用户名: 密码: 验证码:
无烟煤粉预热及其燃烧和污染物生成特性实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是以煤炭为主要能源的国家,其中难燃的无烟煤占了煤炭总产量的17%。由于煤炭资源的短缺,越来越多的无烟煤被直接用来进行发电,最近几年其份额仍在不断增加。同时,低阶煤梯级利用技术产生大量的几乎不含挥发分的半焦也有待于燃烧发电利用。然而,由于无烟煤和半焦挥发分含量低、固定碳含量高,在燃用上述燃料的一些煤粉电站锅炉中,普遍存在着火困难、低负荷条件下燃烧稳定性差、飞灰含碳量高以及氮氧化物排放高等问题。本论文依据预热强化燃烧的基本理论,建立无烟煤粉循环流化床预热燃烧系统,揭示无烟煤粉预热机制,探索预热燃料高效燃烧方式,实现无烟煤粉稳定、高效燃烧和低污染物排放的统一。
     在无烟煤粉循环流化床预热燃烧实验台上,对无烟煤粉的预热特性、预热燃料的燃烧特性、煤氮向氮氧化物的转化过程和脱硫特性进行了实验研究,并研究了循环流化床主要运行参数和下行燃烧室配风方式对无烟煤粉预热、燃烧及氮氧化物排放的影响。
     无烟煤粉在循环流化床中,在较低的空气当量比的条件下,发生部分热解、气化和燃烧,可将自身温度加热到800℃以上。无烟煤粉经循环流化床预热后粒径减小、比表面积和孔容积增大,煤焦颗粒变得疏松多孔,预热燃料的物理特性得到了很大的改善。煤中氮元素在预热过程中发生了析出和转化,析出的煤N主要被还原为NH3和N2,煤N的还原对NOx的减排较为有利。煤中各组分的转化率随预热温度和循环流化床空气当量比的增加而增加。
     无烟煤粉在循环流化床中的预热温度超过800℃,预热燃料和高温煤气进入下行燃烧室后,与空气相遇发生快速、高效燃烧反应。无烟煤粉预热后燃烧稳定,下行燃烧室温度分布均匀,预热燃料的燃烧不存在着火延迟,燃烧速率处于扩散燃烧控制区,无烟煤粉预热后燃烧效率最高可达97.5%。无烟煤粉经过预热后,其燃烧特性和燃尽特性得到了较大的改善。
     煤粉循环流化床预热技术和空气分级燃烧技术相结合,在提高煤粉燃烧稳定性和燃尽效率的同时,在降低氮氧化物排放上也有明显的优势。尤其对无烟煤,在没有尾部脱硝装置的情况下,NOx的排放最低可达到103mg/m3(6%O2),接近国家排放法规的限值。NOx排放和煤粉中燃料N向NOx的转化率随煤粉粒径的增加而减小:随着预热温度的升高先降低后升高,在预热温度为900℃时达到最低值;随着循环流化床空气当量比的增加而降低。随还原区空气当量比和总过量空气系数的增加,和还原区停留时间的减少,NOx排放增加。
     在循环流化床中加入石灰石,对系统的SO2减排有明显的作用,脱硫效率可达到50%以上。脱硫反应发生在循环流化床中,最主要的脱硫反应为H2S和CaO间的反应。循环流化床中加入石灰石对NOx的排放的影响和煤种有重要关系。在东胜褐煤和大同烟煤的预热燃烧中,石灰石的加入对NOx的减排有较大的促进作用;而在阳泉无烟煤和神木半焦的预热燃烧中,石灰石的加入对NOx的排放基本没有影响。
     研究结果表明,无烟煤粉循环流化床预热燃烧技术可以实现以无烟煤粉为主的低挥发分燃料的稳定、高效和清洁燃烧。研究结果为难燃的无烟煤及低阶煤提质后的半焦在燃烧领域的广泛应用提供了理论基础和技术方案。
Coal is the main energy source in china with anthracite accounting for17%of total production. Due to the shortage of coal resource, anthracite is generally used for power generation directly. Meanwhile, large substantial semi-coke with almost no volatile produced by low rank coal utilization technologies also needs to be burned to generate electricity. However, due to the low volatile and high fixed carbon contents, there are some problems in the power plants burning anthracite and semi-coke, such as difficult ignition, unstable combustion at low load, high carbon content in fly ash, and high nitrogen oxide emission. Based on the theory of preheating strengthening combustion, a system for preheating pulverized anthracite in a circulating fluidized bed (CFB) is established. In this thesis, the preheating mechanism of pulverized anthracite is revealed, and the combustion characteristic is explored to achieve stable and efficient combustion and low pollutant emission of preheated pulverized anthracite.
     In order to explore the preheating and combustion characteristics of pulverized anthracite, the transformation process of coal-nitrogen to NOx, and the desulfurization characteristics, experiments are carried out on a bench scale rig of pulverized anthracite combustion preheated in a circulating fluidized bed. The effects of operating conditions in CFB and the down-fired combustor on the preheating and combustion characteristics of pulverized anthracite and NOx emission are also investigated.
     The experimental results show that, the preheated pulverized anthracite with a temperature higher than800℃can be obtained steadily and continuously by partial pyrolysis, gasification, and combustion of anthracite coal at a low air equivalence ratio in CFB. After being preheated, the mean particle size of pulverized anthracite significantly decreases, the specific surface area and pore volume increase, and the surface becomes rough with a well-developed pore structure, all of which leads to the improvement of physical structure of the pulverized anthracite. In the preheating process, coal nitrogen mainly converts into NH3and N2, and coal nitrogen reduction in CFB is favorable to reduce NOx emission. The conversion rate of the components in pulverized anthracite increases with the increase in the preheating temperature and the air equivalence ratio in CFB.
     After the preheated pulverized anthracite and high temperature coal gas with the temperature higher than800℃enter the down-fired combustor encountering with air, fast and efficient combustion occurs. The combustion of the preheated anthracite is steady, and the temperature profile in the down-fired combustor is uniform. There is no any difficulty in ignition in the down-fired combustor. The combustion rate of preheated pulverized anthracite is controlled by both the chemical reaction rate and the diffusion rate. The highest combustion efficiency in the experiments can reach97.5%, which indicates that the combustion and burning-out performance of pulverized anthracite are greatly improved after being preheated.
