用户名: 密码: 验证码:
连续时间的优先级完全服务与限定服务轮询系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轮询为系统服务资源分配提供了非竞争的访问控制机制,其控制实现过程简洁可靠,可以有效避免接入对象间的竞争冲突,特别在高负载情况下能够获得较优的共享资源利用率。近几十年来,国内外学者对轮询系统的理论研究一直在不断充实和发展,对轮询系统的理论研究取得了丰硕的成果。轮询系统的研究成果也广泛应用于工业控制、通信网络、生产管理和经济发展预测等领域。应用轮询系统模型分析实际问题,对计算机系统及通信网络QoS进行研究,可以定量地分析网络系统性能、评估网络的服务质量。因此,进一步深入对轮询系统的研究有着很重要的现实的意义。
     轮询系统模型是典型的多队列多服务器排队系统架构,服务器按照队列的次序周期性地访问各个队列。控制过程包括顾客进入队列的到达过程、服务器在队列间的查询转换过程和服务器对各个队列的服务过程,服务器的服务方式可分为门限、完全和限定服务三类基本策略。所以,轮询系统是由三个n维随机过程组成的复杂系统。由此可见,对其一阶系统特性分析如平均排队队长、平均查询周期和二阶系统特性如平均等待时间的精确解析都有很大的难度。应用概率论、排队论、随机过程等理论工具,结合工业过程控制、多址接入控制、资源分配调度等实际应用过程的控制机理,建立起相应的数学分析模型,精确解析出系统的关键性能参数表达式(如平均排队队长、平均查询周期、吞吐量、平均等待时延等),对系统进行定量的性能评估是轮询系统研究的主要内容和难点。由于实际应用需求的不断提升,系统结构的日趋复杂,轮询系统的分析和研究的难度也在不断增大。
     在近二十年时间里,随着微电子技术与通信理论的迅速发展,通信网络获得了跨越式的发展。由于系统服务资源毕竟是有限的,MAC层协议作为决定资源使用权的技术是提高整体网络性能的重要保障。MAC机制不仅能使共享资源得到充分利用,同时还影响着上层协议的性能实现。所以,高效的MAC机制是系统支持QoS的关键。如何设计出高效的MAC层协议是一个有价值的课题研究方向。随着网络的发展和多媒体业务需求的提升,就需要突破单一轮询服务控制策略的均衡思想,在周期性的访问基础上拓展多样化查询服务次序和混合服务策略等控制措施,使得系统服务性能得到更大的优化和完善。目前,为多优先级业务提供实时的、较优鲁棒性的和高质量的QoS保证是轮询问题研究的热点。
     本论文在国家自然科学基金项目(No.61072079,“轮询系统理论演进及应用控制协议研究”)、国家自然科学基金项目(No.60362001,“通信网络中动态优先级控制理论及方法研究”)、中央与地方共建高等学校特色优势学科“网络通信与无线通信技术实验室”项目和云南大学理(工)科校级科研项目(No.2007Q021C,“多队列多服务器轮询系统控制策略研究”)的支持下,在两级优先级控制轮询系统模型和概率流控的轮询系统模型详细研究的基础上,重点对通信与计算机领域媒体接入控制MAC协议的控制策略做了比较深入系统的分析和优化,并取得了一些创新性的研究成果,主要创新内容包括:
     1、论文在总结、归纳门限、完全和限定服务基本轮询系统的控制机理、排队系统建模、对关键性能指标的数学解析过程、仿真实验和系统性能分析的基础上,综合分析了三个基本排队系统的典型特点,指出传统系统体系结构的固有不足,难以满足网络服务进入更高层次的应用需求。从优化与改进查询顺序、服务策略和服务顺序三个基本要素入手,提出了完全与限定混合服务策略控制的两级优先级站点轮询系统,确保了通信网络中高优先级业务的顾客得到更优质网络服务质量保证,优化了系统性能。
     2、本文进一步以排队理论为基础,采用嵌入式Markov链、多维概率母函数和LST变换等数学分析工具,为该轮询系统及其拓展系统构造出相对完善的数学模型,推导出系统状态变量的概率母函数,并对中心站点和普通站点的平均等待队长、平均查询周期和顾客的平均排队时延进行精确的数学解析和仿真实验分析。理论计算和仿真实验对比分析的结果说明了理论分析与实验的一致性。新的轮询系统模型中实现了区分不同优先级的控制以满足基于优先级服务的实际需求,优化和提高了系统性能,具有较好的公平性、灵活性和针对性。
     3、本文还提出概率流控的完全服务与限定服务轮询系统,系统模型中各站点信息分组按M/G/1规则,以多重休假和按特定几何概率p批量到达。该模型同样采用嵌入式Markov链和多维概率母函数方法,在连续时间状态下对系统模型进行解析。又采用数值分析和计算机仿真实验方法,在系统运行环境和初始参数相同的情况下,从信息分组到达率、服务时间、系统转换时间以及几何概率p变化等方面进行分析。理论数值分析和计算机仿真实验具有较好的一致性验证了系统模型理论分析的有效性。最后通过系统性能分析验证了该模型除了仍具有优先级完全服务与限定(K=1)服务轮询系统的优点外,通过引入几何概率p的分析方法,起到了业务流量控制(0     4、本文以Web服务器集群系统、片上网络系统NoC (Network on Chip)以及无线传感器网络WSNs的媒体接入控制MAC协议的调度策略为主要研究对象,详细分析了以上三种网络系统的特点和服务需求,基于优先级的轮询调度算法分别对Web服务器集群系统的负载均衡调度策略、片上网络的仲裁器调度策略(Arbitration policy)和无线传感器网络的分簇调度控制策略做进一步科学的优化,建立了相应的理论模型,完成了对系统性能关键参数的数学解析和仿真实验,结果证明了新的调度策略能基于不同的优先级需求提供针对性的服务质量保障,优化网络系统性能,减低了系统开销,对系统性能的提高有较好的帮助。
     最后对全文的主要工作及创新点进行了总结,并讨论了论文不完善的方面,指出课题今后研究的方向。
Polling provides noncompetition access control for the distribution of the service resources in the system. The completion of its control process is brief and dependable, which will effectively avoid the conflicts caused by customers'competition for service resources and will maintain a higher utility for resources sharing especially in high-loaded situation. Over the past few decades, abundant findings have been produced by scholars at home and abroad in the studies of the polling theories. The findings of polling system have been widely applied in industry control, communications network, production management, traffic and transportation, and economic activities. The polling system model are often used in the analysis of practical issues during which the function and service quality of the system will accordingly be tested via quantificational method. Therefore, it is of great practical significance to promote the researches on polling system.
     Polling system model is a typical multi-queue multi-server queuing system. The server, following the queuing order, cyclically visits at each queue. The control process covers the arrival service after the customers enter into the queue, the server's inquiry transformation in the queues, and the server's service for each queue. The services are divided into three categories of gated, exhaustive, and limited service policies. In this sense, polling system is a complex one formed by three n-dimensional stochastic processes. It is thus difficult to make an accurate analysis on the system's one-order characteristics like the mean queue length and the mean inquiry cycle, and on the two-order characteristics like the mean waiting time.
