用户名: 密码: 验证码:
海量遥感图像内容检索关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球立体对地观测系统的逐步形成和完善,空间数据的数量、大小、复杂性和传输速度都在飞速增长,全球、海量、多源是其显著特征,其中,遥感图像数据是应用最为广泛的一种空间数据。目前,遥感应用的水平滞后于空间遥感技术的发展,从而造成空间数据资源的巨大浪费,其应用价值得不到充分利用,形成了空间数据的生产和传输能力远远大于空间数据解析能力的局面。研究海量遥感图像数据的高效组织与快捷应用、快速检索有效空间信息、提高遥感图像分析识别的精度,是目前遥感应用中亟待解决的问题,具有十分重要的科学意义和应用价值。
     解决这一问题的关键是发展有效的空间数据管理和内容检索方法,这也是近年来海量遥感图像检索所面临的瓶颈之一。目前,图像内容检索技术取得了一些研究进展,但是针对遥感图像内容检索的研究却相对缓慢,无论是理论体系还是应用系统,都还不成熟,遥感图像具有尺度大、主题不明确、多时相、语义丰富等特点,普通图像中的研究成果不能直接应用于遥感图像内容检索中去。对于一个完备的遥感图像内容检索系统,其数据组织、存储与管理、特征描述及提取、相似性度量、网络服务模式、系统架构设计及实现等研究工作面临着许多困难与不足,研究所涉及的各项关键技术势在必行。
     本论文针对海量遥感图像内容检索所涉及的关键技术,提出了一些创新性思路和方法,并分别从理论和技术的角度对其价值和实用性予以分析和验证。论文的主要创新性研究成果和贡献如下:
     (1)提出了一种结合进化聚类和模糊C均值聚类的遥感图像分割方法,并提出了一种基于改进模糊C均值聚类的遥感图像序列分割方法
     结合进化聚类和模糊C均值聚类算法,提出了一种遥感图像分割方法(Evolving Clustering-Fuzzy C-Means, EC-FCM)。利用ECM解决模糊C均值聚类算法的初始化中心选择问题,再利用FCM算法对获得的聚类中心进行优化,完成模糊聚类划分,通过去模糊化转换为确定性分类,实现聚类分割。
     在上述方法基础上,提出了一种基于改进FCM聚类的遥感图像序列分割方法(Sequence Segmentation Method, SSM)。颜色空间选用相关性更低的HSI空间,采用更适合遥感图像的基于标准协方差矩阵的Mahalanobis距离,利用进化聚类解决FCM算法的初始化中心选择问题,并根据策略对图像进行序列分割。
     理论分析及编程实验结果表明,上述方法同FCM算法比较能以较少的迭代次数收敛到全局最优解,有较好的分割效果,能够有效地提高遥感图像阈值分割的精度和效率,可用于遥感图像分类和基于内容的遥感图像检索系统中。
     (2)提出了一种可用于内容检索的基于粒计算的图像区域相似性度量方法
     基于粒计算理论,提出了一种可用于内容检索的图像区域相似性度量方法(Image Region Similarity Measure, IRSM),将图像特征信息表转化为有序矩阵形式,通过对有序矩阵进行研究,引入图像特征粒、?阶粒库的概念,从不同的粒度层次分析图像特征的重要性,保持了图像特征信息表中区域间的序关系,并基于粒计算理论给出图像特征的权值,实现了一种图像区域相似性度量方法。
     实例表明,该相似性度量方法能客观、有效的度量图像区域间相似程度,为粒计算理论在遥感图像内容检索中的研究提供了一种新的思路和方法。
     (3)提出了一种在G/S模式下的空间剖分数据存储调度服务模型
     结合客户端聚合服务的空间信息网络服务G/S模式和地球剖分组织理论,提出了一种在G/S模式下的空间剖分数据存储调度服务模型,给出了空间剖分数据网络服务体系的架构、数据访问流程,设计了剖分数据存储调度服务模型的地址编码结构及地址解析过程,形成了一种有效的“数据分散存储,客户端信息汇聚”的空间剖分数据组织管理、按需整合、快捷调度机制。
     经原型测试对上述思路进行了部分验证,具有访问速度快、数据更新容易、对大数据适应的特点,能有效解决海量遥感图像数据的组织效率瓶颈和快捷应用难题,对于开发遥感图像内容检索系统具有一定的理论意义和应用价值。
     (4)设计了一种适合内容检索的分布式遥感图像数据库,建立了一个遥感图像内容检索原型系统
     基于Oracle Spatial和GeoRaster,设计了一种适合内容检索的分布式遥感图像数据库;利用Visual C++语言和OCCI(Oracle C++ Call Interface)接口,设计并实现了遥感图像内容检索原型系统(Content-based Remote Sensing Image Retrieval, CBRSIR),提供了一定的查询检索功能,作为本论文研究的算法测试平台及实例证明。
     运行结果表明,网络资源占用较小,系统效率受数据库所在服务器内存大小影响,在保障检索成功率的基础上,检索性能有一定的提升。
With the gradual development and perfection of the global stereo earth observation system, the amount, size, complexity and transmission rate of spatial data which possess the characteristic of globalization, mass and multisource are growing rapidly. The remote sensing image data is the most widely used kind of spatial data. At present, the application of remote sensing technology lags behind its development and results in a tremendous waste of the spatial data resources. This forms the situation that the production and transmission capacity of spatial data is much greater than the analysis capacity of spatial data. So the problems, having significant theoretic and application values, need to be solved urgently are the effective organization and quick application of large-scale remote sensing image data, the quick search of effective space information and the promoting of remote sensing image analysis and recognition accuracy.
     The key to solve these problems is finding an effective way to manage the spatial data and to retrieve the content of spatial data, which is also the bottleneck of large-scale remote sensing image retrieval in recently years. At present, the study on the technology of content-based image retrieval has made some progress, but on the content-based remote sensing image retrieval the progress is relatively slow, no matter on theoretical system or application system. The research achievement of general image can not be used directly in content-based remote sensing image retrieval because that the remote sensing images are large scale, vague, multidate and semantically rich. The study on the organization, storage, management, description and extraction of data, similarity measure, the network service mode and the design and realization of system architecture are facing many difficulties and shortages for a complete remote sensing image content retrieval system.