     In addition, combing the technology of pulverized coal preheating and air-staging can significantly reduce NOx emission. Especially for pulverized anthracite, the minimum NOx emission is103mg/m3(6%O2) without equipping SCR, which basically reaches the limits of national emission regulations. The NOx emission and fuel-N conversion ratio decrease with the increase in the pulverized coal size and air equivalence ratio in CFB; initially decrease and then increase with the increase in the preheating temperature, reaching a minimum at the preheating temperature of900℃. The NOx emission increases with the increase in the air equivalence ratio in the reducing zone and the excess air ratio, and the decrease in the residence time of preheated anthracite in the reducing zone.
     SO2emission decreases significantly after the addition of limestone to CFB, and the desulphurization efficiency can reach50%. The desulfurization reaction occurs in CFB, mainly between H2S and CaO. The effect of limestone addition on NOx formation is closely related with the coal type. It is observed that adding limestone to CFB has little effect on NOx emission for Yangquan anthracite coal and Shenmu semi-coke, while it is obviously effective for Dongsheng lignite coal and Datong bituminous coal.
     The results show that the technique of preheating pulverized anthracite in a CFB can achieve stable, efficient, and clean combustion for the fuels with low volatile content mainly of anthracite coal. The research results in this work provide theoretical basis and technical solution for the utilization of anthracite and smei-coke in the field of combustion.
引文
[1]中华人民共和国2012年国民经济和社会发展统计公报[EB/OL].中华人民共和国国家统计局,2013.
    [2]2009年中国无烟煤市场研究及预测报告[R].太原:山西汾渭能源开发咨询有限公司,2009.
    [3]杜梅芳,张忠孝.典型中国无烟煤燃烧特性研究[J].热能动力工程,1994,9(6):336-340.
    [4]何宏周,骆仲泱,王勤辉,等.燃烧福建无烟煤的循环流化床锅炉飞灰及其未燃炭分析[J].燃料化学学报,2006,34(3):285-291.
    [5]郭永浩,王小保,许小刚.四角切圆燃烧方式对无烟煤的适应性[J].中国电机工程学报,2002,22(9):155-160.
    [6]吕清刚,朱建国,牛天钰,等.煤粉高温预热方法[P].中国,200710175526.3,2007.
    [7]吕清刚,牛天钰,朱建国.高温煤基燃料的燃烧特性及NOx排放试验研究[J].中国电机工程学报,2008,28(23): 81-86
    [8]王俊.循环流化床预热的无烟煤粉燃烧和氮氧化物生成特性实验研究[D].中国科学院大学博士论文,2012.
    [9]韩才元,徐明厚,周怀春.煤粉燃烧[M].北京:科学出版社,2001.
    [10]傅维标.对煤粉浓淡分离燃烧技术的利弊分析[J].电站系统工程,1995,11(2):22-27.
    [11]Zhao L L, Zhou Q T, Zhao C S. Flame characteristics in a novel petal swirl burner [J]. Combustion and Flame,2008,155(1):277-288.
    [12]Masashi K, Toshiaki H. The science and technology of combustion in highly preheated air [C]. The 27th International Symposium on Combustion, Colorado,1998.
    [13]Suda T, Takafuji M, Hirata T. A study of combustion behavior of pulverized coal in high-temperature air [J]. Proceedings of the Combustion Institute,2002,29(1):503-509.
    [14]Kiga T, Yoshikawa K, Sakai M. Combustion characteristics of pulverized coal using high temperature air [C]. The 37th Aerospace Sciences Meeting and Exhibit, Reno, America, 1999, AIAA 99-0730.
    [15]He R, Suda T, Takafuji M. Analysis of low NO emission in high temperature air combustion for pulverized coal [J]. Fuel,2004,83(9):1133-1141.
    [16]Ponzio A, Senthoorselvan S, Yang W H. Ignition of single coal particles in high-temperature oxidizers with various oxygen concentrations [J]. Fuel,2008,87(6): 974-987.
    [17]王关晴,程乐鸣,骆仲泱等.高温空气燃烧技术中燃烧特性的研究进展[J].动力工程, 2007,27(1):82-89.
    [18]楼波,马晓茜.高温空气发生器[P].中国,200420046162.0,2005.
    [19]Marco M, Roman W, Ugo B. Predicting NOx emissions of a burner operated in flameless oxidation mode [J]. Proceedings of the Combustion Institute,2002,29:1155-1163.
    [20]Kahairil K, Daisuke K, Ichiro N. Interaction between molten coal ash and coke in reaceway of blast furnace [J]. Proceedings of the Combustion Institute,2002,29:805-810.
    [21]贾臻.预热型煤粉燃烧器[P].中国,200520005019.1,2006.
    [22]吕清刚,那永洁,包绍麟,等.一种为煤粉锅炉的煤粉直燃提供高温空气的方法[P].中国,200510011811.2,2006.
    [23]Zhu J G, Lu Q G, Niu T Y, et al. NO emission on pulverized coal combustion in high temperature air from circulating fluidized bed-An experimental study [J]. Fuel Processing Technology,2009,90(5):664-670.
    [24]Zhu J G, Lu Q G, Niu T Y, et al. Pulverized coal combustion in high temperature air from circulating fluidized bed [C]. The 7th international symposium on high temperature air combustion and gasification, Phuket, Thailand, January 13-15,2008.
    [25]Lu Q G, Zhu J G. Expeiments on pulverized coal combustion under high temperature air from circulating fluidized bed [C]. The 9th China-Japan Symposium on Fluidization, Beijing, China, December 18-20,2006.
    [26]朱建国,吕清刚,牛天钰,等.煤粉高温空气燃烧与氮氧化物生成特性[J].工程热物理学报,2009,30(8):1411-1414.
    [27]范良.等离子点火技术在电厂中的应用[J].电气技术,2008,5:97-98.
