用户名: 密码: 验证码:
应县木塔典型节点及结构受力性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
应县木塔建于辽清宁二年(公元1056年),距今已有近千年历史,是我国现存最古老和最高的木构塔式建筑,也是唯一一座木结构楼阁式塔。木塔历经近千年沧桑,经受了多次强烈地震和人为破坏而巍然屹立,向世人展现着中国灿烂的文明。但也应看到,历经千年的木塔,其结构发生了明显压缩、倾斜与扭转变形,其中构件横纹承压破坏和受弯产生严重变形与损伤,木构件开裂和老化,尚有遭受炮击等人为损伤,且这些情况有随时间增长而恶化的趋势。木塔亟待进行结构安全评估和维修。然而应县木塔结构复杂,结构体系及其传力路径不甚明确、节点构造及传力机理不明晰。本文在全面结构调查的基础上,对木塔进行结构解读,开展其典型节点性能试验研究与有限元分析,并进行木塔整体结构精细化有限元分析,以对木塔结构的安全评估乃至维修加固提供重要依据。
     基于现场调查结果,对应县木塔进行了结构体系分析。木塔为“层叠式半刚性连接多层超静定结构”。从结构角度对木塔斗栱、梁柱节点和柱脚节点进行了归类。用工程力学的观点,分析了古建筑木结构特有的“侧脚”和“生起”的结构作用。
     通过竖向单调加载试验和水平低周循环加载试验,研究了应县木塔典型斗栱节点腜汀⒘褐诘愫椭沤诘隳P偷某性亓透斩取;谑匝榻峁拖嗨理论,估算了木塔典型斗栱原型、梁柱节点和柱脚节点原型的受力性能谑向荷载作用下,斗栱节点主要通过薓贰⒒獤怼龛省⑸⒍泛丸佣反莺稍兀其受力机理与木材横纹承压工作相似。在水平荷载作用下,斗栱节点主要以各道栱枋抗弯的形式传递荷载,其受力机理与木材受弯工作相似褐诘阒饕通过木柱卯口与阑额榫头间的横纹承压将水平荷载传至阑额上,使阑额受扭和横纹承压,并使木柱卯口处横纹受拉,普拍枋横纹承压。柱脚节点则主要通过木柱卯口与栱枋间的横纹承压将水平荷载传至栱枋上,使栱枋受弯和扭,并使木柱卯口处横纹受拉,栱枋和地栿横纹承压匝楸砻鳎窎斫诘恪⒘褐诘和柱脚节点抵抗水平荷载的性能皆随柱上竖向荷载的增大而提高。木柱经加固后节点抵抗水平荷载的性能亦皆有所提高。
     针对木材各向异性的特点,建立了复杂应力状态下的本构关系模型,并结合ABAQUS编制了用户子程序VUMAT,模拟复杂受力情况下的木材力学性能。基于各节点的真实构造、所建立的木材本构关系模型和各构件间动摩擦接触关系模型,建立了的木塔典型斗栱节点、梁柱节点和柱脚节点的精细化有限元模型,并对这些节点的力学性能进行了计算分析,结果与试验吻合良好。在试验和计算分析的基础上,提出了斗栱在竖向荷载作用下的简化力学腜停确了传力路径。
     基于ABAQUS建立了应县木塔整体结构无损和现状两种精细化有限元模型。通过动力特性分析,得到了木塔两种模型的自振频率和振型,其中现状模型的动力特性与文献实测结果吻合。通过对木塔整体结构有限元分析,分别研究了木塔在竖向(重力)荷载和水平(地震)荷载作用下的工作性能,明确了木塔竖向和水平方向的传力路径。经对木塔进行多遇地震作用下的有限元分析,得到了木塔的地震响应,并结合所提出的倾覆评判指标,对木塔的抗震安全进行了评估。对木塔的整体和局部倾斜、抗扭刚度低、明层抗侧移刚度低、局部抗侧移刚度低和节点横纹承压强度低等各薄弱环点进行了分析,提出了相应的加固增强设想。
Built in the 2nd year of Qingning, Liao Dynasty (1056 AD) of approximate a thousand years ago, the Yingxian Wood Pagoda is located in the Town of Yingxian County, Shanxi Province, China. It is the oldest and highest standing ancient wood structure and the only storeyed wood pagoda of China. With vicissitudes of nearly a thousand years, the pagoda has undergone times of severe earthquakes and some human-induced disasters. Yet it is still towering there with majesty, showing the world the glory of the ancient Chinese civilizations. Meanwhile, it should be noted that significant deformation of compression, both overall inclination and torsion of pagoda and local inclination of columns have happened. The situation is serious for some wood components with large deformation and even damage due to compression perpendicular to grain and bending, some with fractures and property-deteriorations due to aging, some even with damage from shelling in the war. The distortions of pagoda and deteriorations of wood are worsening and can become critical any time. It is, therefore, of urgent need to evaluate the structural safety of Yingxian Wood Pagoda and to undertake repairing accordingly. However, the structure of the pagoda is rather complicated, the structural system and the load-transfer paths are not quite clear, and the structure and load-carrying mechanism of joints and connections of the pagoda are not quite clear either. This study aims to undertake thorough on-site survey of the pagoda, undertake analysis and understanding of the structural system, conduct tests of structural performance of the typical joints, and finally conduct refined FE analysis of the whole structure of the pagoda, thus providing basis for evaluation of the structural safety and reinforcement and repairing of the pagoda.
     By the on-site survey and the analysis and understanding of the structural system, the Yingxian Wood Pagoda can be regarded as a layered multi-storey structure with semi-rigid connections and high degrees of indeterminacy. The Dou-Gong Brackets, beam-column joints and column-base joints were classified from a structural point of view. The structural virtues of Column-Lean and Column-Raising, unique in ancient Chinese wood structures like the pagoda, were investigated by means of engineering mechanics.