     In this thesis, we put forward some innovative ideas and methods related to the key technology of large-scale content-based remote sensing image retrieval and further verify their value and practicality from theoretical and practical aspect respectively. The innovative achievements and contributions of this thesis are as follows.
     (1) This thesis puts forward a new method, which combines ECM with FCM, to segment the remote sensing image. Based on this method, we propose a new method for remote sensing image sequence segmentation on the basis of the modified FCM.
     Combining ECM with FCM, this thesis puts forward a new remote sensing image segmentation method evolving clustering-fuzzy C-means (EC-FCM). ECM is used to choose the initialized center of the fuzzy C-means clustering algorithmic, and then optimize this cluster center by using the FCM to accomplish the division of fuzzy clustering. Finally the genetic clustering can be realized by changing the fuzzy clustering into the certain category through the defuzzification.
     On the basis of the proposed theory, this thesis further puts forward a new method of the remote sensing image sequence segmentation based on the modified FCM (SSM). This method adopts the low relativity HSI space, the Mahalanobis distances which is more suitable for the remote sensing image. According to this method evolutionary clustering is used to choose the initialized center of the FCM algorithmic, further the image is segmented according to the strategies.
     Both the theoretical analysis and the results of experiment show that the proposed method, compared with FCM algorithmic, can converge to the global optimum solution with few iterative times, can effectively improve the precision and efficiency of remote sensing image threshold segmentation, and can be applied in the classification of remote sensing image and content-based remote sensing image retrieval system.
     (2) Based on the granular computing, this thesis proposes a new method of image region similarity measure (IRSM) which can be used in content retrieval. This thesis proposes a new method of image region similarity measure (IRSM) which can be used in content retrieval on the ground of the granular computing. On the basis of the granular computing theory we convert the characteristics information of the image into the ordered matrix. Then the conception of feature granular, ? -order granular base are introduced based on the study of ordered matrix. The importance of the image features are analyzed from the different level of granularity so as to keep the order relation among the regions in the image feature information list. Further the weight of the image feature is given.
     An example shows that using this method we can measure the image region similarity objectively. Further this method provides a new way to use granular computing theory in the study of the content-based remote sensing image retrieval.
     (3) This thesis proposes a new spatial subdivision data storage and scheduling service model in the G/S mode.
     Combined with the service mode of client aggregation services and the global subdivision theory, this thesis proposes a new spatial subdivision data storage and scheduling service model in the G/S mode, provides the framework, the data access process of the spatial subdivision data network service system, designs the address coding stricture and the address resolution process of the spatial subdivision data storage and scheduling service model, shapes the mechanism of management, integration and scheduling of spatial subdivision data.
     The proposed method is partly verified through the prototype testing, and the verification results indicate that this prototype has a high data access speed, can update easily, and is especially suitable for the large-scale remote sensing image data, beside this method can effectively solve the bottleneck of organizational efficiency and the quick application of mass remote sensing image data. We can infer that it has theoretical and practical value in the development of content-based remote sensing image retrieval system.
     (4) A distributed remote sensing image database which is suit for the content-based retrieval is designed in this thesis, at the same time a content-based remote sensing image retrieval prototype system is built.
     Based on the Oracle Spatialand and GeoRaster, a distributed remote sensing image database which is suit for the content-based retrieval is designed in this thesis. A CBRSIR prototype system is designed and realized by using VC++ language and Oracle C++ Call Interface to provide certain retrieval functions as the testing environment and actual example of the study.
     The running results indicate that the efficiency of the system depends on the size of the server memory, the system consumes less network bandwidth, and the retrieval performance is definitely improved.
引文
[1]李德仁,王树良,李德毅.空间数据挖掘理论与应用[M].北京:科学出版社, 2006.
    [2] Deren Li. An Overview of Earth Observation and Geospatial Information Service[M]. Geospatial Technology for Earth Observation, Publisher: Springer-Verlag New, 2009, Pages 1-25.
    [3]李德仁,关泽群.空间信息系统的集成与实现[M].武汉:武汉大学出版社, 2000.
    [4] Kato T. Database architecture for content-based image retrieval[C]. Proc. SPIE: Image Storage and Retrieval Systems, 1992, vol.1662, pp.112-123.
    [5] Niblack W, Barber R, Equitz W, et al. The QBIC project: querying images by content using color, texture, and shape[C]. Proc. SPIE: Storage and Retrieval for Image and Video Databases, 1993, vol.1908, pp.173-187.
    [6] Smith J R, Chang S F. VisualSEEk: a fully automated content-based image query system[C]. Proc. of the fourth ACM international conference on Multimedia, 1996, pp. 87-98.
    [7] Bach J R, Fuller C, Gupta A, et al. The Virage image search engine: An open framework for image management[C]. Proc. of SPIE: Conference on Storage and Retrieval for Image and Video Databases, 1996, vol.2670, pp.76-87.
    [8] Mehrotra S, Yong R, Ortega-Binderberger M, et al. Supporting Content-Based Queries over Images in MARS[C]. Proc. of IEEE International Conference on Multimedia Computing and Systems, 1997, pp.632-633.
    [9] Pentland A, Picard R, Sclaroff S. Photobook: Tools for Content-based Manipulation of Image Databases[J]. International Journal of Computer Vision, 1996, 18(3):233-254.
    [10] Ogle V E, Stonebraker M. Chabot: Retrieval from a relational database of images[J]. Computer, 1995, 28(9):40-48.
    [11] Iqbal Q, Aggarwal J K. CIRES: A System for Content-Based Retrieval in Digital Image Libraries[C]. Seventh International Conference on Control, Automation, Robotics and Vision (ICARCV?02), 2002, pp.205-210.
    [12] Ma Wei-Ying, Manjunath B S. NeTra: A toolbox for navigating large image databases[J]. Multimedia Systems, 1999, 7(3):184-198.
    [13] Flickner M, Sawhney H, Niblack W, et al. Query by Image and Video Content: The QBIC System[J]. IEEE Computer, 1995, 28(9): 23-32.
    [14]程起敏.基于内容的遥感影像库检索关键技术研究[D].北京:中国科学院研究生院博士学位论文, 2004.