    [28]Zhang H, Yue G X, Lu J F. Development of high temperature air combustion technology in pulverized fossil fuel fired boilers [J]. Proceedings of the Combustion Institute,2007,31(2): 2779-2785.
    [29]牛天钰.高温煤基燃料燃烧和氮氧化物生成特性的试验研究[D].中国科学院研究生院硕士论文,2008.
    [30]Wang J, Zhu J G, Lu Q G. Experimental Study on the Combustion Characteristics and NOx Emissions of Pulverized Anthracite Preheated by Circulating Fluidized Bed [J]. Journal of Thermal Science,2011,20(4):355-361.
    [31]吕清刚,王俊,朱建国.循环流化床预热的无烟煤粉燃烧特性试验研究[J].锅炉技术,2011,42(5):24-27.
    [32]Taniguchi M, Kobayashi H, Kiyama K. Comparison of flame propagation properties of petroleum coke and coals of different rank [J]. Fuel,2009,88(8):1478-1484.
    [33]Lee J M, Kim J S, Kim J J. Comminution characteristics of Korean anthracite in a CFB reactor [J]. Fuel,2003,82(11):1349-1357.
    [34]Zondlo J W, Velez M R. Development of surface area and pore structure for activation of anthracite coal [J]. Fuel Processing Technology,2007,88(4):369-374.
    [35]Hill S C, Smoot L D. Modeling of nitrogen oxides formation and destruction in combustion systems [J]. Progress in Energy and Combustion Science,2000,26(4):417-458.
    [36]袁颖,相大光.我国W火焰双拱锅炉燃烧性能调查研究[J].中国电力,1999,32(11):1-6.
    [37]陈晓珊,张卫会.W型火焰锅炉技术特点及应用前景分析[J].东北电力学院学报,1994,14(3):135-142.
    [38]樊泉桂.W型火焰锅炉的性能评价[J].动力工程,1994,14(6):45-49.
    [39]李争起,任枫,刘光奎,等.W火焰锅炉高效低NOx燃烧技术[J].动力工程学报,2010,30(9):645-662.
    [40]柳宏刚,白少林.现役各类W火焰锅炉NOx排放对比分析研究[J].热力发电,2007,(3):1-4.
    [41]方庆艳,周怀春,汪华剑,等.3种型号W火焰锅炉结渣特性的数值模拟[J].动力工程,2008,28(5):682-689.
    [42]毕玉森.W型火焰锅炉及其NOx排放[J].热力发电,1994,(4):5-11.
    [43]龚柏云,熊蔚立.切圆燃烧及W型火焰燃烧的煤种适应性对比分析[J].湖南电力,2001,21(4):52-55.
    [44]单凤玲,王新华.W型火焰双拱燃烧锅炉燃用无烟煤燃尽率低的原因分析[J]..热力发电,2003,32(4):21-23.
    [45]许传凯,许云松.我国低挥发分煤燃烧技术的发展[J].热力发电,2001,10(5):2-6.
    [46]李素芬,刘丽萍,陈贵军,等.配风方式对四角切圆煤粉锅炉燃烧特性影响数值分析[J].大连理工大学学报,2010,50(4):491-496.
    [47]谈理,唐胜利.四角切圆燃烧锅炉直流燃烧器技术探讨[J].电站系统工程,2003,19(6):41-49.
    [48]秦裕琨,孙绍增,邢春礼,等.一种浓缩煤粉燃烧器[P].中国,92224103.1,1993.
    [49]马晓茜,陈烈强,蔡明招.四角切圆锅炉无烟煤稳定燃烧技术分析[J].电站系统工程,1998,14(1):34-38.
    [50]傅维标.无烟煤在四角切向燃烧锅炉中的应用分析[J].中国电力,1995,2:34-37.
    [51]吴生来,毕政益.电站锅炉四角切圆燃烧技术刍议[J].中国电力,1999,32:15-21.
    [52]张惠娟,宋洪鹏,惠世恩.四角切圆空气分级燃烧技术及应用[J].热能动力工程,2003,18(3):224-228.
    [53]孙丹萍.无烟煤锅炉煤种适应性研究[D].华中科技大学博士论文,2008.
    [54]吴剑恒.DG75/3.82-11型循环流化床锅炉设计特点[J].锅炉技术,2004,35(1):28-31.
    [55]袁启鸿,徐文敏.燃用无烟煤机组锅炉燃烧器的性能分析[J].电站系统工程,2001,17(6):323-325.
    [56]郭永浩,王小宝.稳燃腔燃烧器在420t/h无烟煤锅炉上的应用[J].热力发电,2002,9:52-56.
    [57]范卫东,章明川,周月桂,等.无烟煤燃烧方法[P].中国,200610118898.8,2006.
    [58]路春美,程世庆,王永征.循环流化床锅炉设备与运行[M].北京:中国电力出版社,2003.热电技术
    [59]Adanez J, De Diego L F, Gayan P, et al. A model for prediction of carbon combustion efficiency in circulating fluidized bed combustor [J]. Fuel,1995,74(7):1049-1056.
    [60]方梦祥,张锋,程乐鸣,等.无烟煤CFB锅炉燃尽特性的试验研究[J].热电技术,2006,1:1-5.
    [61]何宏舟,苏建民.燃烧福建无烟煤的循环流化床锅炉的设计特点及运行性能分析[J].华东电力,2003,31(4):4-7.
    [62]何宏舟,骆仲泱,岑可法,影响福建无烟煤在CFB锅炉中燃尽的若干因素[J].动力工程,2006,26(3):359-364.
    [63]何宏舟,骆仲泱,岑可法.细颗粒无烟煤焦在CFB锅炉燃烧室内的燃尽特性研究[J].中国电机工程学报,2006,26(19):97-102.
    [64]姜秀民,李巨斌,邱建荣.煤粉颗粒粒度对煤质分析特性与燃烧特性的影响[J].煤炭学报,1999,24(6):643-647.
    [65]Makino K. Technologies for NOX Reduction in PC Fired Utility Boilers-A Manufacturers Perspective [J]. IFRF Combustion Journal,7(August) (2000).
