用户名: 密码: 验证码:
循环流化床锅炉粉煤灰摩擦电选脱炭的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脱炭粉煤灰资源化利用对节能减排和循环经济具有重要的意义,摩擦电选在粉煤灰脱炭领域具有较强的技术优势,具有非常广阔的应用前景。
     本文紧密围绕粉煤灰高效脱炭开展了理论和实验研究工作。分析了摩擦电选摩擦带电器内气固流动特性,对摩擦棒不同分布、间距、截面的摩擦带电器内气固两相流场进行了数值模拟研究,对各摩擦带电器内的颗粒的摩擦碰撞效果进行了研究,得到摩擦带电器的最优结构模型;建立了摩擦带电器内颗粒碰撞特性实验研究系统,运用非接触式测量手段-红外热像技术对摩擦带电器可视化模型的温度场分布进行了实验研究,建立了评价摩擦带电器内颗粒摩擦碰撞的新方法;建立了颗粒摩擦带电实验系统,以单一矿物质和循环流化床锅炉粉煤灰为实验介质,分析了正、负极板各区间的带电颗粒质量和产率分布规律,详细考察了各摩擦带电器的摩擦带电效果;研究了正、负极板各区间烧失量的变化规律,从平均烧失量、负极板脱炭率和脱炭效率指数三方面,对各摩擦带电器的脱炭效果进行了对比研究;探索了带电效果和脱炭效果较好的摩擦带电器结构模型,为粉煤灰摩擦电选高效脱炭的进一步实际应用提供理论基础和技术支持。
     对气固两相流动的数值模拟研究表明,气固流场分布与摩擦棒分布、间距、截面密切相关,颗粒在各摩擦带电器内运动和碰撞特性不同。正三角分布、间距20mm、圆形截面的摩擦带电器内气流加速状态较好,高速气团面积较大且分布比较均匀,颗粒运动路径较长,颗粒速度震荡变化剧烈,由碰撞引起速度变化的颗粒数量最多,颗粒运动分散性较好,运动轨迹分布均匀,颗粒在摩擦带电器内停留时间长,摩擦碰撞效果最好。
     摩擦带电器内颗粒的碰撞特性实验研究表明,摩擦带电器内温度场分布不均匀,温度受风量、颗粒运动及碰撞效果的影响大,温度场分布特征由摩擦棒分布、间距、截面所决定。摩擦棒正三角分布、间距20mm、圆形截面的摩擦带电器温度场内各温区温度较高,颗粒与摩擦棒发生碰撞概率较大,颗粒摩擦碰撞效果最好。该结论与气固两相流场数值模拟相吻合,温度场分布规律可以间接反映颗粒运动的摩擦碰撞特性。
     对单一矿物和循环流化床锅炉粉煤灰(简称CFBB粉煤灰)进行摩擦带电实验研究表明,除风量、电压和粒径因素以外,摩擦棒分布、间距和截面对带电颗粒质量和带电比例的影响较大。颗粒摩擦带电不均匀,电极板各区间内的质量和产率分布差异较大。沿着颗粒运动方向,极板各区间带电颗粒质量和产率逐渐减小,正、负极板第一区间吸附的颗粒质量最多,带电颗粒荷质比最高。各摩擦带电器在第一、二区间的带电颗粒质量和带电比例差异性最大。摩擦棒正三角分布、间距20mm、圆形截面的摩擦带电器,带电颗粒质量和带电比例较高,带电颗粒在电极板第一、二区间内质量较多,摩擦带电效果最好。
     对CFBB粉煤灰摩擦电选脱炭规律及效果进行比较研究,结果表明:摩擦棒正三角分布、间距20mm、圆形截面的摩擦带电器,正极板第一区间及平均烧失量最大,负极板第一区间及平均烧失量最小,负极板平均脱炭率和脱炭效率指数最高,综合脱炭效果最好,可以用于CFBB粉煤灰高效脱炭工艺流程。
The utilization of fly ash removing unburned carbon is very significant forenergy conservation, emissions reduction and recycling economy.Thetriboelectrostatic separation has obviously technological advantages and very broadapplication prospects in fly ash removing unburned carbon field.
     This paper focused on the theoretical and experimental research work about thefly ash removing unburned carbon.The flow characteristics of gas and solid phase inthe friction device was analyzed.The flow field numerical simulation of gas-solidphases was achieved in the friction devices with different friction rod structure.Theparticles friction collision in the friction device was investigated in order to find theoptimal structure friction device model. The experiment system for particles collisionsin the friction devices was established.The temperature field distribution of the visualfriction devices was investigated by using non-contact measurement method—infrared thermal imaging technology.To point out a new method for evaluating theparticles friction and collision. The triboelectrification experimental system wasestablished.The experimental medium were single mineral and CFBB fly ash.Theelectrode section particles mass and yield distribution was analysed.The frictioncharged effect of all kinds of friction devices was compared. The LOI variety ofelectrode section was researched.To make a comparative study for removing unburnedcarbon effect in diferent friction devices according to average LOI, removingunburned carbon ratio and efficiency exponent.To probe into an optimal structure ofthe friction devices.These would provide the theoretical basis and technical supportfor the further practical application of fly ash removing unburned carbon withtriboelectrostatic separation.
     According to the numerical simulation results, the gas-solid flow fielddistribution is closely related with the distribution, spacing, section of frictionrods.The particles in friction devices have different characteristics in movement andcollision.The friction device with regular triangle distribution, spacing20mm, circularsection is an optimal structure.The airflow is accelerated in better station.Thehigh-speed air mass area is biggish and well-proportioned distribution.The particlesmovement path is longer and particles velocity changes concussively.The particlesnumber of velocity variation is the most because of collision.The particles movementis more decentralized and motion trajectory distribution is well-proportioned.The residence time in friction devices is longer.The friction and collision effect may aswell.