    [15]陆丽珍.基于数据库方式的遥感图像数据库内容检索研究[D].杭州:浙江大学博士学位论文, 2005.
    [16]吴信才.空间数据库[M].北京:科学出版社, 2009.
    [17]赵学胜,候妙乐,白建军.全球离散格网的空间数字建模[M].北京:测绘出版社, 2007.
    [18]赫华颖,陆书宁.几种小波基在遥感图像压缩中的应用效果比较[J].国土资源遥感, 2008, (3): 27-31.
    [19] Aly Ramy E, Bayoumi Magdy A. High-Speed and Low-Power IP for Embedded Block Coding with Optimized Truncation (EBCOT) Sub-Block in JPEG2000 System Implementation[J]. The Journal of VLSI Signal Processing, 2006, 42(2): 139-148.
    [20]姚敏,赵敏.改进的高效EZW遥感图像压缩方法研究[J].电子科技大学学报, 2009, 38(4): 525-528.
    [21] Christophe E, Mailhes C, Duhamel P. Hyperspectral image compression: adapting SPIHT and EZW to anisotropic 3-D wavelet coding[J]. IEEE Transactions on Image Processing, 2008, 17(12): 2334-2346.
    [22]杨超伟,李琦,承继成,等.遥感影像的Web发布研究和实现[J].遥感学报, 2000, 4(1): 71-75.
    [23]陈静,龚健雅,朱欣焰,等.海量影像数据的Web发布与实现[J].测绘通报, 2004, (1): 22-25.
    [24]苗放,叶成名,刘瑞,等.新一代数字地球平台与“数字中国”技术体系架构探讨[J].测绘科学, 2007, 32(6): 157-158, 68.
    [25]刘忠伟,章毓晋.十种基于颜色特征图像检索算法的比较与分析[J].信号处理, 2000, 16(1): 79-84.
    [26]庄越挺,潘云鹤,吴飞.网上多媒体信息分析与检索[M].北京:清华大学出版社, 2002.
    [27] Gi-Hyoung Yoo, Beob Kyun Kim, Kang Soo You. Content-Based Image Retrieval Using Shifted Histogram[J]. Lecture Notes in Computer Science, Computational Science, 2007, vol.4489, pp.894-897.
    [28] L. A. Belozerskii, L. V. Oreshkina. Estimation of the informative content of histograms of satellite images in the recognition of changes in local objects[J]. Pattern Recognition and Image Analysis, 2010, 20(1): 65-72.
    [29] Shailendra Singh. RGB Color Histogram Feature based Image Classification: An Application of Rough Reasoning[J]. Proceedings of the First International Conference on Intelligent Human Computer Interaction, 2009, Part 2, pp.102-112.
    [30] Jongan Park, Nishat Ahmad, Gwangwon Kang, et al. Defining a Set of Features Using Histogram Analysis for Content Based Image Retrieval[C]. Lecture Notes in Computer Science, Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence, 2007, vol.4682, pp.408-417.
    [31] Chin-Chen Chang, Tzu-Chuen Lu. A Color-Based Image Retrieval Method Using Color Distribution and Common Bitmap[J]. Lecture Notes in Computer Science, Information Retrieval Technology, 2005, vol.3689, pp.56-71.
    [32] Calin Rotaru, Thorsten Graf, Jianwei Zhang. Color image segmentation in HSI space for automotive applications[J]. Journal of Real-Time Image Processing, 2008, 3(4): 311-322. [ 33 ] Hongdong Li, Chunhua Shen. Interactive color image segmentation with linear programming[J]. Machine Vision and Applications, 2009, 21(4): 403-412.
    [34] M. V. Gashnikov, A. V. Chernov, N. V. Chupshev. Color correction of vehicle images during the sequential registration of color channels[J]. Pattern Recognition and Image Analysis, 2009, 19(1): 106-108.
    [35]王涛,胡事民,孙家广.基于颜色-空间特征的图像检索[J].软件学报, 2002, 13(10): 2031-2036.
    [36]孙君顶,张喜民,崔江涛,周利华.一种新的基于颜色和空间特征的图像检索方法[J].计算机科学, 2005, 32(6): 158-160,184.
    [37]冯玉才,程珺,聂晶,梁俊杰.一种新的基于颜色的图像检索算法[J].计算机应用, 2006, 42(22): 52-55,99.
    [38]黄元元,何云峰.利用颜色进行基于内容的图像检索[J].小型微型计算机系统, 2007, 28(7): 1277-1281.
    [39]章毓晋.图像工程(上册),图像处理(第二版)[M].北京:清华大学出版社, 2006.
    [40] Zhang Y J, Xu Y. Effect investigation of the CAI software for“Image Processing and Analysis”[C]. Proceeding of International Conference on Computer in Education?99, 1999, pp.371-374.
    [41]周明全,耿国华,韦娜.基于内容图像检索技术[M].北京:清华大学出版社, 2007.
    [42] Han Ju, Ma Kai-Kuang. Fuzzy color histogram and its use in color image retrieval[J]. IEEE Transactions on Image Processing, 2002, 11(8): 944-952.
    [43] Amine A?t Younes, Isis Truck, Herman Akdag. Image Retrieval using Fuzzy Representation of Colors[J]. Soft Computing - A Fusion of Foundations, Methodologies and Applications, 2007, 11(3): 287-298.
    [44]曹奎,冯玉才,曹忠升,等.彩色图象检索中的模糊直方图技术[J].小型微型计算机系统, 2001, 22(7): 833-836.
    [45] Yung-Fu Chen, Meng-Hsiun Tsai, Chung-Chuan Cheng, et al. Perimeter Intercepted Length and Color t-Value as Features for Nature-Image Retrieval[J]. Lecture Notes in Computer Science, New Trends in Applied Artificial Intelligence, 2007, vol.4570, pp.185-194.
    [46]韦娜,耿国华,周明全.一种新的文物图像检索方法[J].计算机应用, 2005, 25(8): 1789-1791.
    [47] Jingsheng Lei. Image Annotation Using Sub-block Energy of Color Correlograms[C]. Lecture Notes in Computer Science, Artificial Intelligence and Computational Intelligence, 2009, vol.5855, pp.555-562.