    [66]陈占军,金晶,钟海卿,等.超细化煤粉气流着火特性的试验研究[J].热力发电,2004,4:45-47.
    [67]黄诗坚.NOx的危害及其排放控制[J].电力环境保护.2004,20(1):24-25.
    [68]Wojtowicz M A, Pels J R, Moulijin J A. N2O emission control in coal combustion [J]. Fuel, 1994,73(9):1416-1422.
    [69]熊蔚立,黄伟,张国斌.火电厂氮氧化物(NOx)的危害和防治[J].湖南电力,2004,22(1):52,61-62.
    [70]北极星火力发电网.上半年氮氧化物减排形势不乐观火电厂脱硝需加力[EB/OL]. (2011-10-26)[2012-3-12].
    [71]张静媛,刘明福,李润林,等.W火焰锅炉NOx排放实验研究[J].电站系统工程,2006,22(6):13-15.
    [72]苗长信,王建伟,车刚.600 MW“W”火焰锅炉降低NOx的调试分析[J].山东电力 技术,2004,(2):6-9.
    [73]冯俊凯,沈幼庭,杨瑞昌.锅炉原理及计算[M].北京:科学出版社,2003.
    [74]新井纪男主编;赵黛青等译.燃烧生成物的发生与抑制技术[M].北京:科学出版社,2001.
    [75]于娟.低NOx煤粉燃烧器的应用特性研究[D].同济大学硕士论文,2006.
    [76]Kambara S, Takarada T, Toyoshima M, et al. Relation between functional forms of coal nitrogen and NOx emissions from pulverized coal combustion [J]. Fuel,1995,74(9): 1247-1253.
    [77]张晓辉,孙悦,孙绍增.200 MW锅炉空气分级低NOx燃烧改造实验研究[J].热能动力工程,2008(6):676-681.
    [78]Spliethoff H. Basic effect on NOX emission in air staging and reburning at a bench-scale test facility [J]. Fuel,1996,75(5):560-564.
    [79]章勤.燃煤锅炉低NOx燃烧实验及模拟研究[D].浙江大学博士论文,2013.
    [80]张晓辉,孙锐,孙绍增.立体分级燃烧对NOx排放特性的影响[J].机械工程学报,2009,45(2):199-205.
    [81]成庆刚,李争起,滕玉强,等.低NOx排放燃烧技术及燃烧优化的试验研究[J].锅炉技术,2005,36(5):32-36.
    [82]吴碧君,刘晓勤.燃烧过程中NOx的控制技术与原理[J].电力环境保护,2004,20(2):29-33.
    [83]Wendt J O L, Sternling C V, Matovich M A. Reduction of Sulfur Trioxide and Nitrogen Oxides by Secondary Fuel Injection [J].14th Symposium (International) on Combustion, Pittsburgh, The Combustion Institute,1973:897-904.
    [84]傅维标,张恩仲.煤焦非均相着火温度与煤种的通用关系及判别指标[J].动力工程,1993,13(3):34-42.
    [85]Smoot L D, Hill S C, Xu H. NOX control through reburning [J]. Progress of Energy & Combustion Science,1998,24(5):385-408.
    [86]周俊虎,刘广义,刘海峰,等.神华煤燃烧再燃中NOx生成与还原试验研究[J].浙江大学学报(工学版),2007,41(3):499-503.
    [87]钟北京,徐旭常.低NOx煤粉燃烧器的设计原理[J].动力工程,1995,15:18-25.
    [88]吴碧君,刘晓勤.燃煤锅炉低NOx燃烧器的类型及其发展[J].电力环境保护,2004,20(3):24-27.
    [89]张清福.电厂锅炉低NOx燃烧系统技术研究[D].浙江大学硕士论文,2013.
    [90]Hu Y Q, Kobayashi N, Hasatani M. The reduction of recycled-NOx in coal combustion with O-2/recycled flue gas under low recycling ratio [J]. Fuel,2001,80(13):1851-1855.
    [91]陈彦广,王志,郭占成.燃煤过程NOx抑制与脱除技术的现状与进展[J].过程工程学报,2007,7(3):632-638.
    [92]Tsuji H, Gupta A K, Hasegawa T. High temperature air combustion; from energy conservation to pollution reduction [M]. NewYork:CRC Press,2003.
    [93]Tanaka R, Kishimoto K, Asengawa J. High Efficiency Heat Transfer Method with Use of High Temperature Preheated Air and Gas Re-circulation [J]. Science and Technology,1994, 1 (4):35-39.
    [94]Kiga T, Yoshikawa K, Sakai M, et al. Characteristics of pulverized coal combustion in high-temperature preheated air [J]. Journal of Propulsion and Power,2000,16(4):601-605.
    [95]毛健雄,毛健全,赵树民.煤的清洁燃烧[M].北京:科学出版社,1998.
    [96]朱世勇.环境与工业气体净化技术[M].北京:化学工业出版社,2001.
    [97]张文祥,贾明君,吴通好.金属离子交换分子筛的NO的吸附性能[J].高等化学学报,1997,18(12):1999-2003.
    [98]Yong S M, In S N. Modeling of pulsed corona discharge process for the removal of nitric oxide and sulfur dioxide [J]. Chemical Engineering Journal,2002,85:87-89.
    [99]曲虹霞,钟琴.NH3选择性催化还原NOx的实验研究[J].南京理工大学学报,2002,26(1):68-71.
    [100]宣小平,姚强,岳长涛,等.选择性催化还原法脱硝研究进展[J].煤炭转化,2002,25(3):26-32.
    [101]Luis J A, Francesco B, Guido B, et al. Characterization and composition of commercial V2O5-WO3-TiO2 SCR catalysts [J]. Applied Catalysis B:Enviromental,1996,10:299-311.
    [102]Wang Z H, Zhou J H, Zhou H, Fan J R, Cen K F. Research for low NOX emission with reburing and ammonia injection.28th International Technical Comference on Coal Utilization & Fuel Systems.2003,3 Florida, USA.