     The particles collision research shows that the temperature field distribution inthe friction devices is nonuniform.The temperature is under the great influence ofairflow, particles movement and collision. The temperature distribution is effected bythe distribution, spacing and section of friction rods.The temperature is higher for thefriction device with regular triangle distribution, spacing20mm and circularsection.The collision probability between particles and friction rods is bigger and thecollision effect is the best. This conclusion is consistent with flow field numericalsimulation.The temperature field distribution can indirectly reflect the frictioncollision properties of particles movement.
     For the friction charged characteristics, experiments with a single minerals andCFBB fly ash show that friction rods’s distribution, spacing and cross section have aneffect on charged particles mass and charged proportion except for air volume, voltageand particles size.The particles electriferous process is asymmetrical.The mass andyield distribution of electrode section is different each other.The mass and yield ofelectrode section decreases gradually along the particles moving direction.There is themost particles mass and the highest charge-mass ratio in the first interval of positiveand negative plates.The difference of particles mass and charged proportion in thefirst and second interval is obvious for friction devices.The friction rod that haveregular triangle distribution, spacing20mm, circular section have more chargedparticles and higher charged proportion, bigger particles mass and higher frictioncharged effect.
     Compared with the CFBB fly ash removing unburned carbon effect in differentfriction devices,the results show that the friction rods with regular triangle distribution,spacing20mm and circular section have the best integrative removing unburnedcarbon effect.The first interval and average LOI in the positive plate is maximal andthat of negative plate is minimal. The average removing unburned carbon ratio andefficiency is the best.The friction device can be used to CFBB fly ash removingunburned carbon process.
引文
[1]孟艳艳.我国GDP与煤炭消费量的关系研究[J].经济生活文摘(下半月),2011,(9):64,63.
    [2]张抗,梁慧.1999~2009年世界煤炭消费量变化分析及启示[J].中外能源,2010,15(8):7-12.
    [3]于左,孔宪丽.产业结构、经济增长与中国煤炭资源可持续利用问题[J].财贸经济,2011,(6):129-135.
    [4]张全权,陈涛,姜鹏等.中国能源消费与经济增长关系的实证分析[J].西昌学院学报:自然科学版,2011,25(1):59-63.
    [5]我国去年能源消费量达32.5亿吨标煤[J].中国石油和化工,2011,(3):78-78.
    [6]《中国能源》编辑部.我国未来洁净煤技术的发展方向[J].中国能源,2011,33(8):1.
    [7]《矿业装备》编辑部.2010年矿业十大关键词[J].矿业装备,2011,(1):22-25.
    [8]张睿,桂娟,王玲等.煤炭中微量有害元素分布及洗选研究[J].科技致富向导,2011,(23):62-62.
    [9]丛威,孙清磊."十二五"时期控制煤炭产量的必要性及对策[J].节能技术,2011,29(3):281-284.
    [10]李文颀,朱林.日本粉煤灰综合利用对我国的启示[J].粉煤灰综合利用,2010,(3):52-56.
    [11] Paya J.Enhance d conductivity me as ure me nt te chnique s fore val-uation of fly as hpozzolanic activity.Cement and Concrete Research.2001,31(2):41-49.
    [12]宋凤莲,朱大慧,巫世晶等.火电厂粉煤灰综合利用决策模型研究[J].科技进步与对策,2000,17(10):171-172.
    [13] Ying Huang.Removal of Unburned Carbon from Municipal Solid Waste Fly Ash byColumn Flotation,Waste Management,23(2003)307-313.
    [14] Lee,H.G. Recovery of Fe Fraction From Coal Fly Ash by Using High Gradient MagneticSeparation,Fuel and Energy,1995.6(4)601-609.
    [15] Snigdha Sushi,l Vidya S Batra.Analysisof fly ash heavymetal content and disposal in threethermal power plants in India[J]. Fue,l2006,(85):2676-2679.
    [16]邓寅生,徐素娟,谭俊等.粉煤灰综合利用新工艺[J].无机盐工业,2009,41(9):50-53.
    [17]张覃,毛德明,卢定寿等.粉煤灰的矿物学特性研究[J].粉煤灰综合利用,2001,(1):11-14.
    [18]黄定国,吴玉敏,王文华等.日本的粉煤灰综合利用[J].洁净煤技术,2006,12(2):92-95.
    [19] R.Ciccu,M.Ghiani,A.Muntoni,ect.The Italian approach to the problem of fly ash,presented atthe Int.Ash Utilisation Symp.,Lexington,KY,1999,84.
    [20] A.Hernandez-Exposito.Ion Flotation of Germanium from Fly Ash AqueousLeachates,Chemical Engineering Journal,118(2006)69-75.
    [21]孔令明,宋吉林,赵海明等.气力输灰及粉煤灰综合利用方案探讨[J].华电技术,2008,30(12):38-41.
    [22] J.Y.Hwang,X.Sun,and Z.Li,Unburned carbon from fly ash for mercuryadsorption:I.Separation and characterization of unburned carbon,J.MineralMater.Characterization Eng.,vol.1,no.1,pp.39-60,2002.
    [23] R.Ciccu,M.Ghiani,R.Peretti,ect.Electrostatic separation of unburnt coal for fly ashbeneficiation,in Proc.XXIMPC,Aachen,Germany,1997,pp.135-146.
    [24]吕剑明,吕海涛,刘远等.贵州粉煤灰综合利用分析与展望[J].粉煤灰综合利用,2008,(3):44-46.
    [25] Incult.I.I. et al. Fluidized Electrostatic Removal of Mineral Matter from Coals Mined at HatCreek, British Columbia, Canada. Conference Record14th Annual Meeting IEEE IndustryApplications Society, Cleveland,1979.
    [26]张金山,颜春军.粉煤灰综合利用专家系统[J].粉煤灰综合利用,2005,(5):17-18.