     The key points and special difficulties in the researches on polling system are thus found in the establishment of a corresponding mathematical model by means of probability, queuing, stochastic process and based on the control mechanism of the practical system so as to give accurate analysis on the key performance parameter formulas such as the mean queue length, the mean cyclic time, throughput, and the mean waiting time of customers, and the evaluation on the system's functions via quantificational methods. Moreover, the difficulties are on the rise in that higher demands of the system are expected for practical use and the structure of the system is getting more and more complex.
     Polling queuing system is divided into the system of continuous time and the system of discrete time. The former is a queuing model which have long been established and widely applied. The researcher of this study has made a thorough and comprehensive analysis on the above-mentioned three polling systems of basic service policies. Over the past 20 years, communication network has enjoyed accelerated development along with the advancement of microelectronic technology and communications theories. Still, the service resources of the system are limited. MAC layer protocol, determining the right of resources use, becomes the important guarantee to the enhancement of the entire network function. MAC mechanism, the key to the QoS supported by the system, enables the wide use of shared resources while it also influences the performances of the above layers. Therefore, the design of a high-efficiency MAC layer protocol remains a valuable research program. With the increased requirements for network service and multimedia performance, it is urgent to break away from the single polling policy service control policies and to develop new and varied control policies for inquiry service order and mixed service on the basis of cyclic access so that the system service performances will be greatly enhanced and optimized. Currently, the research concentration in polling lies with the establishment of real-time, robust and high-quality QoS for multi-priority services.
     This dissertation is the research work aiming at the analysis of the two-class priority station polling system under the policies of exhaustive and limited services at the continuous time and the improved system. It also makes a systematic study on the MAC protocol policies in communications and computer fields that have been connected with media. All the research work owes greatly to the supports by the Program of Natural Science Foundation of China (NSFC) (No.61072079,"The Evolution of Polling System and the Study of Applied Control Protocol"), by the NSFC Program (No.60362001, entitled "Theories and Approaches of Dynamic Priority Control in Communication Network"), by the Program of "Network Communication and Wireless Communication Technology Lab" under the Cooperation between the Central Government and the Local Government in support of the peculiar advantageous disciplines of the local institutions of higher learning, and by the Science-Engineering Program of Yunnan University (No.2007Q021C, entitled "The Research on Multi-Queuing Multi-Servers Polling System Control Policy"). This research has produced some creative findings which are seen as follows:
     1. This research shows that the traditional single system structure can hardly meet the higher requirements of differentiating priority service after a comprehensive analysis is made on the typical features of three fundamental queuing systems based on an overview of the control mechanisms and queuing system modeling of the gated, exhaustive and limited services polling systems, and on the mathematical resolving process, simulated experiment and system function of the key performance indexes. It proposes the idea of the two-class priority station polling system under the exhaustive and limited services control policies, and improved system on the basis of the enhancement and optimization of inquiry order, service policy and service order. The practice has optimized the system performance and has ensured that the high-priority customers in communications network enjoy more qualified service.
     2. Further, this research, based on queuing theory and the mathematical analyses via Markov chain, multidimensional probability generating function, and Laplace -Stieltjes transformation, has produced a comparatively perfect mathematical model for the polling system and its expanded system, has deduced probability generating function of the system status variable, and has made accurate mathematical resolving and simulated experiment on the mean queue length, the mean inquiry cyclic time, and the mean waiting time of customers at the key and the common stations. The findings from the comparative analysis of the theoretical computing and simulated experiment verify the correspondence of theoretical analyses with simulated experiments. The new polling system modeling has enabled the differentiation of the controls of different priorities so as to satisfy the practical demand for priority services, and has optimized the system performance. It has the evident features of fairness, flexibility and pertinence.
     3. Meanwhile, this research has proposed a polling system of exhaustive and limited services based on probability flow control. In the system model, information packets of each station, following M/G/1 regulations, arrive in batch by means of multiple vacations and in accordance with geometry probability p. Likewise, the approaches of Markov chain and multiple-probability generating function are applied in the analysis of the model at the continuous time. Moreover, mathematical analysis and computer simulation are conducted, under the circumstances of similar system operation and primary parameters, to expound the arrival rate of information packets, service time, system switching time, and the change of geometry probability p. It turns out that the result of theoretical numerical analysis identifies well with that of computer simulation, which justifies the validity of the theoretical analysis of system model. The result of system operation analysis proves that the system model, in addition to the advantages of the exhaustive and limited services of priority polling stations, has further practical values in applied researches in that it has performed the functions of traffic flow control (0< p< 1), dormancy (p= 0) and awakening (p= 1) via geometry probability p.
     4. This research aims at the scheduling policies of Web server cluster, and NoC (Network on Chip), and WSNs with the MAC protocol. Detailed analyses are made on the above-mentioned network systems concerning their features and service demands. Based on the priority-based polling schedule Algorithm, scientific optimization is conducted respectively on the load balance scheme policy of the Web Server Cluster System on the basis of Internet application, the SoC Arbitration policy of MPSoC, and the clustering scheme control policy of the WSNs. Corresponding theoretical models are established and mathematical resolving and simulated experiment are conducted on the key parameters of system performance. As a result, it has been testified that the new scheduling strategy works well in providing good service of differentiating priorities according to different demands in WAN, NoC and Wireless Communications Network. Moreover, it optimizes the performance of network system and reduces the expense on system operation. The findings of this research will be of great help in the enhancement of the system performance.
     Finally, besides a summary of this research, further suggestions are given so as to promote the researches of the similar kind.
引文
[1]周炯槃.通信网理论基础[M].北京:人民邮电出版社,2009年10月.
    [2]D.V. Lindley. The theory of queues with a single server[J]. In Proc. Cambridge Phil. Soc.,1952, 48:277-289.
    [3]H.Takagi. Priority queues with setup times[J]. Operations Research,1990,38(4):667-677.
    [4]H. Takagi. Queuing analysis of polling models. ACM Computing Surveys,1988,20(1):1-28.
    [5]Martin Eisenberg. Two Queues with Changeover Times [J]. Operations Research, Mar.-Apr., 1971,19(2):386-401.
    [6]M.A.Leibowitz. An Approximate Method for Treating a Class of Multiqueue Problems[J]. IBM Journal of Research and Development, July,1961,5(3):204-209.
    [7]W. Chou. Terminal Response Time on Polled Tele-processing Networks[J]. in: Computer Networking Symposium, Proceedings,1978:1-10.
    [8]Alan G. Konheim and Bernd Meister. Service in a Loop System[J]. Journal of the Association for Computing Machinery, January,1972,19(1):92-108.
    [9]Wesley W. Chu and Alan G. Konheim. On the Analysis and Modeling of a Class of Computer Communication Systems[J]. IEEE Transactions on Communications, June, 1972,COM-20(3):645-660.
    [10]J.F.Hayes and D.N.Sherman. A Study of Data Multiplexing Techniques and Delay Performance[J]. The Bell System Technical Journal, Nov.1972,51 (9):1983-2011.
    [11]GBoyd Swartz, Polling in a Loop System[J]. Journal of the Association for Computing Machinery, Jan 1980,27(1):42-59.