    [103]张新生等.燃煤烟气脱硫[M].中国地质大学出版社,1991.
    [104]Travis T. Developments for the pre-combustion removal of in organic sulfur form coal [J]. Fuel processing Technology,1995,43:123-128.
    [105]Raman V K, Pandey R A, Handa B K, et al. Microbial desulfurization of lignite [J]. Journal of Environmental Science and Health,1994,29(1):17-29.
    [106]徐航.浅析我国燃煤前脱硫技术的应用现状与展望[J].价值工程,2011,14:38-39.
    [107]汪卫春.中国燃煤电厂烟气脱硫工艺的选择[D].华北电力大学硕士论文,2007.
    [108]郑楚光.洁净煤技术[M].华中理工大学出版社,1996.
    [109]唐恒等.烟气脱硫技术的现状和发展[J].江苏理工大学学报,1999(1):44-47.
    [110]电力环保网.石灰石-石膏湿法脱硫工艺的完善[EB/OL].[2013-2-13]
    [111]Liu H, Zailani R, Gibbs B M. Comparisons of pulverized coal combustion in air and in mixtures of O2/CO2 [J]. Fuel,2005,84(7-8):833-840.
    [112]Hu Y Q, Kobayashi N, Hasatani M. The reduction of recycled-NOx in coal combustion with O2/recycled flue gas under low recycling ratio [J]. Fuel,2001,80(13):1851-1855.
    [113]欧阳子区,朱建国,矫维红,等.煤气化与燃烧生成烟气中含氮化合物的测试方法[J].计测技术,2013,33(3):37-40.
    [114]He R, Sato J, Chen C. Modeling char combustion with fractal pore effects [J]. Combustion Science and Technology,2002,174(4):19-37.
    [115]Brunauer S, Emmett P, Teller E J.Am Chem Soc.1938,60:309.
    [116]Ustinov E A, Do D D, Fenelonov V B, et al. Pore size distribution analysis of activated carbon:application of density functional theory using non-graphitized carbons black as reference system [J]. Carbon,2006,44(4):653-663.
    [117]路春美,程世庆,王永征,等.循环流化床锅炉设备与运行[M].北京:中国电力出版社,2008:15-18.
    [118]Liu G, Benyou P, Benfell K E, et al. The porous structure of bituminous coal chars and its influence on combustion and gasification under chemically controlled conditions [J]. Fuel, 2000,79(6):617-626.
    [119]周军,张海,吕俊复. 高温下热解温度对煤焦孔隙结构的影响[J].燃料化学学报,2007,35(2):155-159.
    [120]陈鸿,孙学信,韩才元,等.煤粉孔隙结构对燃烧过程的影响[J].化工学报,1994,45(3):327-332.
    [121]Beeley T, Crelling J, Gibbins J, et al.26th International Symposium on Combustion. The Combustion Institute, Pittsburgh,1996.
    [122]Bailey J G, Tate A, Diessel C F K, et al. Char morphology system with applications to coal combustion[J]. Fuel,1990,69:225-239.
    [123]Kuhl H, Kashani-Motlagh M M, Muhlen H J, et al. Controlled gasification of different carbon materials and development of pore structure [J]. Fuel,1992,71:798-882.
    [124]向军,丘纪华,熊友辉,等. 锅炉氮氧化物排放特性试验研究[J].中国电机工程学报,2000,20(9):80-83.
    [125]Thomas K M. The release of nitrogen oxides during char combustion [J]. Fuel,1997,76(6): 457-473.
    [126]Molina A, Eddings E G, Pershing D W, et al. Reduction of nitric oxide on the char surface at pulverized combustion conditions [J]. Proceedings of the Combustion Institute,2002, 29(12):2275-2281.
    [127]Howard J B, Essenhigh R H. "Mechanisms of Solid Particle Combustion with Simultaneous Gas-Phase Volatiles Combustion" Eleventh Symposium (International) on Combustion [C].The Combustion Institute, Pittsburgh,1967:399-408.
    [128]Lee S H, Kim S D, Lee D H. Particle size reduction of anthracite coals during devolatilization in a thermobalance reactor [J]. Fuel,2002,81:1633-1639.
    [129]何宏舟.CFB锅炉洁净燃烧福建无烟煤的理论与实验研究[D].浙江大学博士论文,2005.
    [130]Rouquerol J, Avnir D, Fairbridge CV, et al. Recommendations for the characterization of porous solids [J]. Pure ApplChem,1994,66(8):1739-1758.
    [131]丘纪华.煤粉在热分解过程中比表面积和孔隙结构的变化[J].燃料化学学报,1994,22(3):316-320.
    [132]Balek V, Koranyi A. Diagnostics of structural alterations in coal:Porosity changes with pyrolysis temperature [J]. Fuel,1990,69(12):1502-1506.
    [133]聂欣,周志军,吕明,等.煤粉在高温的空气中着火前后孔隙结构的变化[J].中国电机工程学报,2008,32(28):42-49.
    [134]Su J L, Perlmutter D D. Effect of pore structure on char oxidation kinetics [J]. AIChE J 1985,31(6):973-981.
    [135]周永刚,邹平国,赵虹.燃煤特性影响燃料N转化率试验研究[J].中国电机工程学报,2006,26(15):63-67.
    [136]杨冬,路春美,王永征.不同种类煤粉燃烧NOx排放特性试验研究[J].中国电机工程学报,2007,27(5):18-21.
    [137]Park D C, Day S J, Nelson P F. Nitrogen release during reaction of coal char with O2, CO2, and H2O [C]. Proceedings of the Combustion Institue,2005,30(2):2169-2175.
    [138]Nichols K M, Hedman P O, Douglas S L. Release and reaction of fuel-N in a high-pressure entrained-coal gasifier [J]. Fuel,1987,66(9):1334-1339.
    [139]Baxter L L, Mitchell R E, Fletcher T H, et al. Nitrogen Release during Coal Combustion [J]. Energy & Fuels,1996,10(1):188-196.
    [140]Mitchell J W, Tarbell J M. A Kinetic Model of Nitric Oxide Formation during Pulverized Coal Combustion [J]. AICHEJ,1982,28(2):305-315.
