparation and photocatalytic properties of silica gel-supported TiO2[J]. Materials Letters,2006,60 (7):974-978.
    Wang R, Hashimoto K, Fujishima A, et al. Light induced amphiphilic surface[J]. Nature,1997,388(6641):431-432.
    Weitkamp J, Fritz M, Ernst S. Zeolites as media for hydrogen storage[J]. International Journal of Hydrogen Energy,1995,20(12):967-970.
    Wu J M, Hwang, S P. Effects of (B2O3, P2O5) additives on microstructural development and phase-transformation kinetics of stoichiometric cordierite glasses[J]. Journal of the American Ceramic Society,2000,83(5):1259-1265.
    Wu X L, Wang F, Ren Q. Studies on the structure and properties of cordierite synthesized by talc-magnesite[J]. Chinese Journal of Structural Chemistry,2007, 26(6):732-736.
    Xu Y P, Tian Z J, Xu Z S, et al. Ionothermal synthesis of silicoaluminophosphate molecular sieve in N-Alkyl imidazolium bromide[J]. Chinese Journal of Catalysis,2005,26(6):446-448.
    Yang J S, Sakka S, Yoko T, et al. Preparation of lithium aluminosilicate glass-ceramic monolith from metal alkoxide solution[J]. Journal of Materials Science,1990, 26(7):1827-1833.
    Yu J G, Zhao X J, Yu J C, et al. The grain size and surface hydroxyl content of super-hydrophilic TiO2/SiO2 composite nanometer thin films[J]. Journal of Materials Science Letters,2001,20, (18):1745-1748.
    Zhang X B, Wu Z S, Meng G Y, et al. Formation and kinetics of porous cordierite from fly ash[J]. Chinese Journal of Geochemistry,2008,27(4):395-400.
    Zhang X W, Lei L C. A kinetic model for describing effect of the external surface concentration of TiO2 on the reactivity of eggshell activated carbon supported TiO2 photocatalyst[J]. Chinese Science Bulletin,2007,52(24):3339-3345.
    Zhou Y S, Jiang G W. Study on property of composite oxides TiO2/SiO2[J].Chinese Journal of Chemical Engineering,2002,10(3):349-353.
    白召军,张利萍,赵亚排,等.粉煤灰制备沸石分子筛的研究进展[J].硅酸盐通报,2009,28(4):771-774,783.
    边炳鑫,艾淑艳.粉煤灰理化性质及其综合利用[J].煤矿环境保护,1997,11(3):44-47.
    边炳鑫,解强,赵由才.煤系固体废物资源化技术[M].北京:化学工业出版社,2005.
    边炳鑫,李哲,何京东,等.磁珠分选原理与分选试验研究[J].中国矿业,1997a,6(5):65-68.
    边炳鑫,李哲,何京东,等.泡沫浮选粉煤灰中炭粒的研究[J].矿产综合利用,1997b,(2):14-17.
    曹东,王金南.中国工业污染经济学[M].北京:中国环境科学出版社,1999.
    曹明礼,袁继祖,潘亚宏.利用高岭土制取聚合氯化铝和白炭黑的试验研究[J].建材地质,1997,(2):41-43.
    岑可法.洁净煤技术在中国动力工程中的发展[C].中国动力工程学会第三次全国代大会,1998,11-14.
    车东晖,李振华,高建国.合成钾霞石焙烧工艺的改进[J].齐鲁石油化工,1997,25(4):235-237.
    陈建林,陶志宁.粉煤灰中铝盐提取的研究[J].1994,(4):14-15.
    陈庆春.方沸石和方钠石复合空心球的制备和表征[J].无机盐工业,2005,37(3):22-23.
    陈婷婷.流化床粉煤灰合成沸石及处理含酚废水的研究[D].太原理工大学硕士学位论文,2008.
    陈莹莹,侯建梅,张溪文,等.电纺制备TiO2纳米线及其煅烧对其光催化性能的影响[J].粉末冶金材料科学与工程,2008,11(6):352-355.
    程伟明,何涌,雷文.粉煤灰堇青石多孔微晶玻璃的初步研究[J].陶瓷瓷科学与艺术,2002,(6):6-8.