    [27]许玉国,刘玉言.深度开发粉煤灰综合利用浅探[J].煤炭科技,2010,(2):21-22.
    [28]王鹏飞.粉煤灰综合利用研究进展[J].电力环境保护,2006,22(2):42-44.
    [29]王亮.粉煤灰综合利用研究[D].天津大学,2006.
    [30] Tyson S, Blackstock T. Coal combustion fly ash-overview of applications and opportunities inthe USA. In:211th ACS National Meeting. New Orleans, LA,1996:24-28.
    [31]陈鸿.粉煤灰综合利用新途径的探讨[C].//2007四川省中青年专家学术大会论文集.2007:611-614.
    [32] Zhang Y Z, Maroto-Valer M M, Lu Z, Andresen J M, Schobert H H. Potential non-fuel usesof unburned carbon from fly ash for value added carbon products. In: Proceedings of18thAnn Inter Pittsburgh Coal Conference.2001:2302-2310.
    [33]林介东,莫乾凯,江潮全等.电厂粉煤灰综合利用技术的现状及发展方向[J].中国能源,2002,(4):36-39.
    [34]杨勇.循环流化床锅炉粉煤灰综合利用研究[J].露天采矿技术,2011,(1):70-71.
    [35]唐广,沈莹.粉煤灰综合利用的发展趋势应走产业化发展道路[C].2008’中国节能减排与资源综合利用论坛论文集.2008:20-24.
    [36]李文青,翟建平.粉煤灰综合利用立法的现状分析与建议[J].粉煤灰综合利用,2006,(6):51-53.
    [37]高廷源.循环流化床锅炉脱硫灰渣特性及综合利用研究[D].四川大学,2004.
    [38]魏丽君,王洪生.循环流化床灰渣应用问题[C].//第二届国际粉煤灰综合利用墙材革新和建筑节能高级论坛论文集.2005:46-48.
    [39] Da-zuo CAO,Eva SELIC,Jan-Dirk HERBELL等.Utilization of fly ash from coal-fired powerplants in China[J].浙大学报(英文版)(A辑:应用物理和工程),2008,9(5):681-687.
    [40] Thanongsak Nochaiya,Watcharapong Wongkeo,Arnon Chaipanich et al.Utilization of fly ashwith silica fume and properties of Portland cement-fly ash-silica fumeconcrete[J].Fuel,2010,89(3):768-772.
    [41]杨勇.循环流化床锅炉粉煤灰综合利用研究[J].露天采矿技术,2011,(1):70-71.
    [42]周珊,杜冬云,揭武等.我国粉煤灰综合利用研究进展[J].冶金能源,2002,21(5):53-55.
    [43] StanislavV Vassilev, Christina G Vassileva.A new approach for the classification of coal flyashes based on their origin, composition,properties and behaviour[J]. Fue,l2007,(86):1490-1512.
    [44] Vimal Chandra Pandey,P.C. Abhilash,Raj Narayan Upadhyay et al.Application of fly ash onthe growth performance and translocation of toxic heavy metals within Cajanus cajan L:Implication for safe utilization of fly ash for agricultural production[J].Journal of hazardousmaterials,2009,166(1):435-444.
    [45] Malik, A,Thapliyal, A.Eco-friendly Fly Ash Utilization: Potential for LandApplication[J].Critical reviews in environmental science andtechnology,2009,39(1/4):333-366.DOI:10.1007/s00381-008-0642-4.
    [46] A.ULIASZ-BOCHENCZYK,E.MOKRZYCKI,M.MAZURKIEWICZ et al.UTILIZATIONOF CARBON DIOXIDE IN FLY ASH AND WATER MIXTURES[J].Transactions of theInstitution of Chemical Engineers. Part A, Chemical Engineering Research&Design,2006,84(A9):843-846.DOI:10.1001/archneur.56.6.699.
    [47] Guanghong Sheng,Jianping Zhai,Qin Li et al.Utilization of fly ash coming from a CFBBCboiler co-firing coal and petroleum coke in Portland cement[J].Fuel,2007,86(16):2625-2631.
    [48] W.M. Gitari,L.F. Petrik,O. Etchebers et al.Utilization of fly ash for treatment of coal mineswastewater: Solubility controls on major inorganic contaminants[J]. Fuel,2008,87(12):2450-2462.DOI:10.1021/bp0202968.
    [49]林玮,孙伟,李宗津等.磷酸镁水泥中的粉煤灰效应研究[J].建筑材料学报,2010,13(6):716-721.
    [50]方永浩,王锐,庞二波等.水泥-粉煤灰泡沫混凝土抗压强度与气孔结构的关系[J].硅酸盐学报,2010,38(4):621-626.
    [51]唐酞峰.水泥基防水涂料中低钙粉煤灰活化性能研究[J].建筑材料学报,2010,13(4):540-544.
    [52]刘斯凤,王培铭.粉煤灰地聚合物固封镍的机理研究[J].建筑材料学报,2010,13(5):665-668.
    [53]张磊,杨久俊,王雪平等.微波加热制备SiC/Mullite球体的工艺和性能[J].稀有金属材料与工程,2011,40(3):526-529.
    [54]薛茹君,兰伟兴,李森等.萃取除铁法在粉煤灰制取高纯氧化铝中的应用研究[J].中国矿业大学学报,2010,39(6):907-910.
    [55]孙培梅,童军武,徐红艳等.从粉煤灰中提取氧化铝熟料溶出过程工艺研究[J].中南大学学报(自然科学版),2010,41(5):1698-1702.
    [56]邓云潮,韩森,徐鸥明等.粉煤灰对水泥稳定碎石抗冲刷性能的改善[J].广西大学学报(自然科学版),2010,35(1):143-146.