    [48] Qi Zhao, Hai Tao. Motion Observability Analysis of the Simplified Color Correlogram for Visual Tracking[C]. Lecture Notes in Computer Science, Computer Vision, 2007, vol.4843, pp.345-354.
    [49] Adam Williams, Peter Yoon. Content-based image retrieval using joint correlograms[J]. Multimedia Tools and Applications, 2007, 34(2): 239-248.
    [50] N.W. Kim, T.Y. Kim, Jong Soo Choi. Edge-Based Spatial Descriptor Using Color Vector Angle for Effective Image Retrieval[C]. Lecture Notes in Computer Science, Modeling Decisions for Artificial Intelligence, 2005, vol.3558, pp.365-375.
    [51] Cao Kui, Feng Yu-cai. Integrating color and spatial feature for content-based image retrieval[J]. Wuhan University Journal of Natural Sciences, 2002, 7(3): 290-296.
    [52] Ciocca G, Schettini R, Cinque L. Image Indexing and Retrieval Using Spatial Chromatic Histograms and Signatures[C]. First European Conference on Color in Graphics, 2002, Imaging and Vision (CGIV), pp.255-258.
    [53] Zachary J M. An information theoretic approach to content based image retrieval[D]. Phd Thesis, Louisiana State University and Agricultural and Mechanical College, 2000.
    [54] Madasu Hanmandlu, Shilpa Agarwal, Anirban Das. A Comparative Study of Different Texture Segmentation Techniques[C]. Lecture Notes in Computer Science, Pattern Recognition and Machine Intelligence, 2005, vol.3776, pp.477-480.
    [55]章毓晋.图像工程(中册),图像分析(第二版)[M].北京:清华大学出版社, 2005.
    [56]薄华,马缚龙,焦李成.图像纹理的灰度共生矩阵计算问题的分析[J].电子学报, 2006, 34(1): 155-158.
    [57] Ursula Gonzales-Barron, Francis Butler. Fractal texture analysis of bread crumb digital images[J]. European Food Research and Technology, 2007, 226(4): 721-729.
    [58] Yong Xu, Hui Ji, Cornelia Fermüller. Viewpoint Invariant Texture Description Using Fractal Analysis[J]. International Journal of Computer Vision, 2009, 83(1): 85-100.
    [59] Berke J. Using Spectral Fractal Dimension in Image Classification[C]. Innovations and Advances in Computer Sciences and Engineering, 2010, pp.237-241.
    [60] Daniel Flores-Tapia, Gabriel Thomas, Boyd McCurdy, et al. Brain MRI Segmentation Based on the Rényi?s Fractal Dimension[J]. Lecture Notes in Computer Science, Image Analysis and Recognition, 2009, vol.5627, pp.737-748.
    [61] Tumara H, Mori S, Yamawaki T. Texture features corresponding to visual perception[J]. IEEE Transactions On system, man and cybernetics, 1978, 8(6): 460-473.
    [62] Deng-Chao Feng, Zhao-Xuan Yang, Xiao-Jun Qiao. Texture Image Segmentation Based on Improved Wavelet Neural Network[C]. Lecture Notes in Computer Science, Advances in Neural Networks, 2007, vol.4493, pp.869-876.
    [63]韦娜,耿国华,周明全.基于傅立叶变换的医学图像检索算法分析[J].小型微型计算机系统, 2005, 26(5): 807-809.
    [64]韦娜,耿国华,周明全.利用Gabor滤波器的基于内容图像检索[J].计算机工程, 2005, 31(8): 10-12.
    [65] Ojala T, Pietik?inen M, M?enp?? T. Multiresolution gray-scale and rotation invariant texture classification with Local Binary Patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987.
    [66] Zhang D. Image Retrieval Based on Shape[D]. PhD Thesis, Monash University, 2002.
    [67] Junding Sun, Xiaosheng Wu. Shape Retrieval Based on the Relativity of Chain Codes[C]. Lecture Notes in Computer Science, Multimedia Content Analysis and Mining, 2007, vol.4577, pp.76-84.
    [68] Cyrus Shahabi, Maytham Safar. An experimental study of alternative shape-based image retrieval techniques[J]. Multimedia Tools and Applications, 2007, 32(1): 29-48.
    [69] Fan S. Shape Representation and Retrieval using Distance Histograms[R]. Technical Report-University of Alberta, Canada, 2001.
    [70] Tammy Riklin-Raviv, Nir Sochen, Nahum Kiryati. Shape-Based Mutual Segmentation[J]. International Journal of Computer Vision, 2008, 79(3): 231-245.
    [71] G. Casciola, L. B. Montefusco, S. Morigi. Edge-driven Image Interpolation using Adaptive Anisotropic Radial Basis Functions[J]. Journal of Mathematical Imaging and Vision, 2010, 36(2): 125-139.
    [72] Abdulkerim ?apar, Binnur Kurt, Muhittin G?kmen. Gradient-based shape descriptors[J]. Machine Vision and Applications, 2009, 20(6): 365-378.
    [73]樊亚春,耿国华,周明全.用不变矩和边界方向进行形状检索[J].小型微型计算机系统, 2004, 25(4): 659-662.
    [74]周焰,李德仁,徐长勇.基于形状的遥感图像检索系统[J].华中科技大学学报(自然科学版), 2003, 31(3): 14-16.
    [75]赵红蕊,阎广建,邓小炼,等.一种简单加入空间关系的实用图像分类方法[J].遥感学报, 2003, 7(5): 358-363.
    [76]叶齐祥,高文,王伟强,等.一种融合颜色和空间信息的彩色图像分割算法[J].软件学报, 2004, 15(4): 523-530.
    [77]王崇骏,杨育彬,陈世福.基于高层语义的图像检索算法[J].软件学报, 2004, 15(10): 1461-1469.
    [78]鲍永生,任建峰,郭雷.支持语义的图像检索[J].南京航空航天大学学报, 2005, 37(1): 75-78.
    [79]陆丽珍.基于GIS语义的遥感图像检索[J].中国图象图形学报, 2005, 10(10): 1207-1211.