    邓存,段连运,徐献平,等.复合载体TiO2/SiO2的气相吸附法制备及MoO3在 其表面上的分散状态[J].催化学报,1993,14(4):281-286.
    邓红梅,曾文明,陈念贻.氧化铝生产中“硅渣”的组成和结构研究[J].金属学报,1996,32(12):1248-1251.
    窦涛,冯芳霞,王晓钟,等.沸石合成过程中的溶剂效应[J].燃料化学学报,1996,24(4):372-374.
    杜高辉,卫英慧.纳米HS型沸石合成及长大机理的研究[J].无机材料学报,2000,15(6):1073-1075.
    杜高翔.纳米沉淀二氧化硅的硅烷偶联剂原位表面改性[J].功能材料,2008,12(39):2072-2078.
    杜永娟,李萍,胡丽华,等.低膨胀率堇青石陶瓷的研究[J].耐火材料,2002,36(1):27-30.
    冯芳霞,窦涛,萧墉壮.纯硅方钠石的合成及表征[J].石油学报:石油加工,1997,13(4):111-115.
    付克明,朱虹,路迈西,等.不同煅烧方式对粉煤灰水热合成沸石的影响[J].人工晶体学报,2007,36(4):943-946.
    付晓茹.掺烧高硫石油焦的CFBC脱硫灰的应用技术研究和开发[D].南京大学博士学位论文,2007.
    葛元新.以粉煤灰碱熔融分解物为原料合成4A型沸石[J].中国资源综合利用,2003,3(1):25-27.
    顾敏豪,丁道宁,郑先创,等.纳米二氧化硅-丙烯酸树脂复合涂料的研制[J].南京大学学报:自然科学版,2009,45(2):286-291.
    桂强,方荣利,阳勇福.生态化利用粉煤灰制备纳米氢氧化铝[J].粉煤灰,2004,(2):20-22.
    韩怀强,蒋挺大.粉煤灰利用技术[M].北京:化学工业出版社,2002.
    何文,沈建兴.合成莫来石纳米粉的红外吸收光谱研究[J].无机盐工业,2000,32(6):6-8.
    胡忠于,陈安国.降低粉煤灰中碳含量的全浮选试验研究[J].湖南工程学院学报,2004,14(2):74-77.
    黄定国,吴玉敏,王文华.日本的粉煤灰综合利用[J].洁净煤技术,2006,12(2):92-95.
    季惠明,吴萍,张周,等.利用粉煤灰制备高纯氧化铝纳米粉体的研究[J].地学前缘,2005,12(1):220-224.
    贾德义,郝肖黎,冯宾.粉煤灰改良重粘土地的研究报告[J].粉煤灰综合利用,1990,(1):28-29.
    贾光耀,邓育新.硅溶胶凝胶化过程的研究[J].硅酸盐通报,2004,23(6):91-93.
    蒋啸.不同细度煤粉燃烧特性及粉煤灰酸浸处理中硫酸铝铵循环利用试验研究[D].浙江大学博士学位论文,2008.
    解居臣.中国电力工业对煤炭需求的分析[J].煤炭加工与综合利用,2004,(4):4-6.
    敬相海,肖保杯,姜涵.大掺量粉煤灰水泥配制研究[J].粉煤灰,2002,14(1):10-12.
    李波,邵玲玲.氧化铝、氢氧化铝的XRD鉴定[J].无机盐工业,2008,40(2):54-57.
    李辉,商博明,徐德龙,等.粉煤灰中磁珠的微观结构及化学组成[J].矿业研究与开发,2006,26(6):65-68.
    李勇,薛向欣,冯宗玉,等.用油页岩渣制备白炭黑的工艺[J].过程工程学报,2007,7(4):751-754.
    李宝智.超细粉煤灰的改性及在橡胶制品中应用效果的研究[J].粉煤灰,2004,(1):40-41.
    李登新,吕俊复,郭庆杰,等.循环流化床灰渣利用研究进展[J].热能动力工程,2003,18(1):5-8.
    李多松,姚红仙.用煤矸石制取白炭黑的研究[J].煤炭加工与综合利用,1997,(4):33-35.