    [12]H. Levy, M. Sidi. Polling systems:applications, modeling and optimization[J]. IEEE Transactions on Communications,1990,38(10):1750-1759.
    [13]H. Takagi. Application of polling models to computer networks [J]. Computer Networks, 1991,22(3):193-211.
    [14]GBoyd Swartz, Polling in a Loop System[J]. Journal of the Association for Computing Machinery, Jan 1980,27(1):42-59.
    [15]T.Takine,Y.Takahashi and T.Hasegawa. Exact Analysis of Asymmetric Polling Systems with Single Buffers[J]. IEEE Transactions on Communications, Oct.1988,COM-36(10):1119-1127.
    [16]Hideaki Takagi. Mean Message Waiting Times in Symmetric Multi-queue Systems with Cyclic Service[J]. Performance Evaluation.1985,5(4):271-277.
    [17]Hideaki Takagi. Application of Polling Models to Computer Networks[J]. Computer Networks, 1991,22(3):193-211.
    [18]李俊生,彭兵,赵东风.ATM接入网络中非对称性周期传输过程分析[J].电子科技大学学报,1999,28(5):550-553.
    [19]李俊生,彭兵,赵东风,石晶林.环形LAN多业务模型解析[J].通信学报,1999,20(11):1-6.
    [20]庞昆,郑君里,顾学道,基于动态令牌轮询提供视频QoS保证的无线ATM多址接入控制[J].电子学报,1999,27(11):33-37.
    [21]赵东风.令牌网络中非对称性问题研究[J].通信学报,1998,19(1):75-80.
    [22]赵东风.物流加工优先级控制过程研究[J].信息与控制,1998,27(5):365-368.
    [23]LAN MAN Standards Committee of the IEEE Computer Society. Part II:Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications[J]. ANSI/IEEE Std 802.11,1999 Edition.
    [24]Romano Fantacci and Luca Zoppi. Performance Evaluation of Polling Systems for wireless Local Communication Networks. IEEE Transactions on Vehicular Technology,2000, 49(6):2148-2157.
    [25]Oran Sharon and Eitan Altman. An Efficient Polling Mac for Wireless LANs. IEEE/ACM Transactions on Networking,2001, vol.9, no.4, pp.439-451.
    [26]Zhijun Yang, Dongfeng Zhao. Research on Multimedia Transmission of Mobile Learning Based on Wireless Network. Lecture Notes in Computer Science,2006,778-784.
    [27]Yang Zhijun, Zhao Dongfeng. Polling Strategy for Wireless Multimedia LANs. Tsinghua Science and Technology,2006,11(5):606-610.
    [28]Romano Fantacci, Luca Zoppi. Performance evaluation of polling systems for Wireless Local Communication Networks[J]. IEEE Transactions on Vehicular Technology,2000,49(6):2148-2157.
    [29]LO Shouchin, LEE Guanglin, CHEN Wentsuen. An efficient multipolling mechanism for IEEE 802.11 Wireless LANs[J]. IEEE Transactions on Computers,2003,52(6):764-778.
    [30]Daniele Miorandi, Andrea Zanella. Performance analysis of limited-1 polling in a blue tooth piconet. In: Proceeding of the 11th International Conference on Information Systems Analysis and Synthesis(CITSA2005), July 2005, Florida, USA.
    [31]TAO Li, Logothetis D. Analysis of a polling system for telephony traffic with application to wireless LANs[J]. IEEE Transactions on Wireless Communications,2006,5(6):1284-1293.
    [32]B. Sikdar. An analytic model for the delay in IEEE 802.11 PCF MAC based wireless networks. IEEE Transactions on Wireless Communications,2007,6(4):1542-1560.
    [33]Ben-Jye Chang,YanLing Chen. Adaptive hierarchical polling and Markov decision process based CAC for increasing network reward and reducing average delay in IEEE 802.16 WiMAX networks[J]. Computer Communications,2008,31(10):2280-2292.
    [34]刘静,李建东,周雷,张光辉.有效提高吞吐量的UPMA++协议[J].电子学报,2005,33(4):683-687.
    [35]李剑,胡波,赵东风.一种提供时延QoS保障的无线网络MAC协议[J].电子学报,2005,33(7):1168-1172.
    [36]杨帆,王珂,钱志鸿.按需轮循的蓝牙微微网调度算法与性能评估[J].电子学报,2007,35(4),647-652.
    [37]刘凯,李汉涛,张军.移动Ad Hoc网络中的公平按需多址接入协议[J].电子学报,2006,33(10):130-134.
    [38]马忠建,方旭明等人.蓝牙Ad hoc网调度策略的设计与仿真[J].系统仿真学报,2006,18(9):2546-2549.
    [39]赵琪,毛玉泉,任浩,直升机战术数据链的轮询组网方式分析[J],电讯技术,50(11):5-9.
    [40]张红霞,戴居丰.基于IEEE 802.16e协议的公平调度算法[J].计算机应用,2009,29(5):1204-1207.
    [41]R. B. Cooper, G Murray. Queues served in cyclic order [J]. The Bell System Technical Journal, 1970,49(3):675-689.
    [42]R. B. Cooper. Queues served in cyclic order:waiting times[J]. The Bell System Technical Journal,1970,49(3):399-413.
    [43]Wesley W. Chu, Alan G Konheim. On the analysis of a class of computer communication Systems [J]. IEEE Transactions on Communications,1972,20(3):645-660.
    [44]Martin Eisenberg. Two queues with changeover times[J]. Operations Research.1971,19(2): 386-401.
    [45]Alan G Konheim, Bemd Meister. Service in a loop system[J]. Journal of the Association for Computing Machinery.1972,19(1):92-108.
    [46]Hashida O. Analysis of multiqueue[J]. Rev. Elect. Commun. Lab,1972,20(3-4):189-199.
    [47]G. Boyd Swartz. Polling in a loop system[J]. Journal of the Association for Computing Machinery.1980,27(1):42-59.
    [48]Hideaki Takagi. Mean message waiting times in symmetric multiqueue systems with cyclic service[J]. Performance Evaluation,1985,5(4):271-277.
    [49]Oliver C I, Cheng X. Stability condition for multi-queue systems with cyclic serve[J].IEEE Trans on Automatic Control,1988,33(1):102-103.
    [50]H. Levy, M. Sidi. Polling systems: applications, modeling and optimization [J]. IEEE Transactions on Communications,1990,38(10):1750-1759.
    [51]H. Levy, M. Sidi. Polling systems with simutaneous arrivals[J]. IEEE Transactions on Communications,1991,39(6):823-827.
    [52]I. Frigui, A. S. Alfa. Analysis of a Time-limited Polling System. Computer Communication, 1998,21:558-571.
    [53]H. Takagi. Application of polling models to computer networks[J]. Computer Networks, 1991,22(3):193-211.
    [54]Konheim A. G. Descendent set:an efficient approach for analysis of polling systems[J]. IEEE Transactions on Communications,1994,42(8):1245-1253.
    [55]Hwang L C. An exact analysis of an asymmetric polling system with mixed service discipline and general service order[J].Computer Communications,1997,20(10):1293-1299.