    [80]梁栋,杨杰,卢进军,等.基于非负矩阵分解的隐含语义图像检索[J].上海交通大学学报, 2006, 40(5): 787-790.
    [81]刘洁敏,姚豫,张瑞,等.基于局部颜色-空间特征的图像语义概念检测[J].中国图象图形学报, 2008, 13(10): 1890-1893.
    [82] XiaoFu Lee, Qian Yin. Combining Color and Shape Features for Image Retrieval[J]. Lecture Notes in Computer Science, Universal Access in Human-Computer Interaction. Applications and Services, 2009, vol.5616, pp.569-576.
    [83] Prasad B G, Biswas K K, Gupta S K. Region-based image retrieval using integrated color, shape, and location index[J]. Computer Vision and Image Understanding, 2004, 94(1-3): 193-233.
    [84]欧阳军林,夏利民.基于二值信息的颜色和形状特征的图像检索[J].小型微型计算机系统, 2007, 28(7): 1262-1266.
    [85] Yinghua Lu, Qiushi Zhao, Jun Kong, et al. A Two-Stage Region-Based Image Retrieval Approach Using Combined Color and Texture Features[C]. Lecture Notes in Computer Science, AI 2006: Advances in Artificial Intelligence, 2006, vol.4304, pp.1010-1014.
    [86]董卫军,周明全,耿国华.基于形状-空间关系的图像检索技术[J].计算机工程, 2005, 31(20): 170-172
    [87]杨杰,陈晓云,徐荣聪.利用小波进行基于形状和纹理的图像分类[J].计算机应用, 2007, 27(2): 373-375.
    [88]董卫军,周明全,耿国华.基于纹理-形状特征的图像检索技术[J].计算机工程与应用, 2004, 40(24): 9-11.
    [89] Zhang Qiaoping, Li Deren, Gong Jianya. Shape similarity measures of linear entities[J]. Geo-Spatial Information Science, 2002, 5(2): 62-67.
    [90]万华林,胡宏,史忠植.利用二部图匹配进行图像相似性度量[J].计算机辅助设计与图形学学报, 2002, 14(11): 1066-1069.
    [91] Pawlak Z. Rough Sets-Theoretical Aspect of Reasoning about Data[M]. Kluwer Academic Publishers, Dordrecht, Boston, London, 1991.
    [92] Yao Y Y. Granular Computing: basic issue and possible solutions[C]. Proceedings of the 5th Joint Conference on Information Sciences, 2001: 186-189.
    [93] Pedrycz W. Granular Computing-The Emerging Paradigm[J]. Journal of uncertain systems, 2007, 1(1): 38-61.
    [94]韦娜.基于内容图像检索关键技术研究[D].西安:西北大学博士学位论文, 2006.
    [95] Su Zhong, Zhang Hongjiang, Li Stan, et al. Relevance feedback in content-based image retrieval: Bayesian framework, feature subspaces, and progressive learning[J]. IEEE transactions on image processing, 2003, (12)8: 924-937.
    [96] George Leifman, Ron Meir, Ayellet Tal. Semantic-oriented 3d shape retrieval using relevancefeedback[J]. The Visual Computer, 2005, 21(8-10): 865-875.
    [97] D. Giorgi, P. Frosini, M. Spagnuolo, et al. 3D relevance feedback via multilevel relevance judgements[J]. The Visual Computer, 2010, 26(10): 1321-1338.
    [98]张磊,林福宗,张钹.基于神经网络自学习的图像检索方法[J].软件学报, 2001, 12(10): 1479-1485.
    [99] Laaksonen Jorma, Koskela1 Markus, Laakso Sami, et al. Self-Organising Maps as a Relevance Feedback Technique in Content-Based Image Retrieval[J]. Pattern Analysis & Applications, 2001, 4(2-3): 140-152.
    [100]张磊,林福宗,张钹.基于前向神经网络的图像检索相关反馈算法设计[J].计算机学报, 2002, 25(7): 673-680.
    [101]曹奎,冯玉才,王元珍.图像检索中一种新的相关反馈机制[J].计算机科学, 2002, 29(1): 65-68.
    [102]曹奎,冯玉才.一种图像检索中的灰色相关反馈算法[J].计算机工程, 2004, 30(6): 18-20.
    [103] Zhou Qiang, Ma Limin, Celenk Mehmet, et al. Content-Based Image Retrieval Based on ROI Detection and Relevance Feedback[J]. Multimedia Tools and Applications, 2005, 27(2): 251-281.
    [104] Hoi S C H, Lyu M R, Jin R. A Unified Log-Based Relevance Feedback Scheme for Image Retrieval[J]. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(4): 509-524.
    [105] Tao Dacheng, Tang Xiaoou, Li Xuelong, et al. Asymmetric Bagging and Random Subspace for Support Vector Machines-Based Relevance Feedback in Image Retrieval[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(7): 1088-1099.
    [106] Kenneth R Castleman. Digital Image Processing[M]. Prentice Hall, 2008.
    [107]周成虎,骆剑承,等.高分辨率卫星遥感影像地学计算[M].北京:科学出版社, 2009.
    [108]林瑶,田捷.医学图像分割方法综述[J].模式识别与人工智能, 2002, 15(2): 192-204.
    [109]林开颜,吴军辉,徐立鸿.彩色图像分割方法综述[J].中国图象图形学报, 2005, 10(1): 1-10.
    [110] Peter Orbanz, Joachim M. Buhmann. Nonparametric Bayesian Image Segmentation[J]. International Journal of Computer Vision, 2008, 77(1-3): 25-45.
    [111] Kangyu Ni, Xavier Bresson, Tony Chan, et al. Local Histogram Based Segmentation Using the Wasserstein Distance[J]. International Journal of Computer Vision, 2009, 84(1): 97-111.
    [112] K. I. Kiy. A new real-time method for description and generalized segmentation of color images[J]. Pattern Recognition and Image Analysis, 2010, 20(2): 169-178.
    [113] Hua Huang, Yu Zang, Chen-Feng Li. Example-based painting guided by color features[J]. The Visual Computer, 2010, 26(6-8): 933-942.