    [141]Hansen L D, Phillips L R, Mangelson N F, et al. Analytical study of the effluents from a high-temperature entrained flow gasifier [J]. Fuel,1980,59:323-329.
    [142]Nelson P F, Li C Z, Ledesma E. Formation of HNCO from the rapid pyrolysis of coals [J]. Energy & Fuels,1996,10:264-265.
    [143]Kurkela E, Stahlberg. Air gasification of peat, wood and brown coal in a pressurized fluidized-bed reactor. II. Formation of nitrogen compounds [J]. Fuel Processing Technology, 1992,31:23-32.
    [144]Leppalahti J, Kurkela E. Behaviour of nitrogen compounds and tars in fluidized bed air gasification of peat [J]. Fuel,1991,70:491-497.
    [145]Ashman P J, Haynes B S, Nicholls M, et al. Interactions of gaseous NO with char during the low-temperature oxidation of coal chars [C]. Proceedings of the Combustion Institute, 2000,28(2):2171-2179.
    [146]车德福.煤氮热变迁与氮氧化物生成[M].西安:西安交通大学出版社,2013.
    [147]Li C Z, Tan L L. Formation of NOX and SOX Precursors during the Pyrolysis of Coal and Biomass. Part III Further Discussion on the Formation of HCN and NH3 during Pyrolysis [J]. Fuel,2000,79(15):1899-1906.
    [148]Pels J R, Kapteijn F, Moulijn J A. Evolution of Nitrogen Functionalities in Carbonaceous Materials during Pyrolysis [J]. Carbon,1995,33(11):1641-1653.
    [149]Kambara S, Takarada T, Yamamoto Y. Relation between Functional Forms of Coal Nitrogen and Formation of NOx Precursors during Rapid Pyrolysis [J]. Energy & Fuels, 1993,7(6):1013-1020.
    [150]闫晓.煤种氮在热变迁过程中基本规律的实验研究[D].西安:西安交通大学博士论文,2005.
    [151]Basu P. Combustion of coal in circulating fluidized-bed boilers:a review [J]. Chemical Engineering Science,1999,54 (22):5547-5557.
    [152]Visona S P, Stanmore B R. Modeling nitric oxide formation in a drop tube furnace burning pulverized coal [J]. Combust and Flame,1999,118:61-75.
    [153]Li S, Xu T, Hui S, et al. Optimization of air staging in a 1 MW tangentially fired pulverized coal furnace [J]. Fuel Processing Technology,2009,90:99-106.
    [154]Mingle J O, Smith J M. Pore size distribution functions for porous catalysts [J]. AICHEJ, 1961,16(1-2):31-38.
    [155]Morgan M E, Jenkins R J. A method to characterize the volatile release of solid recovered fuels (SRF) [J]. Fuel,1986,65(6):757-763.
    [156]Morgan M E, Jenkins R J, Walker P L. Solar radiation acceleration effects on Mecrury sodium emission [J]. Fuel,1981,60(2):189.
    [157]Turns S R. An introduction to combustion concepts and applications [M]. Boston: WCB/McGraw-Hill,2000.
    [158]Mon E, Amundson N R. Diffusion and reaction in a stagnant boundary layer about a carbon particle.2. An extension [J]. Industrial and Engineering Chemistry Research Fundamentals 1978,17.313-321.
    [159]Fu W B, Zhang B L, Zheng S M. A relationship between the kinetic parameters of char combustion and the coal's properties [J]. Combust and Flame,1997,109:587-598.
    [160]陈学俊,陈听宽.锅炉原理[M].北京:机械工业出版社,1991.
    [161]Lu Q G, Zhu J G, Niu T Y, Song G L, Na Y J. Pulverized coal combustion and NOX emissions in high temperature air from circulating fluidized bed [J]. Fuel Process Technology,2008,89:1186-1192.
    [162]范从振.锅炉原理[M].北京:中国电力出版社,2000.
    [163]Cloke M, Lester E, Thompson A W. Combustion characteristics of coals using a drop-tube furnace [J]. Fuel,2002,81(6):727-735.
    [164]Kambara S, Takarada T, Toyoshima M, et al. Relation between functional forms of coal nitrogen and NOX emissions from pulverized coal combustion [J]. Fuel,1995,74(9): 1247-1263.
    [165]曹欣玉,牛志刚,应凌俏,等.无烟煤燃料氮的热解析出规律[J].燃料化学学报,2003,31(6):538-542.
    [166]苏亚欣,毛如玉,徐璋.燃煤氮氧化物排放控制技术[M].北京:化学工业出版社,2005.
    [167]Ha X H, Wei X L, Schnell U. Detailed modeling of hybrid reburn/SNCR processes for NOX reduction in coal-fired furnaces [J]. Combustion & Flame,2003,132:374-386.
    [168]Ljungdahl B, Larfeldt J. Optimised NH3 injection in CFB boiler [J]. Powder technology, 2001,120:55-62.
    [169]Leichtnam J N, Schwartz D, Gadiou R. The behavior of fuel-nitrogen during fast pyrolysis of polyamide at high temperature [J]. Journal of Analytical and Applied Pyrolysis,2000, 55:255-268.
    [170]梁秀俊,高正阳,阎维平.煤粉再燃过程中HCN与NH3的反应机理分析[J].华北电力技术,2004,4:19-21.
    [171]Houser T J, Mccarville M E, Gu Z Y. Nitric oxide formation from fuel-nitrogen model compound combustion [J]. Fuel,1988,67:642-649.
    [172]Gulyrtlu I, Esparteiro H, Cabrita I. N2O formation during fluidized bed combustion of chars [J]. Fuel,1994,73(7):1098-1102.
    [173]De Soete G G. Heterogeneous N2O and NO formation from boune nitrogen atoms during coal char combustion [C].23rd Symposium (International) on Combustion, the Combustion Institute,1990, Pittsburgh.
    [174]Mochizuki M, Kioke J, Horio M. The mechanisms of N2O formation from fluidized bed char combustion [C].5th International Workshop on Nitrous Oxide Emissions,1992, Tsukuba, Japan.