    李贵安,叶录元,朱庭良,等.γ-氨丙基三乙氧基硅烷改性SiO2的制备研究[J].陕西师范大学学报:自然科学版,2009,37(4):34-37.
    李国鼎,金子奇.固体废物处理与资源化[M].北京:清华大学出版社,1999.
    李红辉.大掺量粉煤灰高性能混凝土研究[D].北京建筑工程学院硕士学位论文,2008.
    李金峰.能源节约的重点:节煤[J].中国创业投资与高科技,2004,(8):20-21.
    李天文,周国成,林朝阳,等.模板剂在分子筛合成中的作用[J].化工中间体,2006,(11):16-19.
    梁天仁.粉煤灰的显微结构及其形成机理[J].硅酸盐通报,1984,(5):23-29.
    林宗寿,胡明翊.差热法测定生料煤含量的实验研究[J].武汉理工大学学报,2002,24(4):28-31.
    刘浩,李金洪,马鸿文,等.利用高铝粉煤灰制备堇青石微晶玻璃的实验研究[J].岩石矿物学杂志,2006,25(4):338-340.
    刘艳,马毅,李艳,等.粉煤灰合成沸石的研究[J].煤炭转化,2007,30(2):91-95.
    刘德昌.流化床燃烧技术的工业应用[M].北京:中国电力出版社,1998.
    刘吉文,许海燕,吴驰飞.环氧天然橡胶接枝高分散白炭黑增强天然橡胶复合材料的制备及表征[J].高分子学报,2008,(2):123-128.
    刘丽娜,刘志明,吴德意,等.粉煤灰吸附去除城市景观水体中磷的初步研究[J].环境科学与技术,2006,29(2):40-42.
    刘培陶,崔龙鹏,沈卫星,等.粉煤灰堆放场土壤环境微量元素分析与风险评价[J].农业环境科学学报,2008,27(1):207-211.
    刘文永,付海明,张金涛.高掺量粉煤灰绿色建筑材料的开发应用[J].岩石矿物学杂志,2001,20(4):500-503.
    刘巽伯,沈旦申,陈以理,等.上海市粉煤灰应用技术手册[M].上海:同济大学出版社,1995.
    刘瑛瑛,李来时,吴艳,等.粉煤灰精细利用[J].轻金属,2006,(5):20-23.
    龙英才.光致变色材料方钠石的合成[J].复旦学报:自然科学版,1994,33(1):17-21.
    鲁桂梅,胡涛,黄峰,等.方钠石的合成及其吸水性能研究[J].化学工程与装备,2008,(10):10-13.
    鲁晓勇,张德,蔡水洲.粉煤灰合成SiAlON粉体研究[J].耐火材料,2005,39(4):259-262,265.
    陆雷,赵莹,张乐军,等.晶核剂及热处理对锂铝硅系微晶玻璃晶化和性质的影响[J].材料科学与工程,2008,26(3):441-445,405.
    吕飞,胡劲,陈冬华,等.气相法白炭黑脱酸机理研究[J].无机盐工业,2009,41(4):35-37.
    吕彦杰,何涌.粉煤灰堇青石微晶玻璃中堇青石的形成过程研究[J].同煤科技,2007(4):26-29,32.
    骆仲浃,何宏舟,王勤辉,等.循环流化床锅炉技术的现状及发展前景[J].动力工程,2004,24(6):761-767.
    马新明,焦有.粉煤灰改良砂姜黑土与玉米生长关系的研究[J].河南农业大学学报,1998,32(4):303-307.
    马英冲,徐云鹏,王少君,等.室温离子液体中合成方钠石的研究[J].高等学校化学学报,2006,27(4):739-741.
    潘峰,喻学惠,莫宣学,等.架状硅酸盐矿物的Raman光谱研究[J].硅酸盐学报,2009,37(12):2043-2047.
    裴亚利.循环流化床粉煤灰的特征及其综合利用[D].吉林大学硕士学位论文,2006.
    彭涛,田书营,张志宝.内循环流化床锅炉燃烧链条炉飞灰的试验研究[J].动力工程,1999,19(4):275-279.
    钱觉时,王智,张玉奇.粉煤灰的矿物组成(下)[J].粉煤灰综合利用,2001,(4):24-28.