    [56]Romano Fantacci, Luca Zoppi. Performance evaluation of polling systems for Wireless Local Communication Networks[J]. IEEE Transactions on Vehicular Technology,2000,49(6):2148-2157.
    [57]LO Shouchin, LEE Guanglin, CHEN Wentsuen. An efficient multipolling mechanism for IEEE 802.11 Wireless LANs[J]. IEEE Transactions on Computers,2003,52(6):764-778.
    [58]Daniele Miorandi, Andrea Zanella. Performance analysis of limited-1 polling in a blue tooth piconet. In: Proceeding of the 11 th International Conference on Information Systems Analysis and Synthesis(CITSA2005), July 2005, Florida, USA.
    [59]E.M.M.Winands, I.J.B.F.Adan and G.J.van. Houtum. A two queue model with alternating limited service and state-dependent setups[A]. In: Proceedings of Analysis of Manufacturing Systems Production Management[C].2005, Zakynthos,Page(s):200-208.
    [60]V M Vishnevskii, O V Semenova. Mathematical methods to study the polling systems[J]. Automation and Remote Control,2006,67(2):173-220.
    [61]S.C. Horng, S.Y. Lin. Ordinal optimization of G/G/1/K polling systems with k-limited service discipline[J]. Journal of Optimization Theory and Applications,2009,140(2):213-231.
    [62]Boxma O J, Wal J van der, and Yechiali U. Polling with batch service. Stochastic Models,2008, 24(4):604-625.
    [63]Onno Boxma, Josine Bruin, Brian Fralix. Sojourn times in polling systems with various service disciplines[J]. Performance Evaluation,2009,66 (5):621-639.
    [64]Zsolt Saffer,Miklos Telek. Stability of periodic polling system with BMAP arrivals[J]. European Journal of Operational Research,2009,197(1):188-195.
    [65]M.A.A. Boon, E.M.M. Winands, I.J.B.F. Adan, A.C.C. van Wijk. Closed-form waiting time approximations for polling systems[J]. Performance Evaluation,2011,68(3):290-306.
    [66]Onno Boxma, Josine Bruin, Brian Fralix. Sojourn times in polling systems with various service disciplines[J]. Performance Evaluation,2009,66 (11):621-639.
    [67]M.A.A. Boon, I.J.B.F. Adan, O.J. Boxma. A polling model with multiple priority levels Original Research Article[J]. Performance Evaluation,2010,67(6):468-484.
    [68]R.D. van der Mei, E.M.M. Winands. Heavy traffic analysis of polling models by mean value analysis[J]. Performance Evaluation,2008,65(6-7):400-416.
    [69]M.A.A. Boon, R.D. van der Mei, E.M.M. Winands. Applications of polling systems [J]. Research and Management Science,2011,16(2):67-82.
    [70]王光兴,刘书生,赵海.无线介质计算机通信网络中周期优先轮询服务策略的研究[J].通信学报,1989,10(4):68-73.
    [71]赵东风.门限式令牌总线局部网协议性能分析[J].云南大学学报,1990,12(2):146-152.
    [72]ZHAO Dongfeng, ZHENG Sumin. Waiting Time Analysis for Polling and Token Passing Scheme for Computer and Communication Systems[C]. In:Proceeding of International Conference on Communication Technology(ICCT'92), Beijing, China, Sep.1992,15.04.1-15.04.3.
    [73]ZHAO Dongfen, ZHENG Sumin. Message waiting time analysis for polling model for computer communication networks[J]云南大学学报(自然科学版),1993,15(1):78-86,
    [74]赵东风,郑苏民.周期查询式门限服务排队系统中信息分组的延迟分析[J].通信学报,1994,15(2):18-23.
    [75]赵东风,郑苏民.查询式完全服务排队模型分析[J].电子学报,1994,22(5):102-107.
    [76]ZHAO Dongfeng, SHI Jinlin, LI Bihai. Analysis of integrated voice/data in communication systems[C]. In: Proceeding of International Symposium on IN & ISDN(ISIB'95), Beijing, China, April 1995,page(s):361-364.
    [77]赵东风,李必海,郑苏民.查询式限定服务排队系统研究[J].电子科学学刊,1997,19(1):44-49.
    [78]王思明,逯昭义.带有优先级的令牌环行LAN守恒定律的探讨[J].计算机学报1991,16(8):862-866.
    [79]王思明,汪虹.资源共享方式若干问题的研讨[J].运筹与管理,1998,7(3):83-89.
    [80]李福建,陈廷槐,康泰.容错轮询系统分析模型[J].电子学报,1992,20(5):88-91.
    [81]李福建.服务器个数随机可变的轮询系统分析[J].通信学报,1995,16(1):88-95.
    [82]刘强,张中兆,张乃通.排队优先权站点轮询系统的平均周期时间[J].通信学报,1999,20(2):86-91.
    [83]SUN Ronghen. Asymmetric exhaustive service polling system with Bernoulli feedback[J]重庆大学学报(自然科学版),2001,24(2):127-131.
    [84]韩国栋,张兴明,邓勇,邬江兴.一种基于优先级的综合接人系统自适应I/O调度方案[J].电子与信息学报,2004,26(1):131-136.
    [85]王智,申兴发,于海斌等.两类服务对象轮询模型的平均运行周期[J].计算机学报,2004,27(9):1213-1220.
    [86]苟定勇,刘刚,吴诗其IEEE 802.11中基于传输时间的接纳控制算法研究[J].电子与信息学报,2004,26(12):1972-1977.
    [87]CAO Chunsheng, YIN Rupo, ZHANG Weidong.Mean waiting time approximation for a real time polling system[J]. High Technology Letters,2007,13(2):136-139.
    [88]张宇眉,张欣,杨大成,赵东风.基于等待时间和信道状态的轮询多址协议[J].北京邮电大学学报,2008,31(4):126-129.
    [89]赵东风,丁洪伟,赵一帆等.多级门限服务轮询系统MAC离散时间控制协议模型分析[J].电子学报,2010,38(7):1495-1499.
    [90]李俊生,彭兵,赵东风.非对称周期查询限定服务系统解析[J].电子学报,2001,29(4):1-3.
    [91]YANG Zhijun, ZHAO Dongfeng. QoS support polling scheme for multimedia traffic in wireless LAN MAC protocol. Tsinghua Science and Technology,2008,13(6):754-758.
    [92]LIU Qianlin, ZHAO Dongfeng. Priority polling strategy for wireless sensor networks[A]. In: Proceeding of IEEE International Conference on Information Science and Engineering(ICISE 2009)[C]. December 2009, Nanjing, China, Page(s):4062-4065.
    [93]杨志军.两级优先级控制轮询系统理论及应用研究[D].云南大学博士学位论文,2008.11.
    [94]柳虔林,赵东风.优先级服务两级轮询系统性能分析[J].解放军理工大学学报(自然科学版),2011,2.
    [95]H. Takagi. Queuing analysis of polling models. ACM Computing Surveys,1988,20(1):1-28
    [96]H. Levy, M. Sidi. Polling systems:applications, modeling and optimization[J]. IEEE Transactions on Communications,1990,38(10):1750-1759.