    [57]李秀悌,姚志通,孙杰等.利用粉煤灰制取白炭黑及其表面改性研究[J].功能材料,2010,41(6):939-942,947.
    [58]翁仁贵,刘心中,陈祖兴等.循环流化床粉煤灰综合利用研究进展[J].能源与环境,2008,(5):99-100.
    [59]裴亚利,魏存弟,杨殿范等.循环流化床灰的特征及综合利用研究[C].//2007中国脱硫技术及脱硫石膏、粉煤灰处理与利用大会论文集.2007:131-134.
    [60]裴亚利,魏存弟,杨殿范等.循环流化床灰的特征及综合利用研究[J].粉煤灰综合利用,2006,(5):14-16.
    [61]郑中南."十二五"山西省煤矸石及粉煤灰综合利用探讨[J].山西焦煤科技,2010,34(8):46-49.
    [62]岳焕玲,原永涛,朱洪峰等.循环流化床锅炉灰渣综合利用[J].锅炉技术,2006,37(z1):36-41.
    [63] Hartmann, Peter,Fleige, Heiner,Horn, Rainer et al.Physical properties of forest soils along afly-ash deposition gradient in Northeast Germany[J].Geoderma: An International Journal ofSoil Science,2009,150(1/2):188-195.
    [64] Olson, Kenneth R.,Gennadiyev, A. N.,Golosov, V. N. et al.Comparison of fly-ash andradio-cesium tracer methods to assess soil erosion and deposition in Illinois landscapes(USA)[J].Soil Science,2008,173(8):575-586.
    [65] Akihiro Yasui,Yasuhiro Kamiya,Shota Sugiyama et al.Synthesis of Carbon Nanotubes on FlyAshes by Chemical Vapor Deposition Processing[J].IEEJ Transactions on Electrical andElectronic Engineering,2009,4(6):787-789.
    [66] Chen Jianjun,LiYuncong.Coal fly ash as an amendment to container substrate forspathiphyllum production[J]. Bioresource Technology,2006,(97):1920-1926.
    [67]翟雪,曹亦俊,周强等.某电厂粉煤灰浮选脱炭试验研究[J].金属矿山,2011,(3):162-164.
    [68]徐品晶.粉煤灰电选脱炭技术的开发[D].西安建筑科技大学,2007,6.
    [69]姚哲.粉煤灰特性及其浮选法脱炭的试验研究[D].西安科技大学,2010.
    [70]姚志通.固体废弃物粉煤灰的资源化利用——以杭州热电厂和半山电厂粉煤灰为例[D].浙江大学海洋科学与工程学系,2010.
    [71]胡笙坚.摩擦带电机理的探讨和静电带电童的测量[J].长沙铁道学院学报,1988.6(2):91-98.
    [72]日本静电学会.静电学手册[M],1981:70-399.
    [73]日本劳动省产业安全研究所,静电安全指南[M],1982:170-278.
    [74]侯庆华,顾映影,华靖乐.织物摩擦带电电荷密度测试方法的研究[J].产业用纺织品,1990(6):17-21。
    [75]安振连,陈清如.粉体碰撞带电机理的探讨[J],中国矿业大学学报,1997,26(2):71-74.
    [76]焦有宙,张全国,张相锋等.粉煤灰电特性与摩擦高压静电脱炭技术试验研究[J].河南师范大学学报(自然科学版),2004,32(3):36-40.
    [77]焦有宙.粉煤灰静电分离脱炭技术试验研究[D].郑州:河南农业大学,2001.
    [78]罗来龙.含尘气体摩擦起电的研究[J].武汉理工大学学报(交通科学与工程版).2002,26(04):525-527.
    [79]张全国,李刚,徐波等.粉煤灰静电脱炭技术研究[J].安全与环境学报,2002,2(1):47-50.
    [80]张全国,杨群发,焦有宙等.粉煤灰高压静电脱炭工艺特性的试验研究[J].粉煤灰,2002,14(5):3-6.
    [81]张相锋.粉煤灰脱炭试验装置研究[D].河南农业大学,2000.
    [82]吴永熙,王明怡,刘军等.谈谈静电实验[J].大学物理,2002,21(2):37-38.
    [83][日]菅义夫,静电手册[M],北京:科学出版社,1986:76-77.
    [84]章新喜,段超红,于凤芹等.微粉煤的电性质及摩擦带电研究[J].中国矿业大学学报,2005,34(6):694-697.
    [85]章新喜,高孟华,段超红等.大同煤的摩擦电选试验研究[J].中国矿业大学学报,2003,32(6):620-623.
    [86]高孟华,章新喜,陈清如等.应用摩擦电选技术降低微粉煤灰分[J].中国矿业大学学报,2003,32(6):674-677.
    [87]高孟华,章新喜,陈清如等.煤系伴生矿物介电常数和摩擦带电实验研究[J].中国矿业,2007,16(8):106-109.
    [88]高孟华,马瑞欣,刘莉君等.煤的摩擦带电规律及应用研究[C].第十届全国煤炭分选及加工学术研讨会论文集.2004:61-65.
    [89]张守平,杨连志.对物体摩擦起电所带电荷性质的探究[J].现代中小学教育,2005,(12):45-46.
    [90]董怡为.谷物的极化带电特性[J].农业机械学报,2006,37(8):38-40.
    [91]董怡为.农业物料的静电生物效应及其应用[C].中国农业工程学2007年学术年会论文汇编.2007.
    [92]董怡为.谷物的极化带电特性[C].中国农业机械学会2006年学术年会论文集.2006:1114-1116.
    [93]董怡为.稻谷在缓苏过程中失水特性研究[C].中国农业工程学会2007年学术年会论文汇编.2007.
    [94]董怡为.单粒谷物介电常数的测定[C].中国农业工程学会2007年学术年会论文汇编.2007.