    钱觉时.粉煤灰特性与粉煤灰混凝土[M].北京:科学出版社,2002.
    秦俊岭,於定华,陈建定.煅烧温度对TiO2/SiO2混合氧化物表面酸量的影响[J].分子催化,2004,18(6):472-474.
    任强,李启甲,嵇鹰.绿色硅酸盐材料与清洁生产[M].北京:化学工业出版社,2004a.
    任强,武秀兰.合成堇青石陶瓷材料的研究进展[J].中国陶瓷,2004b,40(5):23-25.
    阮玉忠,吴万国.工艺条件对堇青石窑具多晶结构与性能的影响[J].福州大学学报:自然科学版,1997,25(5):97-102.
    尚衍波,张覃.从粉煤灰中回收炭的扩大连续浮选试验[J].矿冶,2004,13(2):24-27.
    邵长路,石鑫,陈彬,等.邻苯二酚在合成全硅方钠石分子筛大单晶中的螯合效应[J].分子科学学报,2001,17(2):82-86.
    盛昌栋,张军.粉煤灰中残炭的特性与利用[J].粉煤灰综合利用,2005,(1):3-5.
    盛广宏,李琴,翟建平,等.循环流化床锅炉内掺高硫石油焦混烧脱硫灰的矿物相组成[J].南京大学学报:自然科学版,2007,43(3):329-334.
    施竣耀.锂铝硅酸盐及低热膨胀复合胶体之制备[D].明志科技大学硕士学位论文,2005.
    石磊.粉煤灰的综合利用现状与展望[J].再生资源研究,2006,(2):41-44.
    宋凯,刘敬肖,史非,等.用粉煤灰水热合成P型沸石及其对重金属铅离子的吸附[J].大连工业大学学报,2009,28(1):44-47.
    宋蔚,梁珍成,秦永宁.助剂钾添加方式对多乙苯脱氢催化性能的影响[J].物理化学学报,1997,13(1):79-82.
    宋宽秀,颜秀茹,霍明亮,等.TiO2-SiO2复合材料的制备和表征[J].硅酸盐通报,2000,(5):36-39.
    宋远明,钱觉时,王智,等.固硫灰渣的微观结构与火山灰反应特性[J].硅酸盐学报,2006,34(12):1542-1546.
    宋远明,钱觉时,王智.燃煤灰渣活性研究综述[J].粉煤灰,2007,19(1):44-46.
    孙树臣,吴志颖,边雪,等.NaCl-CaCl2对氧化钙分解独居石的影响[J].稀土,2007,28(5):6-9.
    田凤仁.无机材料结构基础[M].北京:冶金工业出版社,1993.
    田书营.锅炉飞灰回收燃烧试验研究[J].中国能源,1999,(5):17-19.
    万媛媛,张志龙.粉末合成堇青石微晶玻璃的性能研究[J].武钢技术,2006,44(4):31-34,50.
    王晨,李立峰,张敬,等.用粉煤灰去除造纸污水色度的应用研究[J].能源环境保护,2005,19(1):38-39,42.
    王芳,马鸿文,徐锦明,等.霞石正长岩烧结反应的热力学分析与实验[J].现代地质,2006,20(4):657-662.
    王蕾,马鸿文,聂轶苗,等.利用粉煤灰制备高比表面积二氧化硅的实验研究[J].硅酸盐通报,2006,(2):3-7.
    王蕾.利用高铝粉煤灰制备氧化硅气凝胶的实验研究[D].中国地质大学(北京)硕士学位论文,2006.
    王春峰,李健生,韩卫清,等.碱熔融法合成NaA和NaX型粉煤灰沸石的品质表征[J].环境工程学报,2008a,2(6):814-819.
    王春峰,李健生,王连军,等.由粉煤灰合成单一的沸石及其对Cr(Ⅵ)的吸附研究[J].环境工程学报,2008b,2(8):1121-1126.
    王春峰,李健生,韩卫清,等.以粉煤灰为原料两步法合成亚微米NaA型沸石.硅酸盐学报,2008c,36(11):1638-1643.
    王春迎,杜志明,从晓民,等.碱式碳酸镁的热分解研究[J].应用化工,2008,37(6):657-660.