    [114] Thomas Batard, Christophe Saint-Jean, Michel Berthier. A Metric Approach to nD Images Edge Detection with Clifford Algebras[J]. Journal of Mathematical Imaging and Vision, 2009, 33(3): 296-312.
    [115] Zhenyu He, Albert C. S. Chung. 3-D B-spline Wavelet-Based Local Standard Deviation (BWLSD): Its Application to Edge Detection and Vascula Segmentation in Magnetic Resonance Angiography[J]. International Journal of Computer Vision, 2010, 87(3): 235-265.
    [116] Shengyang Yu, Yan Zhang, Yonggang Wang, et al. Color-Texture Image Segmentation by Combining Region and Photometric Invariant Edge Information[J]. Lecture Notes inComputer Science, Multimedia Content Analysis and Mining, 2007, vol.4577, pp.286-294.
    [117] Hailin Jin, Anthony J Yezzi, Stefano Soatto. Mumford-Shah on the Move: Region-Based Segmentation on Deforming Manifolds with Application to 3-D Reconstruction of Shape and Appearance from Multi-View Images[J]. Journal of Mathematical Imaging and Vision, 2007, 29(2-3): 219-234.
    [118] Jun-Taek Oh, Wook-Hyun Kim. EWFCM Algorithm and Region-Based Multi-level Thresholding[C]. Lecture Notes in Computer Science, Fuzzy Systems and Knowledge Discovery, 2006, vol.4223, pp.864-873.
    [119]刘海宾,何希勤,刘向东.基于分水岭和区域合并的图像分割算法[J].计算机应用研究, 2007, 24(9): 307-308.
    [120] Yu Qiyao, Clausi David A. IRGS: Image Segmentation Using Edge Penalties and Region Growing[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(12): 2126-2139.
    [121] Pratikakis I, Vanhamel I, Sahli H, et al. Watershed-Driven Region-Based Image Retrieval[C]. Computational Imaging and Vision, Mathematical Morphology: 40 Years On, III, 2006, vol.30, pp.207-216.
    [122] Kohta Aoki, Hiroshi Nagahashi. Bayesian Image Segmentation Using MRF?s Combined with Hierarchical Prior Models[C]. Lecture Notes in Computer Science, Image Analysis, 2005, vol.3540, pp.65-74.
    [123] Haixia Xu, Zheng Tian, Fan Meng. Segmentation of SAR Image Using Mixture Multiscale ARMA Network[C]. Lecture Notes in Computer Science, Advances in Natural Computation, 2005, vol.3611, pp.371-375.
    [124] Dong Guo, Xie Ming. Color clustering and learning for image segmentation based on neural network[J]. IEEE Transactions on Neural Networks, 2005, 16(4): 925-936.
    [125]史春奇,施智平,刘曦,史忠植.基于自组织动态神经网络的图像分割[J].计算机研究与发展, 2009, 46(1): 23-30.
    [126]张伟,隋青美.基于惯性因子自适应粒子群和模糊熵的图像分割[J].计算机应用研究, 2010, 27(4): 1569-1571, 1587.
    [127]曹奎,谭水木,冯玉才.基于灰色聚类的图像检索技术[J].计算机工程, 2006, 32(1): 194-197.
    [128]赵英时,等.遥感应用分析原理与方法[M].北京:科学出版社, 2003.
    [129]李旭超,朱善安.图像分割中的马尔可夫随机场方法综述[J].中国图象图形学报, 2007, 12(5): 789-798.
    [130] Xu R, Wunsch D. Survey of clustering algorithms[J]. IEEE Transactions Neural Networks, 2005, 16(3): 645-678.
    [131]秦昆,徐敏.基于云模型和FCM聚类的遥感图像分割方法[J].地球信息科学, 2008, 10(3): 302-307.
    [132] Chongchang Wang, Guijun Yang, Zhenli Ma, et al. Fusion of VNIR and thermal infrared remote sensing data based on GA-SOFM neural network[J]. Geo-Spatial Information Science, 2009, 12(4): 271-280.
    [133]徐德启,汪志华.综合纹理和颜色的图像分割方法[J].计算技术与自动化, 2002, 21(3): 77-83.
    [134]郭松涛,孙强,焦李成.基于改进小波域隐马尔可夫模型的遥感图像分割[J].电子与信息学报, 2005, 27(2): 286-289.
    [135]刘纯平.基于Kohonen神经网络聚类方法在遥感分类中的比较[J].计算机应用, 2006, 26(7): 1744-1750.
    [136]郭小卫,官小平.一种多尺度无监督遥感图像分割方法[J].遥感信息, 2006, (6): 20-22.
    [137]刘晓云,王振松,陈武凡,李小文.基于MRF随机场和广义混合模型的遥感图像分级聚类[J].遥感学报, 2007, 11(6): 839-844.
    [138]郑玮,康戈文,陈武凡,李小文.基于模糊马尔可夫随机场的无监督遥感图像分割算法[J].遥感学报, 2008, 12(2): 246-252.
    [139] Chang Dong-Xia, Zhang Xian-Da, Zheng Chang-Wen. A genetic algorithm with gene rearrangement for K-means clustering[J]. Pattern Recognition, 2009, 42(7): 1210-1222.
    [140] Bezdek J C, Ehrlich R, Full W. FCM: the fuzzy c-means clustering algorithm[J]. Computers and Geosciences, 1984, 10(2-3): 191-203.
    [141] Jie Yu, Peihuang Guo, Pinxiang Chen, et al. Remote sensing image classification based on improved fuzzy c-means[J]. Geo-Spatial Information Science, 2008, 11(2): 90-94.
    [142] Moon Seong Kang, Sang June Im, Tae Il Jang, et al. Detecting areal changes in tidal flats after sea dike construction using Landsat-TM images[J]. Journal of Earth System Science, 2007, 116(6): 561-573.
    [143] Yang Jar-Ferr, Hao Shu-Sheng, Chung Pau-Choo. Color image segmentation using fuzzy C-means and eigenspace projections[J]. Signal Process, 2002, 82(3): 461-472.
    [144] Hafiane Adel, Zavidovique Bertrand. FCM with spatial and multiresolution constraints for image segmentation[J]. Lecture Notes in Computer Science, 2005, 3656(10): 17-23.