    [97]Boxma O J, Wal J van der, and Yechiali U. Polling with batch service. Stochastic Models,2008, 24(4):604-625.
    [98]Onno Boxma, Josine Bruin, Brian Fralix. Sojourn times in polling systems with various service disciplines[J]. Performance Evaluation,2009,66 (5):621-639.
    [99]Martin Eisenberg. Two queues with changeover times[J]. Operations Research.1971,19(2): 386-401.
    [100]Alan G. Konheim, Bernd Meister. Service in a loop system[J]. Journal of the Association for Computing Machinery.1972,19(1):92-108.
    [101]Hashida O. Analysis of multiqueue[J]. Rev. Elect. Commun. Lab,1972,20(3-4):189-199.
    [102]P. Humblet. Source coding for communication concentrators [J]. Electron. Syst. Lab., Massachusetts Inst. Technol., Cambridge, ESL-R-798, Jan.1978.
    [103][82] M.J. Ferguson and Y. J. Aminetzah, Exact Results for Nonsymmetric Token Ring Systems[J], IEEE Trans. Commun., Mar.1985, COM-33:223-231.
    [104]Konheim A. G. Descendent set: an efficient approach for analysis of polling systems[J]. IEEE Transactions on Communications,1994,42(8):1245-1253.
    [105]V M Vishnevskii and O V Semenova. Mathematical methods to study the polling systems, Automation and Remote Control,2006,67(2):173-220.
    [106]Bilpab Sikdar. An analytic model for the delay in IEEE 802.11 PCF MAC based wireless networks[J]. IEEE Trans. Wireless Commun.,2007,6(4):1542-1560.
    [107]W. Dapeng, Z. Yan, W. Muqing, et al. Mediaum access control access delay analysis of IEEE 802.11e wireless LAN. IET communication 2009; 3(6):1061-1070.
    [108]聂景楠.多址通信及其接入控制技术[M].北京:人民邮电出版社,2006年6月
    [109]Sarah Shaaban, Hesham M. El Badawy, et al. Performance evaluation of the IEEE 802.11 wireless LAN standards[A]. In: Proceeding of the World Congress on Engineering (WCE 2008). July 2008, London, U.K.
    [110]S.C. Horng, S.Y. Lin. Ordinal optimization of G/G/1/K polling systems with k-limited service discipline[J]. Journal of Optimization Theory and Applications,2009,140(2):213-231.
    [111]Tsuyoshi Katayama,Kaori Kobayashi. A pseudo-conservation law for a time-limited service polling system with structured batch poisson arrivals. Computers and Mathematics with Applications,2006,51:171-178.
    [112]M.vanVuuren, E.Winands. Iterative approximation of k-limited polling systems[J]. Queueing Systems,2007,55(3):161-178.
    [113]陈希孺,郑忠国.现代数学手册(随机数学卷)[M].华中科技大学出版社,2000年12月.
    [114]王智,于海斌,宋叶琼,孙优贤.混合服务方式下的M1+M2/G/1轮询系统的平均运行周期[J].通信学报,2002,23(7):8-18.
    [115]Welch P. D. On a Generalized M/G/1 Queuing Process in Which the First Custom of Each Busy Period Receives Exceptional Service[J].Opns. Res,1964,12:736-752.
    [116]Levy H and Kleinrock L. A Queue with Starter and Queue with Vacation:Delay Analysis by Decomposition[J].Opns.Res.1986,34:426-136.
    [117]Ott. T. J. The Single Server Queue with Independent GI/G and M/G Input Streams[J]. adv. Appl. Prob,1987,19:266-286.
    [118]Scholl HL and Kleinrock L. On the M/G/1 queue with rest period and certain service in dependent queuing discipline[J].Operates. Res,1983,31:705-719.
    [119]唐应辉,唐小我.排队论-基础及应用[M].电子科技大学出版社,2000.
    [120]唐应辉,黄蜀娟,云曦,离散时间多重休假的Geomx/G/1排队系统的队长分布[J],电子学报,2009,37(7):1407-1411.
    [121]Yinghui Tang, The Transient and Equilibrium Distributions of the Queue Length For Mx/G/1 Queue with Delay Server acation[J]. Acta math. Scientia,2000,20 (3).
    [122]陆传赉.排队论[M],北京市:北京邮电大学出版社,2009年9月.
    [123]田乃硕,多级适应性休假M/G/1排队[J].应用数学,1992,4:12-18.
    [124]曹晋华,程侃,服务台可修的M/G/1排队系统分析[J].应用数学学报,1982,5:113-127.
    [125]http://www.cnnic.net.cn/
    [126]royal.pingdom.com
    [127]Crovella ME,Bestavros A. Self-Similarity in World Wide Web traffic:Evidence and possible causes. IEEE/ACM Transactions on Networking,1997,5(6):835-846.
    [128]Dell Inc.http://www.dell.com/
    [129]赵改善,包红林.集群计算技术及其在石油工业中的应用[J].GEOPHYSICAL PROSPECTIN G FOR PETROL EUM,2001,40(3):119-128.
    [130]Anderson.D.Culler and D.Patterson.A case for Networks of workstation.IEEE Micro.Feb.95
    [131]HPVM Http://www-csage.cs.uius.edu/project/cluster.html
    [132]Sloaris Mc.Http://www.sunlabs.com/research/
    [133]Rajkumar Buyya,High Performance Cluster ComPuting:Architectures and systems,Volume 1,Prentice Hall PTR,1999.
    [134]潘正军,康立山,陈毓屏.演化计算[M].北京:清华大学出版社,1998:3-10.
    [135]邸烁,郑纬民.并行WWW服务器集群请求分配算法的研究[J].软件学报,1999,10(7):713-718
    [136]Cisco Inc.Scaling the World WideWeb.TechnicalReport,http://www.cisco. Com
    [137]Katz Eric Dean, Butler Michelle, McGrath Robert E.A scalable HTTP server:the NCSA prototype.Computer Network s and ISDN System s,1994, (27):155-164
    [138]王晓川,叶超群,金士尧.一种基于分布式调度机制的集群体系结构[J].计算机工程,2002,28(8):232-234.
    [139]杨群,谭建,许满武.异构Web服务器集群的自适应成比例延时差异服务模型[J].电子学报,2007,35(5):816-822.
    [140]Bhatti, N., F riedrich, R. W eb server suppo rt fo r tiered services. IEEE N etwo rk,1999. 64-71.
    [141]单志广,戴琼海,林闯,杨扬,Web请求分配和选择的综合方案与性能分析[J].软件学报,2001,12(3):355-365.
    [142]Co lajanni, M., Yu, P. S., Cardellini, V. Dynamic load balancing in geograph ically distributed heterogeneousweb servers.In: Proceedings of the 18th IEEE International Conference on D istributed Computing Systems (ICDCS'98). Am sterdamIEEE Computer Society,1998.295-302. h ttp://dlib. computer. Org/conferen/icdcs/8292/pdf/82920295. pdf.
    [143]Katz, E. D., Butler, M., McGrath, R. A scalable HTTP server: the NCSA p ro to type. Computer N etwo rk s and ISDN System s,1994, (28):155-164.