    [95]董怡为.种子的电特性及静电分选[D].南京农业大学,1990.
    [96]董怡为.极化型静电分级机设计理论[J].农业机械学报,2006,37(8):41-44.
    [97]董怡为.稻谷的摩擦带电特性研究[J].农业机械学报,2006,37(8):33-37.
    [98]侯新凯,徐品晶,徐德龙等.粉煤灰中灰颗粒的摩擦带电特征[J].煤炭学报,2007,32(7):757-761.
    [99]杨圣玮,侯新凯,徐品晶等.影响粉煤灰中炭的摩擦带电特性的因素[J].粉煤灰综合利用,2007,(6):26-28.
    [100]杨圣玮,侯新凯,梅元等.粉煤灰中炭的摩擦带电特性的基础研究[J].选煤技术,2007,(5):18-21.
    [101]刘伟军,陈拴柱,张书华等.煤粉电晕荷电特性的多因素实验研究[J].煤炭转化,2010,33(4):5-8.
    [102]刘伟军,陈拴柱,张书华等.荷电器内煤粉荷电颗粒运动轨迹仿真[J].煤炭转化,2009,32(3):60-64.
    [103]陈拴柱,刘伟军,张书华等.煤粉荷电试验装置设计及其荷电量测量[J].电站系统工程,2008,24(4):10-12.
    [104]王海峰,摩擦电选过程动力学及微粉煤强化分选研究[D],中国矿业大学.2010年.
    [105] Alfano G, Carbini P, Carta M, et al. Applications of static electricity in coal and orebeneficiation: Thecontribution of the University of Cagliari to the development of newseparators and to the improvement ofthe processing technology[J]. Journal of Electrostatics.1985,16(2-3):315-328.
    [106] Carta M, Carbini P, Ciccu R, et al. Beneficiation methods for coal desulphurization[C].Halifax, NS,Can: Canadian Soc for Chemical Engineering, Ottawa, Ont, Can,1981.
    [107] Carta M, Alfano G, Carbini P, et al. Triboelectric phenomena in mineral processing.Theoretical fundamentals and applications[J]. Journal of Electrostatics.1981,10:177-182.
    [108] M Carta,丘继存.矿物表面能的结构对电选和浮选的影响[J].国外金属矿选矿.1975(Z2).
    [109] M Carta,G Ferrara,徐建民.用电离或摩擦使矿粒带电在气体介质中处于悬浮状态的细磨矿石的电选[J].国外金属矿选矿.1973(07):1-11.
    [110] M Carta,刘振中.用改变表面层能级改善电选和浮选[J].国外金属矿选矿.1974(Z1):1-13.
    [111] Ciccu R, Peretti R, Serci A, et al. Experimental study on triboelectric charging of mineralparticles[J].Journal of Electrostatics.1989,23:157-168.
    [112] Mukherjee A. Characterization and separation of charged particles[D]. Chicago: IllinoisInstitute of Technology,1987.
    [113] G.Alfano.矿物摩擦电选的进展[J].国外金属矿选矿,1989.2:1-6.
    [114] Guang D. In situ measurement of electrostatic charge and charge distribution on fly ashparticles in power station exhaust stream[D]. Sydney: University of New South Wales(Australia),1992.
    [115] Ban H. An experimental study of particulate charge relating to electrostatic dry coalcleaning[D].Lexington: University of Kentucky,1994.
    [116] Yoon R, Luttrell G H, Yan E S, et al. POC-scale testing of a dry triboelectrostatic separatorfor fine coal cleaning-final report[R]. DOE. USA,2001.
    [117] Zadorozhnyi V, Lokshina S, Shchegolev I. Influence of triboelectrification of mineralproducts on the selectivity of electrostatic separation[J]. Journal of Mining Science.1997,33(2):165-171.
    [118] Zadorozhny V K. Influence of change in electrophysical properties of mineral raw materialon increase in efficiency of its separation[J]. Journal of Mining Science.1999,35(5):541-546.
    [119] K.B.Tennal, M. K.Mazumder, D. Lindquist,ect.Triboelectric Separation of GranularMaterials[J], IEEE Industry Applications Society Annual Meeting New Orleans, Louisiana,October5-8,1997:1724-1729.
    [120] K.B.Tennal,D. Lindquist, M. K.Mazumder,ect.Efficiency of Electrostatic Separation ofMinerals from Coal as a Function of Size and Charge Distributions of Coal Particles[J],Industry Applications Conference,1999. Thirty-Fourth IAS Annual Meeting. ConferenceRecord of the1999IEEE, Phoenix, October3-7,1999:2137-2142.
    [121] Li T X. An experimental study of particle charge and charge exchange elated totriboelectrostatic separation[D]. Lexington: University of Kentucky,1999.
    [122] H·R·马诺切赫里.电选法应用实践评述(Ⅰ)[J].国外金属矿选矿,2002,39(10):4-17.
    [123] H·R·马诺切赫里.电选法应用实践评述(Ⅱ)[J].国外金属矿选矿,2002,39(11):4-12.
    [124] Woodhead S R, Armour-Chélu D I. The influence of humidity, temperature and othervariables on the electric charging characteristics of particulate aluminium hydroxide ingas-solid pipeline flows[J]. Journal of Electrostatics.2003,58(3-4):171-183.
    [125] SHUJI MATSUSAKA,HIROAKI MASUDA.Electrostatics of particles.Advanced PowderTechnol.,Vol.14,No.2,2003:143-166.
    [126] F. Aman, R. Morar, R. Khnlechner, A. Samuila, and L. Dascalescu, High-voltage electrodeposition: a key factor of electrostatic separation efficiency, IEEE Trans. Ind.Appl.2004(40):905-910,2004.
    [127] J.Y. Hwang, X. Sun, Z. Li, Unburned carbon from fly ash for Mercury adsorption: I.Separation and charecterization of unburned Carbon, Journal of Mineral&MaterialCharacterization&Engineering,2002.1(1):39-60.