    [145] Ma Li, Staunton R C. A modified fuzzy c-means image segmentation algorithm for use with uneven illumination patterns[J]. Pattern Recognition, 2007, 40(11): 3005-3011.
    [146] Jing Wang, Jilong Tang, Jibin Liu, et al. Alternative Fuzzy Cluster segmentation of remote sensing images based on Adaptive Genetic Algorithm[J]. Chinese Geographical Science, 2009, 19(1): 83-88.
    [147]王向阳,王春花.基于特征散度的自适应FCM图像分割算法[J].中国图象图形学报, 2008, 13(5): 906-910.
    [148]杜根远,田胜利,苗放.结合ECM和FCM聚类的遥感图像分割新方法[J].计算机应用研究, 2009, 26(10): 3995-3997.
    [149] Cheng H D, Jiang X H, Sun Y, et al. Color image segmentation: advances and prospects[J]. Pattern Recognition, 2001, 34(12): 2259-2281.
    [150] Guo Yanhui, Cheng H D, Zhang Yingtao, et al. A new neutrosophic approach to image denoising[C]. Proceedings of the 11th Joint Conference on Information Sciences, Published by Atlantis Press, 2008, pp.1-6.
    [151] Ingunn Berget, Bj?rn-Helge Mevik, Tormod Nís. New modifications and applications of fuzzy C-means methodology[J]. Computational Statistics & Data Analysis, 2008, 52(5): 2403-2418.
    [152] Yang X C, Zhao W D, Chen Y F, et al. Image segmentation with a fuzzy clustering algorithm based on Ant-Tree[J]. Signal Process, 2008, 88(10): 2453-2462.
    [153] Kasabov N K, Qun Song. DENFIS: Dynamic Evolving Neural-fuzzy Inference System and Its Application for Time-series Prediction[J]. IEEE Transaction on Fuzzy System, 2002, 10(2): 144-154.
    [154]张烃,刘建成,李树旺.一种基于进化聚类的动态TSK模型建模方法[J].计算机测量与控制, 2006, 14(4): 528-529.
    [155]田胜利,杜根远.自适应FCM算法在图像分割中的应用研究[J].计算机工程与应用, 2010, 46(13): 151-153,167.
    [156]田胜利,杜根远.基于进化聚类的图像分割方法[J].计算机工程与设计, 2009, 30(18): 4299-4302.
    [157] Cinque L, Foresti G, Lombardi L. A clustering fuzzy approach for image segmentation[J]. Pattern Recognition, 2004, 37(9): 1797-1807.
    [158] Gang Yu, Changguo Wang, Hongmei Zhang, et al. A Novel Fuzzy Segmentation Approach for Brain MRI[C]. Lecture Notes in Computer Science, Advanced Concepts for Intelligent Vision Systems, 2006, vol.4179, pp.887-896.
    [159] Edoardo Ardizzone, Roberto Pirrone, Orazio Gambino. Fuzzy C-Means Segmentation on Brain MR Slices Corrupted by RF-Inhomogeneity[C]. Lecture Notes in Computer Science, Applications of Fuzzy Sets Theory, 2007, vol.4578, pp.378-384.
    [160] Debasish Chakraborty, Gautam Kumar Sen, Sugata Hazra. High-resolution satellite image segmentation using H?lder exponents[J]. Journal of Earth System Science, 2009, 118(5): 609-617.
    [161] Saeed Golian, Bahram Saghafian, Sara Sheshangosht, et al. Comparison of classification and clustering methods in spatial rainfall pattern recognition at Northern Iran[J]. Theoretical and Applied Climatology, Online First, 2010.
    [162] Du Gen-yuan, Miao Fang, Tian Sheng-li, Guo Xi-rong. Remote Sensing Image Sequence Segmentation Based on the Modified Fuzzy C-means[J]. Journal of Software, 2010, 5(1): 28-35.
    [163] Zhang Yujin, Yao Yurong, He Yun. Color image segmentation based on HSI model[J]. High technology letters, 1998, 4(1): 28-31.
    [164]范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社, 2007.
    [165]徐建华.现代地理学中的数学方法(第二版)[M].北京:高等教育出版社, 2002.
    [166]哈斯巴干,马建文,李启青,等.模糊C-均值算法改进及其对卫星遥感数据聚类的对比[J].计算机工程, 2004, 30(11): 14-15, 91.
    [167]邱磊,李国辉,代科学.遥感图像的半监督的改进FCM算法[J].计算机应用研究, 2006, 23(6): 252-253.
    [168]苖夺谦,王国胤,刘清,等.粒计算:过去、现在与展望[M].北京:科学出版社, 2007.
    [169] Pawlak Z. Rough sets[J]. International Journal of Computer and Information Sciences, 1982, 11(5): 341-356.
    [170] Zadeh L A. Fuzzy logic = computing with words[J]. IEEE Transactions on Fuzzy Systems, 1996, 4(2): 103-111.
    [171]张钹,张铃.问题求解理论及应用-商空间粒度计算理论及应用[M].北京:清华大学出版社, 2007.
    [172]王国胤,张清华,胡军.粒计算研究综述[J].智能系统学报, 2007, 2(6): 8-26.
    [173] Pedrycz W, Smith M H, Bargiela A. A granular signature of data[C]. Int Conf NAFIPS?2000, USA, 2000.
    [174] Hirota H, Pedry W. Fuzzy relational compression[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1999, 29(3): 407-415.
    [175] Nobuhara H, Pedryez W, Hirota K. Fast soling method of fury relational equation and its application to image compression/reconstruction[J]. IEEE Transactions on Fuzzy Systems (TFS), 2000, 8(3): 325- 334.
    [176]修保新,吴孟达.图像模糊信息粒的适应性度量及其在边缘检测中的应用[J].电子学报, 2004, 32(2):274-277.
    [177] Wu Zhaocong, Li Deren. Neural network based on rough sets and its application to remote sensing image classification[J]. Geo-Spatial Information Science, 2002, 5(2): 17-21.
    [178] Jinling Shi, Genyuan Du. A Similarity Measuring Method between Image Regions Based on Granular Computing[C]. 2010 IEEE International Conference on Granular Computing, GrC 2010, San Jose, California, USA, pp.755-758.