    [144]Cisco Systems Inc. Load balancing: amultifaceted solution for improving server avalability. W hite paper,2000. http://www. cisco. Com/warp/public/cc/pd/cxsr/400/tech/lobal-wp.htm.
    [145]Crovella, M. E., Carter, R. L. Dynamic server selection in the Internet. Technical Report, TR2952014, Department of Computer Science, Bostor University,1995. http://cs-www. bu. Edu/faculty/crovdla/paper-archive/hpcs95/paper.html.
    [146]L in, Chuang. Performance analysis of request dispatch ing and selecting in web server clusters. Chinese Journal of Computers,2000,23 (5):500-508.
    [147]林闯.Web服务器集群请求分配和选择的性能分析.计算机学报,2000,23(5):501-600.
    [148]Zhiguang Shan,Chuang Lin,Yaya Wei. Prototype implementation and performance evaluation of a QoS-based Web server.Service-Oriented System Engineering,2005.SOSE 2005. IEEE International Workshop 20-21 October 2005,191-196.
    [149]Bhatti N, Friedrich R. Web Server Support for Tiered Services. IEEE Network, September/October 1999:64-71.
    [150]Crovella M E, Frangioso R, Harchol-Balter M., Connection Scheduling in Web Servers. In: Proc.1999 USENIX Symp. On Internet Technology and System(USITS'99), Boulder, Colorado, 1999,243-254.
    [151]Harchol-Balter M, Bansal N, Schroeder B, Agrawal M. Implementation of SRPT Scheduling in Web Servers. Technical Report CMU-CS-00-170, School of Computer Science, Carnegie Melton University, Oct.2000.
    [152]Bansl N, Harchol-Batter M. Analysis of SRPT Scheduling:Investigating Unfairness[J]. In: Proc. ACM Sigmetrics 2001 Conf. on Measurement and Modeling of Computer Sytems, Boston, MA, June 2001
    [153]Li K, Jamin S. A Measurement-Based Admission Controlled Web Server[J]. In:Proc. IEEE Infocom Conference, Tel-Aviv, Israel, March 2000.
    [154]Eggert L, Heidemann J. Application-level Differentiated Services for Web Servers[J]. World Wide Web Journal, Vol.2, No.3,1999,133-142.
    [155]Abdelzaher T and Bhatti N, Web Server QoS Management by Adaptive Content Delivery. In:Proc.7th Int. Workshop on QoS, May 1999.
    [156]邸烁.异构Web Server集群请求分配和负载平衡研究[D].北京:清华大学,1999.
    [157]Arli F, Willianmson C L. Web Server Workload Characterization:The Search for Invariant[R]. In Proceedings of the ACM Sigmetrics'96,Philad-elphia, May 1996,126-137.
    [158]Paul Barford, Azer Bestavros.Changes in Web Client Access Patterns:Characteristics and Caching Implications[DB/OL].http://citeseer.nj.nec.com/barford98changes.html,1998.
    [159]A Cohen,S Rangarajan,H Slyel.On the performance of TCP Splicing for URL aware redirection, The 2nd USENIX Symp on Internet Technologies and System, Boulder,CO,1999.
    [160]雷迎春,张松,李国杰.高性能L5-Dispatcher的性能评测[C]:第七届研究生学术研讨会,成都,2002.
    [161]雷迎春,李国杰,张松.基于请求内容的高性能L5-Dispatchter[J]计算机研究与发展,2002,39(2):183-191
    [162]雷迎春,张松,李国杰.Web集群服务器的分离式调度策略[J].计算机研究与发展,2002,39(9):1093-1098.
    [163]http://www.itrs.net/Links/2010ITRS/Home2010.htm.
    [164]周文彪,张岩,毛志刚,SoC片上通信结构的研究综述[J].微处理机,2007,(3):1-5.
    [165]IBM Corporation. the Connect Bus Architecture [EB/OL]. www. chip s. ibm. com,1999.
    [166]ARM Corporation. the AMBA Specification [EB/OL].www. arm. com,1999.
    [167]Silicore Corporation. the W ISHBONE System Architecture Specificatio[OL/EB]. www. silicore.com/wishbone.htm,2001.
    [168]季红彬,蒋斌,魏敬和.C3 Bus一个通用的SoC总线结构[J].中国集成电路,2002(4):32-39.
    [169]J L Wong, M Potkonjak, S Dey. Optimizing designs using the addition of deflection operations. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions, Jan. 2004,23(1):50-59.
    [170]R Karim, A. Nguyen, and S. Dey An interconnect architecture for networking systems on chips. IEEE Micro, September/October 2002,22(5):36-45.
    [171]J. Madsen, S. Mahadevan, et al. NoC modeling for system-level multiprocessor simulation. In Proc. RTSS,2003.
    [172]T. Bjerregaard and K. mahadevan. A survey of research and practices of network-on-chip. ACM Computing Surveys. March 2006,38:1-51.
    [173]荆元利,樊晓柳,张盛兵,等.基于片上网络的系统芯片测试研究[J].微电子学与计算机,2004,21(6):154-159.
    [174]荆元利,樊晓娅.网络互连多线程处理器.计算机工程与应用[J].2005,41(33):51-53.
    [175]高明伦,杜高明.NoC:下一代集成电路主流设计技术[J].微电子学,2006,36(4):461-466.
    [176]周干民.NoC基础研究:[博士学位论文].合肥:合肥工业大学,2005.
    [177]Liu C, Chen J H, Manohar R, Tiwari S. Mapping system-on-chip designs from 2-D to 3-D ICs [C]. IEEE International Symposium on Circuits and Systems,2005. ISCAS 2005,23-26 May 2005,3::2939-2942.
    [178]Hiroki Matsutani, Michihiro Koibuchi, and Hideharu Amano. "Tightly-Coupled Multi-Layer Topologies for 3-D NoCs". International Conference on Parallel Processing,2007.
    [179]杨敏华,谷建华,周兴社.片上网络.微处理机,2006,5:28-33
    [180]张恒龙,顾华玺,王长山,等.片上网络拓扑结构的研究.中国集成电路,2007,102:42-59.
    [181]王峥,顾华玺,杨烨,等.片上网络交换机制的研究.中国集成电路,2007,103:22-27.
    [182]陈龙.NoC:基于分组交换网络的SoC设计.中国通信集成电路技术与应用研讨会2004:12-15.
    [183]马立伟,孙义和.片上网络拓朴优化:在离散平面上布局与布线,电子学报2007,35(5):906-911.
    [184]H S Wang, X P Zhu, L S Peh, et al. Orion: a power-performance simulator for interconnection.Microarchitecture,2002. (MICRO-35).Nov 2002:294-305
    [185]E Rijpkema, K Goossens, A Radulescu, et al. Trade-offs in the design of a router with both guaranteed and best-effort services for networks on chip. Computers and Digital Techniques,IEE Proceedings. Sept 2003,150(5):294-302.
    [186]S Kumar,Jantsch, J P Soininen,et al. A Network on Chip Architecture and Design Proceedings of the IEEE Computer Society Annual Symposium on VLSI A Methodology (ISVLSL02),2002.