    [175]Courtemanche B, Levendis Y A. A laboratory study on the NO, NO2, SO2, CO and CO2 emissions from the combustion of pulverized coal, municipal waste plastics and tires [J]. Fuel,1998,77:183-196.
    [176]Loeffler G, Wartha C, Winter F, et al. Study on NO and N2O formation and destruction mechanisms in a laboratory-scale fluidized bed [J]. Energy & Fuels,2002,16(5): 1024-1032.
    [177]Mallet C, Aho M, Hamalainen J, et al. Formation of NO, NO2, and N2O from gardanne lignite and its char under pressurized conditions [J]. Energy & Fuels,1997,11(4):792-800.
    [178]Wargadalam V J, Loeffler G, Winter F, et al. Homogeneous formation of NO and N2O from the oxidation of HCN and NH3 at 600-1000℃ [J]. Combustion and Flame,2000,120(4): 465-478.
    [179]Molina A, Eddings E G, Pershing D W, et al. Char nitrogen conversion:implication to emission from coal fired utility boilers [J]. Progress in Energy and Combustion Science, 2000,26(4):507-531.
    [180]Zhong B J, Shi W W,Fu W B. Effects of fuel characteristics on the NO reduction during the reburning with coals [J]. Fuel Process Technology,2002,79:93-106.
    [181]Arenillas A, Rubiera F, Pis J J. Simultaneous thermogravimetric-mass spectrometric study on the pyrolysis behavior of different rank coals [J]. Journal of Analytical and Applied Pyrolysis,1999,50(1):31-46.
    [182]Arenillas A, Rubiera F, Pis J J. Nitric oxide reduction in coal combustion:Role of char surface complexes in heterogeneous reactions [J]. Environmental Science and Technology, 2002,36(24):5498-5503.
    [183]Gupta H, Fan L S. Reduction of nitric oxide from combustion flue gas by bituminous coal char in the presence of oxygen [J]. Industrial and Engineering Chemistry Research,2003, 42(12):2536-2543.
    [184]Illan-Gomez M J, Linares-Solano A, Salinas-Martinez de Lecea C, et al. NO reduction by activated carbons.1. The role of carbon porosity and surface area [J]. Energy & Fuels,1993, 7(1):146-154.
    [185]Zhao Y, Wang S X, Nielsen C P, et al. Establishment of a database of emission factors for atmospheric pollutants from Chinese coal-fired power plants [J]. Atmos Environ 2010,44: 1515-1523.
    [186]王为术,刘军,王保文,等.超临界锅炉劣质无烟煤燃烧NOx释放特性的数值模拟[J].煤 炭学报,2012,37(2):310-315.
    [187]刘海峰.煤热解和燃烧过程中燃料氮向气相含氮产物转化规律的实验研究[D].西安交通大学硕士论文,2007.
    [188]Chen S L, Heap M P, Pershing D W, et al. Influence of coal composition on the fate of volatile and char nitrogen during combustion [C].19th Symposium on Combustion,1982: 1271-1280.
    [189]Aama I, Suuberg E M. A Review of the Kinetics of the Nitric Oxide-carbon Reaction [J]. Fuel,1997,76(6):475-491.
    [190]Li Y H, Lu G Q, Rudoiph V. The kinetics of NO and N2O reduction over coal chars in fluidised-bed combstion [J]. Chemical Engineering Scinece,1998,53(1):1-26.
    [191]Levy J M, Chan L K, Sarofim A F, et al. NO/char reactions at pulverized coal flame conditions [C].18th Symposium (International) on Combustion,1981,18(1):111-120.
    [192]Harding A W, Brown S D, Thomas K M. Release of NOX from the combustion of coal chars [J]. Combustion & Flame,1996,107(2):336-350.
    [193]姚明宇.燃煤挥发分与焦对氮氧化物排放的相对贡献及交互作用研究[D].西安交通大学博士论文,2007.
    [194]Okazaki K, Shishido H, Nishikawa T, et al. Separation of the basic factors affecting NO formation in pulverized coal combustion [J]. Twentieth Symposium (International) on Combustion,1985,20(1):1381-1389.
    [195]Kramlich J C, Seeker W R, Samuelsen G S. Observations of chemical effects accompanying pulverized coal thermal decomposition [J]. Fuel,1988,67:1182-1189.
    [196]冯兆兴,安连锁,李永华,等.煤粉燃烧污染物排放特性的试验研究[J].动力工程,2007,27:427-431.
    [197]Smoot L D, Headman P O, Smith P J. Pulverized-coal combustion research at Brigham Young University [J]. Progress in Energy and Combustion Science,1982,10:359-441.
    [198]Abbas T, Costen P, Lockwood F C, et al. The effect of particle size on NO formation in a large-scale pulverized coal-fired laboratory furnace:Measurements and modeling [J]. Combust Flame,1993,93(3):316-326.
    [199]Van RP, Lans D, Glarborg P, et al. Influence of process parameters on nitrogen oxide formation in pulverized coal burners [J]. Progress in Energy and Combustion Science,1997, 23:349-377.
    [200]金晶,张忠孝,钟海卿,等.超细煤粉分级燃烧降低NOx排放的试验[J].山东大学学报,2004,34(5):26-29.
    [201]Tarelho L A C, Matos M A A, Pereira F. Axial concentration profiles and NO flue gas in a pilot-scale bubbling fluidized bed coal combustor [J]. Energy & Fuels,2004,18(6): 1615-1624.
    [202]Li S, Xu T M, Sun P, et al. NOX and SOx emissions of a high sulfur self-retention coal during air-staged combustion [J]. Fuel,2008,87(6):723-731.
    [203]Luis F D, Carlos A L, Xiao S. Influence of operating parameters on NOX and N2O axial profiles in a circulating fluidized bed combustor [J]. Fuel,1996,75:971-978.
    [204]刘银河.煤中燃料氮的热迁徙机理实验研究[D].西安交通大学博士论文,2005.