    [179] Pawlak Z. Granularity of knowledge, Indiscernibility and rough sets[C]. Proceedings of 1998 IEEE International Conference on Fuzzy Systems, New Jersey, 1998: 106-110.
    [180]谢克明,逯新红,陈泽华.粒计算的基本问题和研究[J],计算机工程与应用, 2007, 43(16): 41-44.
    [181] Zadeh L A. Towards a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic[J]. Fuzzy Sets and Systems, 1997, 19: 111-127.
    [182] Zadeh L A. Some reflections on soft computing, granular computing and their roles in the conception, design and utilization of information/intelligent systems[J]. Soft Computing, 1998, 2(1): 23-25.
    [183]徐久成,史进玲,张倩倩.基于粒计算的序决策规则提取算法[J].模式识别与人工智能, 2009, 22(4): 660-665.
    [184]史进玲.基于粒计算的决策表属性约简与规则提取研究[D].新乡:河南师范大学硕士学位论文, 2009.
    [185] Marr D. Vision: A computational investigation into the human representation and processing of visual information[M]. New York: W H Freeman and Company, 1982.
    [186] Zadeh L A. Fuzzy sets[J]. Information and Control, 1965, 8(3): 338-353.
    [187] Zhang B, Zhang L. Theory and applications of problem solving[M]. Amsterdam: North-Holland Publishing, 1992.
    [188] Shao Mingwen, Zhang Hongying. Dominance Relation and Rules in Ordered Information Systems[J]. Chinese Journal of Engineering Mathematics, 2005, 22(4): 697-702.
    [189]刘仁金,黄贤武.图像分割的商空间粒度原理[J].计算机学报, 2005, 28(10):1680-1685.
    [190]李年攸.粗集理论在图像分割中的应用[J].三明学院学报, 2005, 22(4): 382-385.
    [191]邓淑明,胡思仁,著.曾杉,译.地理信息网络服务与应用[M].北京:科学出版社, 2004.
    [192]李德仁.论广义空间信息网格和狭义空间信息网格[J].遥感学报, 2005, 9(5): 513-520.
    [193]张永生,贲进,童晓冲.地球空间信息球面离散网格-理论、算法及应用[M].北京:科学出版社, 2007.
    [194] Zhenfeng Shao, Deren Li. Spatial Information Multi-grid for Data Mining[J].Lecture Notes in Computer Science, Advanced Data Mining and Applications, 2005, vol.3584, pp.777-784.
    [195] Goodchild M F. Discrete global grids for digital earth[C]. Proceedings of 1st International Conference on Discrete Global Grids, Santa Barbara,California,USA, 2000.
    [196]关丽,程承旗,吕雪锋.基于球面剖分格网的矢量数据组织模型研究[J].地理与地理信息科学, 2009, 25(3): 23-27.
    [197]宋树华,程承旗,关丽,等.全球空间数据剖分模型分析[J].地理与地理信息科学, 2008, 24(4): 11-15.
    [198]程承旗,郭辉.基于剖分数据模型的影像信息表达研究[J],测绘通报, 2009, (10): 12-14,17.
    [199]程承旗,宋树华,万元嵬,等.基于全球剖分模型的空间信息编码模型初探[J].地理与地理信息科学, 2009, 25(4): 8-11. [ 200 ] Zhenfeng Shao, Deren Li. Design and implementation of service-oriented spatial information sharing framework in digital city[J]. Geo-Spatial Information Science, 2009, 12(2): 104-109.
    [201] Deren Li, Xin Shen. Geospatial information service based on digital measurable image-Take Image City Wuhan as an example[J]. Geo-Spatial Information Science, 2010, 13(2): 79-84.
    [202] DU Gen-yuan, MIAO Fang, GUO Xi-rong. A novel network service mode of spatial information and its prototype system[J]. Advanced Materials Research, 2010, Vols.108-111, pp.319-323.
    [203] Guo Xi-rong, Miao Fang, Wang Hua-jun, Du Gen-yuan. Initial Discussion on the Architecture of a New Spatial Information Network Service Model Based on the Digital Earth[C]. Proceedings of IEEE International Conference on Environmental Science and Information Application Technology, 2009, vol.3, pp.406-410.
    [204]袁文,程承旗,马蔼乃,等.球面三角区域四叉树L空间填充曲线[J].中国科学E辑, 2004, 34(5): 584~600.
    [205] Dutton G H. A hierarchical coordinate system for geoprocessing and cartography[J]. Lecture Notes in Earth Science. Berlin: Springer-Verlag, 1999, vol.79.
    [206]袁文,马蔼乃,管晓静.一种新的球面三角投影:等角比投影(EARP)[J].测绘学报, 2005, 34(1):78-84.
    [207]袁文,庄大方,袁武,等.基于等角比例投影的球面三角四叉树剖分模型[J].遥感学报, 2009, 13(1):103-111.
    [208]俞晓.空间信息网络访问模式--G/S模式研究[D].成都:成都理工大学博士学位论文, 2009.
    [209] Wang Mi, Gong Jianya, Li Deren. Multi-resolution seamless image database[J]. Geo-Spatial Information Science, 2000, 3(3): 52-56.
    [210] Zhu Xinyan, Wen Yi, Li Deren, Gong Jianya. Research on data consistency in spatial database system[J]. Geo-Spatial Information Science, 2000, 3(4): 24-29.
    [211]汪国平,李胜,李文航,王少荣.分布式虚拟现实中超大规模数据管理[J].中国计算机学会通讯, 2010, 6(7): 17-22.
    [212]邬伦,等.地理信息系统-原理、方法和应用[M].北京:科学出版社, 2004.
    [213] Ravikanth Kothuri, Albert Godfrind, Euro Beinat著.管会生,刘刚,安宁,等译. Oracle Spatial空间信息管理--Oracle Database 11g[M].北京:清华大学出版社, 2009.
    [214] Oracle. Oracle Spatial 11g georaster[Z]. Oracle技术白皮书, 2007.
    [215] Du Genyuan, Miao Fang. Implementation of Language Interpreter based on Reusable Components[C]. International Conference on Education Technology and Computer, Singapore, 2009, pp.53-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700