    [187]Tobias Bjerregaard and Shankar Mahadevan. A Survey of Research and Practices of Network-on-Chip. ACM Computing Surveys, Vol.38(1), June,2006.
    [188]P. Gupta. Design and Implementing a Fast Crossbar Scheduler[J]. IEEE Transaction on Micro, 1999,19(1):20-28.
    [189]E. Shin. Round-Robin Arbiter Design and Generation. Proceedings of the 15th IEEE International Symposium on System Synthesis (1SSS). Tokyo, Japan,October,2002. pp.243-248.
    [190]M. Millberg, E. Nilsson, R. Thid, S. Kumar, and A. Jantsch. The Nostrum Backbone A Communication Protocol Stack for Networks on Chip. Proceedings of the 17'h VLSI Design Conference. Mumbai, India, January,2004:.693-696
    [191]K Lahiri, A Raghunathan, G Lakshminarayana. The LOTTERYBUS on-chip communication.Very Large Scale Integration (VLSI) Systems IEEE Transactions, June 2006, 14(6):596-608.
    [192]武畅,李玉柏,彭启踪.可设置仲裁优先程度的NoC路由节点设计[J].电子科技大学学报,2008,37(5):645-648.
    [192]A. Andriahantenaina, H. Charlery, A. Greiner, L. Mortiez, and C. Zeferino. SPIN:a Scalable, Packet Switched, On-chip Micro-network. Proceedings of Design, Automation and Test in Europe Conference and Exposition (DATE), Munich, Germany, March,2003. pp.70-73.
    [194]J.Liang,S.Swaminathan, and R.Tessier. a SOC:A Scalable, Single-Chip communications Architecture. Proceedings of IEEE International Conference on Parallel Architectures and Compilation Techniques (PACT). Philadelphia, Pennsylvania, USA, October, 2001.pp.37-46.
    [195]F. Karim, A. Nguyen, S. Dey, and R. Rao, On-Chip Communication Architecture for OC-768 Network Processors. Proceedings of the 38'h Design Automation Conference (DAC). Las Vegas, Nevada, USA, June,2001.pp.678-683.
    [196]W. Dally and B. Towles. Route Packets, Not Wires:On-Chip Interconnection Networks. Proceedings of the 38" Design Automation Conference (DAC). Las Vegas, Nevada, USA, June, 2001.pp.684-689.
    [197]E. Rijpkema, K. Goossens, and P. Wielage. A Router Architecture for Networks on Silicon. Proceedings of Progress 2001,2"d Workshop on Embedded Systems, November,2001.pp.181-188.
    [198]J Dielissen, A Radulescu, K Goossens, et al. Concepts and implementation of the Philips Network-on-Chip [R]. IP-Based SoC Design, Philips Co. Ltd,2003.
    [199]Rijpkema E, Goossens K, Radulescu A, et al. Trade-offs in the design of a router w ith both guaranteed and best effort services for networks on chip[J]. IEEE Computer Society,2003, 150(5):294-302.
    [200]P Gueerrier, A Greiner. A generic architecture for on-chip packet-switched interconnections [A]. Proc Int Conf on De-sign, Automation and Test in Europe(DATE). New York, USA:ACM. 2000:250-256.
    [201]温家宝.让科技引领中国可持续发展[N].解放军报.2009年11月4日.
    [202]http://research.cens.ucla.edu.
    [203]http://www.janet.ucla.edu/WINS/.
    [204]http://www.robotics.usc.edu/jembedded/.
    [205][26] http://www.eng.yale.edu/enalab/.
    [206]http://nms.csail.mit.edu/.
    [207]http://projects.cerias.purdue.edu/esp/.
    [208]李建中,李金宝,石胜飞.传感器网络及其数据管理的概念、问题与进展[J].软件学报,2003,14(10):1717-1727.
    [209]任丰原,黄海宁,闯林.无线传感器网络[[J].软件学报,2003,14(7):1282-1291.
    [210]李石坚,徐从富,吴朝晖.面向目标跟踪的传感器网络布局优化及保护策略[J].电子学报,2006,1.
    [211]张卿,谢志鹏,凌波一种传感器网络最大化生命周期数据收集算法[J].软件学报,2005,16(11):1946-1957.
    [212]王福豹,史龙,任丰原.无线传感器网络中的自身定位系统和算法[[J].软件学报,2005,5.
    [213]彭刚,曹元大,钟伟军.无线传感器网络基于数据汇聚的路由[[J].计算机工程与应用,2005(12):12-15.
    [214]蒋杰,方力.张鹤颖无线传感器网络安全路由协议分析[[J].软件学报,2006.2.
    [215]卿利、朱清新。王明文.异构传感器网络的分布式能量有效成簇算法[[J].软件学报,2006.3.
    [216]赵保华,张炜,刘恒昌.无线传感器网络中的组划分算法[[J].计算机学报,2006,1.
    [217][47]田乐,谢东亮,韩冰.无线传感器网络中瓶颈节点的研究[[J].软件学报,2006,4.
    [218]任彦,张思东,张宏科.无线传感器网络中覆盖控制理论与算法[[J].软件学报,2006,3.
    [219]石晶林,未来宽带移动通信网络技术发展的一些思考[J].中国集成电路,2008,1:77-89.
    [220]崔莉,鞠海玲,苗勇.无线传感器网络研究进展[J].计算机研究与发展,2005,42(1):163-174.
    [221]马祖长,孙冶宁,梅涛.无线传感器网络综述[J].通信学报,2004,4.
    [222]宋光明,葛运建.智能传感器网络研究与发展[J].传感技术学报,2003,6(2):107-112.
    [223]于海斌,曾鹏,王忠锋.分布式无线传感器网络通信协议研究[J].通信学报,2004,10,25(10):102-110.
    [224]赛强.无线传感器网络MAC协议关键技术研究:[博士学位论文],国防科学技术大学,长沙,2008年
    [225]Estrin D, Govindan R,Heidemann J,Kumar S. Next century challenges:Scalable coordination in sensor networks. In:Kodesh H, ed. Proc. of the ACM/IEEE MobiCom'99.New York, ACM Press,1999:263-270.
    [226]I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci. Wireless sensor networks:a survey[J]. Computer Networks,2002,38(4):393-422.
    [227]K. Romer, F. Mattern, E. Zurich. The design space of wireless sensor networks[J]. IEEE Wireless Communications,2004:54-61.
    [228]D. Hall. Mathematical Techniques in Multisensor Data Fusion[M]. Artech House, Boston, MA,1992.
    [229]Intanagonwiwat C, Estrin D, Govindan R, Heidemann J. Impact of network density on data aggregation in wireless sensor networks[J]. In: Proc 22nd Int'l Conf on Distributed Computing Systems, Vienna, Austra, IEEE,2002.
    [230]Demirkol I, Ersoy C, Alagoz F. MAC protocols for wireless sensor networks:a survey[J]. IEEE Communications,2006,44(4):115-121
    [231]Hnin Yu Shwe, JIANG Xiaohong, Suslginu Horiguchi. Energy saving in wireless sensor networks[J]. Journal of Communication and Computer,2009,6(5):20-27.
    [232]LIAO Wenhwa, WANG Hsiaohsien. An asynchronous MAC protocol for Wireless Sensor Networks [J]. Journal of Network and Computer Applications,2008,31:807-820.