    [205]Labiano FG, Adanez J, Abad A, et al. Effect of pressure on the sulfidation of calcined calcium-based sorbents [J]. Energy & Fuels,2004,18:761-769.
    [206]Abad A, Adanez J, Labiano F G, et al. Hot coal-gas desulfurization with calcium-based sorbents in a pressurized moving-bed reactor [J]. Energy & Fuels,2004,18:1543-1554.
    [207]Katalambula H, Bawagan A, Takeda S. Mineral attachment to calcium-based sorbent particles during in situ desulfurization in coal gasification processes [J]. Fuel Processing Technology,2001,73:75-93.
    [208]Squires A M, Graff R A, Pell M. Desulfurization of fuels with calcined dolomite introduction and first kinetic results [J]. Chemical Engineering Progress Symposium Series, 1971,67:23-24.
    [209]Freund H. Intrinsic global rate constant for the high-temperature reaction of CaO with H2S [J]. Industrial and Engineering Chemistry Research Fundamentals,1984,23:338-341.
    [210]Abbasian J, Rehamt A, Leppin D, et al. Desulfurization of fuels with calcium-based sorbents [J]. Fuel Processing Technology,1990,5:1-15.
    [211]Mori H, Asami K, Ohtsuka Y. Role of iron catalyst in fate of fuel nitrogen during coal pyrolysis [J]. Energy & Fuels,1996,10(4):1022-1027.
    [212]Ohtsuka Y, Wu Z, Edward F. Effect of alkali and alkaline earth on nitrogen release during temperature programmed pyrolysis of coal [J]. Fuel,1997,76(14-15):1361-1367.
    [213]Wu Z, Sugimoto Y, Kawashima H. Catalytic nitrogen release during a fixed-bed pyrolysis of model coals containing pyrrolic or pyridinic nitrogen [J]. Fuel,2001,80:251-254.
    [214]Wang J, Morishita K, Takarada T. High-temperature interactions between coal char and mixtures of calcium oxide, quartz, and kaolinite [J]. Energy & Fuels,2001,15:1145-1152.
    [215]Wu Z, Sugimoto Y, Kawashima H. Effect of demineralization and catalyst addition on N2 formation during coal pyrolysis and on char gasification [J]. Fuel,2003,82(15-17): 2057-2064.
    [216]Efthimiadis E A, Sotirchos S V. Sulfidation of limestone-derived calcines [J]. Industrial & Engineering Chemistry Research,1992,31:2311-2321.
    [217]Fenouil L A, Lynn S. Study of calcium-based sorbents for high-temperature H2S removal.3. Comparison of calcium-based sorbents for coal gas desulfurization [J]. Industrial& Engineering Chemistry Research,1995,34:2343-2348.
    [218]Yrjas P, Lisa K, Hupa M. Limestone and dolomite as sulfur absorbents under pressurized gasification conditions [J]. Fuel,1996,75:89-95.
    [219]Adanez J, Labiano F G, Diego L F, et al. H2S removal in entrained flow reactors by injection of Ca-based sorbents at high temperatures [J]. Energy & Fuels,1998,12:726-733.
    [220]Meng X M, Jong W D, Pal R, et al. In bed and down stream hot gas desulphurization during solid fuel gasification:A review [J]. Fuel Processing Technology,2010,91: 964-981.
    [221]Barin I. Thermochemical data of pure substances [M]. VCH:Weinheim, Germany,1989.
    [222]Qiu K, Anthony E J, Jia L. Oxidation of sulfided limestone under the conditions of pressurized fluidized bed combustion [J]. Fuel,2001,80:549-558.
    [223]Anthony E J, Jia L, Qiu K. CaS oxidation by reaction with CO2 and H2O [J]. Energy & Fuels,2003,17:363-368.
    [224]Ozawa S, Morita Y, Huang L, et al. Oxidation of coal char/CaS mixture at high temperature [J]. Energy & Fuels,2000,14:138-141.
    [225]Wu Z, Ohtsuka Y. Key factors for formation of N2 from low-rank coals during fixed bed pyrolysis:Pyrolysis conditions and inherent minerals [J]. Energy & Fuels,1997,11(4): 902-908.
    [226]Wu Z, Ohtsuka Y. Remarkable formation of N2 from a Chinese lignite during coal pyrolysis [J]. Energy & Fuels,1996,10:1280-1281.
    [227]Wu Z, Ohtsuka Y. Nitrogen distribution in a fixed bed pyrolysis of coals with different ranks:formation and source of N2 [J]. Energy & Fuels,1997,11(2):477-482.
    [228]Wu Z, Sugimoto Y, Kawashima H. Effect of calcium catalyst on coal nitrogen removal during pyrolysis [J]. Energy & Fuels,2000,14:1119-1120.
    [229]闫晓.煤中燃料氮在热变迁过程中基本规律的实验研究[D].西安交通大学博士论文,2005.
    [230]Tsubouchi N, Ohtsuka Y. Formation of N2 during pyrolysis of Ca-loaded coals [J]. Fuel, 2002,81(11-12):1423-1431.
    [231]Orikasa H, Tomita A. NO and N2 formation Behavior during the high temperature O2 gasification of coal char [J]. Energy & Fuels,2003,17(2):405-411.
    [232]Tsubouchi N, Ohshima Y, Xu C, et al. Enhancement of N2 formation from the nitrogen in carbon and coal by calcium [J]. Energy & Fuels,2001,15(1):158-162.
    [233]Tsubouchi N, Ohtauka Y. Nitrogen release during high temperature pyrolysis of coals and catalytic role of calcium in N2 formation [J]. Fuel,2002,81(18):2335-2342.
    [234]Hayashi J, Kusakabe K, Morooka S, et al. Role of iron catalyst impregnated by solvent swelling method in pyrolytic removal of coal nitrogen [J]. Energy & Fuels,1995,9(6): 1028-1034.
    [235]Wu Z, Sugimoto Y, Kawashima H. The influence of mineral matter and catalyst on nitrogen release during slow pyrolysis of coal and related material:a comparative study [J]. Energy & Fuels,2002,16:451-456.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700