    [128] R. Ciccu, M. Ghiani, R. Peretti, A. Serci and A. Zucca, Electrostatic separation of unburntcoal for fly ash beneficiation, Proc. XX IMPC, Aachen,1997:135-146.
    [129] D.A. Engers,Triboelectric charging and dielectric properties of pharmaceutically relevantmixtures, Journal of Electrostatics,2007(65):571-581.
    [130] L. Calin,A.Iuga,A.Samuila,ect.Factors that Influence the Fluidized-bed Tribo-electrostaticSeparation of Plastic Granular IEEE Mixtures, Industry Applications Society AnnualMeeting,Edmonton, Alta, October5-9,2008:0197-2618.
    [131] I.I. Inculet, G.S.P. Castle, J.D.Braun, Electrostatic separation of plastics for recycling,Particulate Sci. and Techn., vol.16, pp.91-100,1998.
    [132] Y.Higashiyama, K.Asano,Recent progress in electrostatic separation technology, ParticulateSci. and Techn., vol.16, pp.77-90,1998.
    [133] SteveTrigwell,JamesG.Captain,EllenE.Arens,ect.IEEE Transactions on IndustryApplications,,MAY/JUNE2009:45(3):1030-1037.
    [134] R.K.Dwari,K.Hanumantha Rao,P.Somasundaran.Characterisation of particle tribo-chargingand electron transfer with reference to electrostatic dry coal cleaning,Int.J.Miner.Process,2009(91):100-110.
    [135] R.K. Dwari, K. Hanumantha Rao. Fine coal preparation using novel tribo-electrostaticseparator[J], Minerals Engineering,2009(22):119-127.
    [136]周述平,李加烈,蒲尚志.绝缘粉末与金属管导的摩擦带电[J].南充师院学报,1986(2):113-118.
    [137]党君祥,李刚,邓煦帆.粉体在机械振动筛中静电起电的试验[J].黄金学报,2000,(2)4:291-293.
    [138]关振民.气固两相流管壁静电效应问题初探[J].硫磷设计与粉体工程,2000,(6):21-23.
    [139]罗来龙.含尘气体摩擦起电的研究[J].武汉理工大学学报(交通科学与工程版),2002,26(4):525-527.
    [140]赵延军,陆勇,朱伯友等.浓相气固两相流质量浓度摩擦电法测量研究[J].东南大学学报(自然科学版),2002,32(6):941-943.
    [141]李海青.两相流参数及其检测[M].杭州:浙江大学出版社,1991.
    [142] Masuda H, Komatsu T, Iinoya K. Static electrification ofparticles in gas-solids pipeflow[J].AICHE Journal,1978,26(3):558564.
    [143] YanY,Ma J.Design and evaluation of electrostatic sensorforthemeasurement of velocity ofpneumatically conveyed solids[J].Flow Measurement and Instrumentation,2000,11:195204.
    [144] SHUJI MATSUSAKA,HIROAKI MASUDA.Electrostatics of particles.Advanced PowderTechnol,2003,14(2):143-166
    [145]杨道业,许传龙,周宾等.基于单检测通道的电容层析成像系统[J].仪器仪表学报,2010,31(1):132-136.
    [146]许传龙,汤光华,黄键等.基于静电传感器空间滤波效应的颗粒速度测量[J].化工学报,2007,58(1):67-74.
    [147]许传龙.气固两相流颗粒荷电及流动参数检测方法研究[D].东南大学,2005.
    [148] Masaharu Nifuku, Hiromi Katoh. A study on the static electrification of powders duringpneumatic transportation and the ignition of dust cloud[J]. Powder Technology,2003,135-136:234–242.
    [149] D.I. Armour-Chelu, S.R. Woodhead. Comparison of the electric charging properties ofparticulate materials in gas–solids flows in pipelines[J]. Journal of Electrostatics,2002,56:87–101.
    [150]陈权,鲍重光.粉体气力输运中的静电问题研究[J].中国安全科学学报,1996,6:170-174.
    [151] S.R. Woodhead, D.I. Armour-Chelu. The influence of humidity, temperature and othervariables on the electric charging characteristics of particulate aluminium hydroxide ingas–solid pipeline flows[J]. Journal of Electrostatics,2003,58:171–183.
    [152] H. Masuda, T. Komatsu, N. Mitsui, K. Iinoya. Electrification of gas–solid suspensionsflowing in steel and insulating-coated pipes[J]. J. Electrostatics,1976/1977,2:341–350.
    [153]王丽君,林伟国,谭凤贵等.粉体静电实时在线监控系统设计[J].电子测量与仪器学报,2008,22(3):83-86.
    [154]王丽君.粉体静电在线监控系统设计[D].北京化工大学,2007.
    [155]李良.气固两相流静电相关流速测量研究[D].天津大学,2008.
    [156]李良.用于气固两相流流速测量的嵌入式相关器设计[J].现代企业教育,2010,(2):139-140.
    [157]王芳,徐怡,于恒修等.颗粒的双极带电与气固流化床中的静电分布[J].浙江大学学报(工学版),2008,42(12):2166-2171.DOI:10.3785/j.issn.1008-973X.2008.12.023.
    [158] STOW C D. Atmospheric electricity [J].Reports on Progress in Physics,1969,32:1-67.
    [159] CROZIER W D. The electric field of a new mexico dust devil [J].Journal of GeophysicsResearch,1964,69:5427.
    [160] ETTE A I I. The effect of the Harmattan dust on atmospheric electric parameters [J].Journalof Atmospheric and Terrestrial Physics,1971,33(2):295-300.
    [161] ALI F S, ALI M A, ALI R A, et al. Minority charge separation in falling particles withbipolar charge [J].Journal of Electrostatics,1998,45:139-155.