    [233]James M. Gilbert, Farooq Balouchi. Comparison of energy harvesting systems for Wireless Sensor Networks[J]. International Journal of Automation and Computing,2008,5(4).334-347.
    [234]Yongsub Nam, Taekyoung Kwon, Hojin Lee, et al. Guaranteeing the network lifetime in wireless sensor networks: A MAC layer approach[J].Computer Communications,2007,30(6): 2532-2545.
    [235]LU Gang, Krishnamachari B, Raghavendra CS. An adaptive energy-efficient and low-latency MAC for data gathering in wireless sensor networks [A]. In: Proceeding of IEEE International Parallel and Distributed Processing Symposium(IPDPS) [C]. April 2004, Page(s):224-236.
    [236]孙利民,李建中,陈渝,朱红松.无线传感器网络[M].北京:清华大学出版社,2005年5月.
    [237]Edgar H. Callaway. Wireless Sensor Networks: Architectures and Protocols[M]. CRC Press, 2003.
    [238]Cardei M, Thai NI T, Li Y, et al. Energy-Efficient Target Coverage in Wireless Sensor Networks [C]. in INFOCOM. Miami, USA,2005.
    [239]Deborah Estrin. Wireless Sensor Networks Tutorial Part Ⅳ: Sensor Network Protocols. Mobicom, Sep.23-28,2002. Westin Peachtree Plaza,Atlanta,Georgia,USA.
    [240]W. Ye, J. Heidemann,and D. Estrin. Medium access control with coordinated,adaptive sleeping for wireless sensor networks[J]. In IEEE Transactions on Networking, Apr.2004.
    [241]T. van Dam and K. Langendoen. An adaptive energyefficient mac protocol for wireless sensor networks. In 1 st ACM Conference on Embedded Networked Sensor Systems (SenSys), pages 171-180,2003.
    [242]Jamieson K, Balakrishnan H, Tay Y C. Sift: A MAC protocol for event-driver wireless sensor networks. NIIT Tech. Report, MIT-LCS-TR-894,2003.
    [243]J. Polastre, J. Hill, and D. Culler. Versatile low power media access for wireless sensor networks. In The Second ACM Conference on Embedded Networked Sensor Systems (SenSysj, November 2004:95-107.
    [244]Jin Ai,Kong Jingfei,Turgut D, An adaptive coordinated medium access control forwireless sensor networks[C] Computers and Communications.2004. Proceedings.ISCC'04. Ninth International Sympo-sium,2004:214-219.
    [245]El-Hoiydi A, Decotignie JD. WiseMAC:An ultra low power MAC protocol for the downlink of infrastructure wireless sensor networks. In: Campolargo M, ed. Proc. of the ISCC 2004. Alexandria: IEEE Press,2004.244-251.
    [246]Demirkol I, Ersoy C, Alagoz F. MAC protocols for wireless sensor networks:a survey[J]. IEEE Communications,2006,44(4):115-121.
    [247]Miguel A. Erazo, QIAN Yi. SEA-MAC:A simple energy aware MAC protocol for Wireless Sensor Networks for environmental monitoring applications [J]. ACM SenSys, May,2007.
    [248]LU Gang, Krishnamachari B, Raghavendra CS. An adaptive energy-efficient and low-latency MAC for data gathering in wireless sensor networks [A]. In: Proceeding of IEEE International Parallel and Distributed Processing Symposium(IPDPS) [C]. April 2004, Page(s):224-236.
    [249]J. Li and G. Lazarou. A bit-map-assisted energy-efficient MAC scheme for wireless sensor networks. In 3rd Int. Symp. on Information Processing in Sensor Networks (IPSNO4), Berkeley. Alpril 2004:50-60.
    [250]Chen Zhihui,Khokhar. Self organization and energy efficient TDMA MAC protocol by wake up for wireless sensor networks,Sensor and Ad Hoc Communications and Networks,IEEE SECON'04,2004:335-341.
    [251]BAI Ronggang, QU Yugui, Ji Yusheng. A Reliable Collision—free TDMA MAC for Sensor Networks[J].Chinese Journal of Electronics,2009,18(4):708-712.
    [252]S. S. Kulkarni and M. Arumugam. SS-TDMA:A Self-Stabilizing MAC for Sensor Networks. In Proc. of. the 2nd Distributed Computing and Internet Technology (ICDCIT). LNCS 3816,2005:69-91.
    [253]L. van Hoesel and P. Havinga.A lightweight medium access protocol (LMAC) for wireless sensor networks. In 1 st Int. Workshop on Networked Sensing Systems (INSS 2004), Tokyo, Japan, June 2004:205-208.
    [254]Sohrabi K, Gao J, Ailawadhi V, Pottie G J. Protocols for self-organization of wirless sensor network[J]. IEEE Personal Communications Magazine,2000,7(5):16-17.
    [255]Arisha K A, Youssef M A, Younis M F. Energy-aware TDMA-based MAC for sensor networks. In: Proc IEEE Workshop on integrated Management of Power Aware Communications, Computing and Networking, New York, NY, May,2002.
    [256]Tashtarian F., Haghighat A.T., Honary M.T. et al. A new energy-efficient clustering algorithm for Wireless Sensor Networks [A]. In: Proceeding of The 15th International Conference on Software, Telecommunications and Computer Networks[C]. May 2007, Page(s):1-6.
    [257]Babaie Shahram, Ahmad Khadem Zadeh, Mehdi Golsorkhtabar Amiri. The new clustering algorithm with cluster members bounds for energy dissipation avoidance in Wireless Sensor Networks[A]. In: Proceeding of International Conference on Computer Design and Applications[C]. July 2010, Page(s):V2-613-617.
    [258]Lehsaini M., Guyennet H., Feham M.. A novel cluster-based self-organization algorithm for wireless sensor networks[A]. In: Proceeding of International Symposium on Collaborative Technologies and Systems. May 2008:19-26.
    [259]胡静,沈连丰,宋铁成,任德盛.新的无线传感器网络分簇算法[J].通信学报,2008,29(7):20-26.
    [260]林恺,赵海,尹震宇,罗玎玎.一种基于能量预测的无线传感器网络分簇算法[J].电子学报,2008,36(4):824-828.
    [261]李莉,温向明.无线传感器网络中分簇算法能量有效性分析[J].电子与信息学报,2008,30(4):966-969.
    [262]龚本灿,李腊元,蒋廷耀,汪祥莉.一种能量均衡的无线传感器网络分簇算法[J].计算机应用研究,2008,25(11):3424-3429.
    [263]张余,蔡跃明,潘成康,徐友.WSN中一种能量有效的自适应协同节点选择方案[J].电子与信息学报,2009,31(9):2193-2198.
    [264]韩志杰,王汝传,凡高娟,肖甫.一种基于ARMA的WSN非均衡分簇路由算法[J].电子学报,2010,38(4):54-893.
    [265]Standard for part 15.4:Wireless medium access control(MAC) and physical layer (PHY) specifications for low rate wireless personal area networks(WPAN)[S].IEEE Std 802.15.4,IEEE, New York, NY,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700