    王大明,李兵,张伟,等.粉煤灰在江苏省公路施工中的应用[J].森林工程,2003,19(1):54-55.
    王福元,吴正严.粉煤灰利用手册(第二版)[M].北京:中国电力出版社,2004.
    王福元,吴正严.粉煤灰利用手册[M].北京:中国电力出版社,1999.
    王良敬.直接水矿泥与煤灰拌合料田间施用对土壤及作物生育之影响[D].国立成功大学硕士学位论文,2002.
    王泉清,曾蒲君.煤灰熔融性的研究现状与分析[J].煤炭转化,1997,20(2):32-37.
    王晓钧.粉煤灰机械研磨中物理与机械力化学现象的研究[D].南京工业大学博士学位论文,2003.
    王晓燕.沸石分子筛及镁复合物的制备与储氢性能研究[D].太原理工大学硕士学位论文,2008.
    王玉栋,陈龙武,甘礼华,等.块状TiO2/SiO2气凝胶的非超临界干燥法制备及其表征[J].高等学校化学学报,2004,25(2):325-329.
    王月娟,马静萌,孙春风,等.乙二胺丙基功能化的SBA-15介孔分子筛的合成及催化性能[J].石油化工,2005,34(11):1086-1090.
    魏丽君,何长存,寇怡青.产业体系建立是粉煤灰综合利用系统集成工程中的必由之路[EB/ON].http://www.flyingash.com/fmhzxzx/ckzxl.asp?id=1175, 2009/10/23.
    温慧颖,蒙延峰,蒋世春,等.高分子结晶理论的新概念与新进展[J].高分子学 报,2008,(2):107-114.
    吴艳,翟玉春,李来时,等.新酸碱联合法以粉煤灰制备高纯氧化铝和超细二氧化硅[J].轻金属,2007,(9):24-27.
    吴艳,翟玉春,牟文宁,等.粉煤灰提铝渣中二氧化硅在高浓度碱液中的溶解行为[J].中国有色金属学报,2008,18(1):407-411.
    吴文远,胡广勇,孙树臣,等.CaO和NaCl焙烧混合稀土精矿过程中的分解反应[J].中国稀土学报,2004,22(2):210-214.
    武秀兰,陈国平,嵇鹰.硅酸盐生产配方设计与工业控制[M].北京:化学工业出版社,2004.
    西北轻工业学院.玻璃工艺学[M].北京:轻工业出版社,1993.
    徐国想,范丽花,李学字,等.粉煤灰沸石合成及应用研究[J].化工矿物与加工,2006,35(9):32-34.
    徐如人,庞文琴,于吉红,等.分子筛与多孔材料化学[M].北京:科学出版社,2004.
    许丰亿.以多元线性回归法探讨燃煤飞灰中矿物组成对其吸附水中有机物之影响[D].嘉南药理科技大学硕士学位论文,2004.
    宣晓梅,金朝晖,孙雁,等.粉煤灰吸附高浓度有机实验室废水[J].城市环境与城市生态,2005,18(3):7-8.
    薛霞,于游,秦梅,等.硬脂酸/二氧化硅复合相变材料的制备[J].曲阜师范大学学报,2006,32(1):98-101.
    薛金凤,黄素哲,萧燕风.粉煤灰基絮凝剂PAFCC的研制[J].粉煤灰综合利用,2004,(5):40-41.
    薛金根,唐锦霞,王翠平.粉煤灰碱石灰烧结法提取氧化铝的研究[J].粉煤灰综合利用,1992,(1):20-23.
    晏良宏,匙芳廷,蒋晓东,等.疏水疏油二氧化硅增透膜的制备[J].无机材料学报,2007,22(6):1247-1250.
    杨长浩.燃煤飞灰资源化之研究[D].台湾成功大学硕士论文,2000.
    杨国清,刘康怀,王教球,等.固体废物处理工程(第二版)[M].北京:科学出版社,2007.
    杨红彩,郑水林.粉煤灰的性质及综合利用现状与展望[J].中国非金属矿工业导刊,2003,(4):38-42.
    杨晓光,董鹏,聂程.复合型油品加氢精制催化剂载体的研制[J].燃料化学学报,2001,29(8):208-210.