    [162]孙可平,王树友,王丽芳等.管道输送粉体粒子起电电荷分布实验[J].上海海事大学学报,2010,31(1):77-80.
    [163]孙可平,刘闻灵,郭鑫等.带电绝缘体静电放电引燃性新型实验[J].河北大学学报(自然科学版),2010,30(5):477-480.
    [164]孙可平,李义鹏,王红岩等.带电绝缘体静电放电能量测试实验技术研究[J].广东工业大学学报,2010,27(4):89-91.
    [165] Tondu E, Thompson W G, Whitlock D R, et al. Commercial separation of unburned carbonfrom fly ash[J]. Mining Engineering (Littleton, Colorado).1996,48(6):47-50.
    [166]张金明.选矿技术在粉煤灰综合利用中的应用[J].国外金属矿选矿.1998(07).
    [167]黄开飞.分离粉煤灰中未燃烧的炭质[J].国外选矿快报.1997(19):6-8.
    [168] Bittner J D, Gasiorowski S A. Triboelectrostatic Fly Ash Beneficiaton: An Update onSeparation Technologies’ International Operations[Z].2005.
    [169]钱觉时,施惠生.粉煤灰的分选技术[J].粉煤灰综合利用,2004,(2):29-33.
    [170] Heng Ban. Dry Triboelectrostatic Benefication of Fly Ash, Fuel,1997.76(8):1-10.
    [171] R·奇库等.粉煤灰中未燃尽煤的静电分选.国外金属选矿,1999.1:27~32.
    [172] R茨库,魏明安,肖力子.一种用于细粒分选的新型静电分选机[J].国外金属矿选矿.2001(01).
    [173] Lee JE,Lee JK,Kim DS. A study of the improvement in dewatering behavior of wastewatersludge through the addition of fly ash[J].Korean Journal of Chemical Engineering,27(3),pp.862-867(2010).
    [174] Ahmadi G, Chunghong H, Hang B, et al. Air flow and particle transport in a triboelectriccoal/ash cleaning system-counter flowing straight duct design[J]. Particulate Science&Technology.2000,18(3):213-225.
    [175] Schmoutziguer W S, Mcgovern J J. Process and apparatus for separating particles by use oftriboelectrification: USA,6034342[P].2000-03-07.
    [176] Soong Y, Link T A, Schoffstall M R, et al. Dry beneficiation of Slovakian coal[J]. FuelProcessingTechnology.2001,72(3):185-198.
    [177] Gustafson, Dimare R M, S Sabatini J. A chemical enhancement of the triboelectricseparation of coalfrom pyrite and ash[R]. Little (Arthur D.), Inc., Cambridge, MA (UnitedStates),1992.
    [178] Soong Y, Schoffstall M R, Gray M L, et al. Dry beneficiation of high loss-on-ignition flyash[J].Separation and Purification Technology.2002,26(2-3):177-184.
    [179] Link T A, Schoffstall M R, Soong Y. Device and method for separating minerals, carbon andcementadditives from fly ash: USA,09/878196[P].2004-01-27.
    [180] Soong Y, Irdi G A, Mclendon T R, et al. Triboelectrostatic separation of fly ash withdifferentcharging materials[J]. Chemical Engineering&Technology.2007,30(2):214-219.
    [181] Y.Soong,M.R, Schoffstall,T.A.Link.Triboelectrostatic separation of flyash[J].Fuel,2001(80):879-884.
    [182] M.R.Schoffstall. Dry beneficiation of high loss-on-ignition fly ash,Separation andPurification Technology,26(2002):177-184.
    [183] Kelvin Jiang.Enhancement of Dry Triboelectric Separation of Fly Ash Seed Particles, CoalPreparation,23(2003):67-76.
    [184] Federico Cangialosi-a.Significance of Surface Moisture Removal on TriboelectrostaticBenefication of Fly Ash, Fuel, xxx(2006):xxx-xxx.
    [185] Jiang X, Tao D, Stencel J M. Enhancement of dry triboelectric separation of fly ash usingseedparticles[J]. Coal Preparation: A Multinational Journal.2003,23(1-2):67-76.
    [186] Daniel T, Mao-Ming F, Xin-Kai J. Dry coal fly ash cleaning using rotarytriboelectrostaticseparator[J]. Mining Science and Technology.2009,5(19):642-647.
    [187]陶东平.静电颗粒带电分选装置,中国,200420079562.1[P].2005-12-14.
    [188] TAO Daniel,FAN Mao-ming,JIANG Xin-kai.Dry coal fly ash cleaning using rotarytriboelectrostatic separator[J].Mining Science and Technology,2009(19):0642-0647.
    [189] Federico Cangialosi,Michele Notarnicola,Lorenzo Liberti,John Stencel. The role ofweathering on fly ash charge distribution during Triboelectrostatic beneciation[J].Journal ofHazardous Materials,(2009)164:683-688.
    [190]边炳鑫.粉煤灰分选与利用技术[M].徐州:中国矿业大学出版社,2005.
    [191] http://www.chinaflyash.com/news/index.asp. GB1596-2005,2005.9.5.
    [193]韩怀强.粉煤灰利用技术[M].北京:化学工业出版社,2001.
    [194]张金安.粉煤灰与废旧塑料的综合利用[M].北京:国防工业出版社,2005.
    [195]石云良,陈正学.粉煤灰的脱炭技术[J].矿产综合利用,1999,(2):35-37.
    [196]张长森,陈晓伟,徐风广等.粉煤灰分选、脱炭及生产工艺研究[J].粉煤灰综合利用,2008,(z2):56-60.
    [197]沈斌.大处理量粉煤灰分选工艺在电厂的应用[C].//第六届中国粉煤灰、矿渣及煤矸石加工与利用技术交流大会论文集.2008:11-14.