    姚志通,李海晏,夏枚生,等.由粉煤灰水热合成方钠石及其表征[J].中国有色金属学报,2009,19(2):366-371.
    叶仁君.燃煤底灰添加碳酸锂转化结晶玻璃其热处理程序之研究[D].国立成功大学硕士学位论文,2004.
    于洪浩,薛向欣,黄大威.铁尾矿制备白炭黑的实验研究[J].过程工程学报,2008,8(2):300-304.
    余峰,夏燕.超细粉煤灰高强混凝土的综合性能研究[J].武汉理工大学学报,2008,30(5):32-34.
    余泉茂.利用浮选法从粉煤灰中提碳提高粉煤灰质量的研究[J].南昌大学学报:工科版,2001,23(3):82-85.
    俞劲炎,卢升高.土壤磁学[M].南昌:江西科学技术出版社,1991.
    原永涛,杨倩,齐立强.循环流化床锅炉飞灰特性研究[J].锅炉技术,2006,37(3):29-32.
    袁兵.准格尔矸石电厂CFB灰中提取冶金级氧化铝工艺研究[D].吉林大学硕士学位论文,2008.
    岳光溪.循环流化床技术发展与应用(下)[J].节能与环保,2004,(1):11-12.
    曾小强,叶亚平,王明文,等.粉煤灰分步溶出硅铝制备纯沸石分子筛的研究[J].硅酸盐通报,2007,26(1):19-24.
    张堃,黄镇宇,修洪雨,等.煤灰中化学成分对熔融和结渣特性影响的探讨[J].热力发电,2005,34(12):27-30,43.
    张秋,杨云峰,王海平,等.白炭黑的制备研究进展[J].中国粉体工业,2007,(6):12-14.
    张吉清,管俊芳,赵云良,等.膨润土制备白炭黑的试验及机理研究[J].矿冶工程,2009,29(5):74-81.
    张锦瑞,王伟之,郭春丽.利用粉煤灰生产农用肥[J].化工矿物与加工,2000,(6):14-16.
    张敬畅,高玲玲,曹维良.纳米TiO2-SiO2复合光催化剂的超临界流体干燥法制备及其光催化性能研究[J].无机化学学报,2003,9(19):934-940.
    张玉京,郭淑德,刘昌民.台中电厂飞灰质量介绍[J].台电工程月刊,1991(535):1-9.
    赵爱武.粉煤灰磁珠在含磷废水处理中的应用[J].煤炭加工与综合利用,1997,(3):51-53.
    郑骥,马鸿文.钾霞石快速溶胶-凝胶法制备及表征[J].岩石矿物学杂志,2006,25(4):341-346.
    郑礼胜,王士龙,陆文武,等.用粉煤灰处理含铬废水的试验研究[J].粉煤灰综合利用,1997,(2):38-40.
    郑淼晶.以溶胶凝胶法制备堇青石粉末及其烧结体之性质研究[D].国立成功大学硕士学位论文,2004.
    中国煤炭教育协会职业教育教材编审委员会.煤化学[M].北京:煤炭工业出版社,2007.
    中国资源综合利用协会粉煤灰专业委员会.中国粉煤灰综合利用现状、发展思路及对策研究[EB/ON].http://www.jsrmgf.com/technical-exchange/study-on-comprehensive-utilization-of-ash.html,2009/11/28.
    钟鹰,周立志,龙英才.Na2O-SiO2-Al2O3-NaCl-H2O体系中ANA和SOD沸石膜的水热合成[J].化学学报,2003,61(1):63-68.
    钟蕴英,关梦嫔,崔开仁,等.煤化学[M].徐州:中国矿业大学出版社,1989.
    周海龙,蒋覃,刘克,等.从粉煤灰中提取氧化铝的实验研究[J].轻金属,1994,(8):19-20.
    朱建军,谢吉民,陈敏,等.粉煤灰制二氧化硅表面疏水改性机理研究[J].非金属矿,2008,31(1):7-9.
    朱水平,金庆华,李宝会,等.模板剂在分子筛合成过程中的作用机理[J].无机化学学报,1999,15(3):63-67.
    祝以湘,宋建华.乙苯脱氢催化剂的开发[J].石油化工,1998,27:204-208.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700