    [198]刘峰.某电厂粉煤灰分选扩建系统设计[J].硫磷设计与粉体工程,2009,(4):11-14.
    [199]高志刚.粉煤灰分选技术在发电厂中的应用[J].河北电力技术,2006,25(4):45-48.
    [200]边炳鑫,吕一波,李哲等.粉煤灰中未燃炭的分选试验研究[J].煤炭学报,2000,25(6):660-663.
    [201]曹志群.粉煤灰物性与电选机理研究[D].冶金部长沙矿冶研究院,1999.
    [202]曹志群,张胜广,龚文勇等.台湾某电厂粉煤灰电选脱炭试验研究[J].矿冶工程,2004,24(6):37-41.
    [203]龚文勇,张华,林善飞等.YD31300-21F型粉煤灰电选脱炭机在云浮电厂的应用研究[C].//第三届中国商品粉煤灰、磨细矿渣及煤矸石加工与应用技术交流大会论文集.:23-27.
    [204]龚文勇,张华.电选粉煤灰脱炭技术的研究[J].粉煤灰,2005,17(3):33-36.
    [205]王启民.循环流化床锅炉飞灰高压静电脱炭的研究[D].北京:清华大学图书馆,2006.4.
    [206]吕俊复,王启民,黎永等.Unburned Carbon Loss in Fly Ash of CFBB Boilers Burning HardCoal[J].清华大学学报(英文版),2003,8(6):687-691.
    [207]王启民,王玉召,吕俊复等.烧失量法测量循环流化床锅炉飞灰炭的系统误差[J].热能动力工程,2006,21(6):585-589.
    [208]刘青,陈科宇,张守玉等.循环流化床锅炉炉膛内气体浓度的分布[J].应用基础与工程科学学报,2003,11(1):71-76.
    [209]张全国,李刚,徐波等.粉煤灰静电脱炭技术研究[J].安全与环境学报,2002,2(1):47-50.
    [210]张相锋.粉煤灰脱炭试验装置研究[D].河南农业大学,2000.
    [211]周忠华.粉煤灰的高效除炭工艺[J].粉煤灰综合利用,2006,(5):47-48.
    [212]周忠华.国外粉煤灰矿棉生产工艺介绍[J].粉煤灰综合利用,2004,(5):50-51.
    [213]汪澜,隋同波,王宏霞等.粉煤灰带式输送静电分离方法及装置:中国,200610088885.0[P].2007-01-03.
    [214]汪澜.粉煤灰的多相分离[C].//第四届中国粉煤灰、矿渣及煤矸石加工与应用技术交流大会.2006:64-71.
    [215]于凤芹,章新喜,段代勇等.粉煤灰摩擦电选脱炭的试验研究[J].选煤技术,2008,(1):8-11.
    [216]王迎慧,归柯庭,刘利等.磁流化床气固两相流动的数值模拟及实验验证[J].东南大学学报(自然科学版),2002,32(6):936-940.
    [217]蔡飞鹏.催化裂化提升管进料混合段内气固两相流动的数值模拟与实验研究[D].中国石油大学,2004.
    [218]周婵,卢春喜,严超宇等.一种新型气固分离器内两相流动的数值模拟[J].高校化学工程学报,2009,23(3):375-380.
    [219]段广彬,胡寿根,赵军等.水平管道气固两相分层流动过程的研究[J].力学季刊,2008,29(3):468-474.
    [220]赵杏新.导向管喷动床内气固流动的研究[D].江苏大学,2006.
    [221]曹长青.气-液-固三相流化床流动特性的实验研究与数值模拟[D].天津大学,2005.
    [222]王德武,卢春喜,严超宇等.提升管与气-固环流床层耦合反应器的流体力学特性及流动模型[J].化工学报,2010,61(9):2235-2242.
    [223]高春雨.城市生活垃圾风力分选流场的数值模拟研究[D].辽宁工程技术大学,2005.
    [224]郑雨.基于气粒湍动双流体模型的循环流化床内流动、反应数值模拟[D].清华大学,2002.
    [225]郭印诚,陈志兵,陈新国等.颗粒动力学与湍动能耦合的稠密两相流动数学模型[J].计算机与应用化学,2003,20(1):186-190.
    [226]董超.外加电场两相流中离散相的运动规律研究[D].上海理工大学,2001.
    [227]刘伟,万国新,陈景兵等.可压缩气固混合层中离散相与连续相的相互作用研究[J].计算力学学报,2009,26(1):8-14.
    [228]刘娟,许洪元,唐澍等.离心泵内固体颗粒运动规律与磨损的数值模拟[J].农业机械学报,2008,39(6):54-59.
    [229]刘海,李彩亭,曾光明等.SCX型脱硫除尘器内部气固两相流场数值模拟[J].环境工程学报,2011,05(4):865-870.
    [230]王聪,陈斌,郭烈锦等.双拉格朗日模型模拟气固两相双圆柱绕流[J].西安交通大学学报,2009,43(1):77-80.
    [231]王淑彦,刘永建,董群等.提升管内颗粒团聚行为的离散颗粒模拟[J].化工学报,2010,61(3):565-572.
    [232]李丹,马贵阳,杜明俊等.基于离散相模型的旋风分离器内部流场数值研究[J].流体机械,2011,39(9):21-25.
    [233]韩占忠,王敬,兰小平.FLUENT:流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004.
    [234]张锴,Brandani Stefano.流化床内颗粒流体两相流的CFD模拟[J].化工学报,2010,61(9):2192-2207.
    [235]气流床煤气化辐射废锅内多相流动与传热[J].化工学报,2009,60(12):2997-3005.
    [236]张鸿清,滕丽娟,刘嘉伟等.网格划分形式对双圆柱串列绕流模拟的影响[J].黑龙江科技信息,2011,(5):63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700