     Tests on models of the typical Dou-Gong Brackets, beam-column joints and column-base joints under monotonic vertical and cyclic lateral loads, respectively, were conducted, the structural performance in terms of load-carrying capacity, stiffness and failure modes of these joints were investigated. Based on the test results and the theory of similarity, the load-carrying capacity and stiffness of the prototype joints in the true pagoda were deduced. Under vertical load from the column, a Dou-Gong Bracket transfers load down mainly via Shua-Tou, Hua-Gong, Gong-Fang, San-Dou and Lu-Dou, the structural behaviour is basically similar to wood under compression perpendicular to grain. Under cyclic lateral load, a Dou-Gong Bracket transfers load mainly via bending of the several Gong-Fang’s, the structural behaviour is basically similar to wood under bending. A beam-column joint transfers lateral load to Lan-E via compression perpendicular to grain between tenon of Lan-E and mortise of column. Lan-E is thus under torsion and local compression perpendicular to grain, column under tension perpendicular to grain at the mortise and Pupai-Fang under compression perpendicular to grain. Whist a column-base joint transfers lateral load to the several Gong-Fang’s via compression perpendicular to grain between the mortise of column and Gong-Fang. Gong-Fang is thus under bending and torsion, column under tension perpendicular to grain at the mortise, Gong-Fang and Di-Fu under compression perpendicular to grain. Tests also showed that, the lateral resistance and stiffness of Dou-Gong Brackets, beam-column joints and column-base joints increase with the axial compressive load applied to the column. The lateral performances of all joints are enhanced with reinforcement of column to prevent propagation of the fracture perpendicular to grain.
     In consideration of the anisotropy, constitutive relationships of wood under complex stresses, suitable for EF modelling of the structures, were developed and incorporated into ABAQUS via encoding a user-defined subroutine VUMAT. FE models of the Dou-Gong Brackets, beam-column joints and column-base joints were developed based on the true geometric structure of the joints, the complex constitutive relationships and the kinematic friction formulation between the components. The structural performance of these typical joints was simulated, and good agreement between FE modelling and tests was obtained. Based on the FE modelling and tests, simplified mechanics models of Dou-Gong Brackets transferring vertical load were developed, and the load-transferring paths clarified.
     Two refined FE models of the structure of Yingxian Wood Pagoda, with and without considering damage, were developed incorporating ABAQUS, respectively. The natural vibration frequencies and modes of both FE models were obtained by the numerically dynamic analysis, and analytical results from the FE model with considering damage correlated with test reported by literature. The structural performance and load-transferring paths of the pagoda were investigated via conducting FE modelling of the structure under gravity and static lateral earthquake actions, respectively. FE modelling of the structure of the pagoda under frequently occurring earthquakes was also conducted, and the structural responses obtained. The index for evaluating the overturning of the pagoda was suggested, and the safety of Yingxian Wood Pagoda under earthquakes assessed. The structural weaknesses of the pagoda, such as inclinations both overall and local, poor torsional stiffness, poor inter-storey and local lateral stiffness of the apparent storeys and low compression strength perpendicular to grain, were reviewed and analysed, and measures to reinforce the structure of the pagoda and to alleviate detrimental effect of gravity were proposed.
引文
[1]陈明达.应县木塔[M].北京:文物出版社, 2001.
    [2]伊东忠太.中国建筑史[M].陈清泉,译.香港:商务印书馆, 1998.
    [3] Else G. The Yingzao-Fashi, its time and editor [C]// International Conference on Chinese Architectural History I. Beijing: Tsinghua University Press, 1998: 13.
    [4] Tan T. Historical background of the formation of“Cai-fen”system of Yingzao-Fashi [C]// International Conference on Chinese Architectural History I. Beijing: Tsinghua University Press, 1998: 15.
    [5] Ho P P. Monumental innovation [C]// The architecture of Longxingsi. International Conference on Chinese Architectural History I. Beijing: Tsinghua University Press, 1998: 5.
    [6] Tracy G M. The spirit of the place at Jinci: A preliminary [C]// International Conference on Chinese Architectural History I. Beijing: Tsinghua University Press, 1998: 83.
    [7] William W. Chinese Art (2) [M]. London: Penguin Books Ltd, 1985: 70.
    [8]梁思成.营造法式注释(卷上)[M].北京:清华大学出版社, 2006.
    [9]梁思成.清式营造则例[M].北京:清华大学出版社, 2006.
    [10]梁思成.清工部《工程做法则例》图解[M].北京:清华大学出版社, 2006.
    [11]刘敦桢.中国古代建筑史[M].北京:中国建筑工业出版社, 1984.
    [12]王天.古代木结构经历初探[M].北京:科学出版社, 1991.
    [13]俞茂宏,刘晓东,方东平,等.西安北门箭楼静力与动力特性的试验研究[J].西安交通大学学报, 1991, 25(03): 55-62.
    [14] Zhao J H, Yu M H, Sun J J, et al. The testing of dynamic behavior of a wooden structure“Dou-Gong Brackets”[C]// 3rd International Symposium on Test and Measurement. Sian: Chinese Society of Modern Technical Equipments, 1999: 784-787.
    [15]赵均海,俞茂宏,杨松岩,等.中国古建筑木结构斗拱的动力试验研究[J].试验力学, 1999, 14(01): 106-112.
    [16]赵均海,俞茂宏,高大峰,等.中国古代木结构的弹塑性有限元分析[J].西安建筑科技大学学报, 1999, 31(2): 131-133.
    [17]赵均海,俞茂宏,杨松岩,等.中国古代木结构有限元动力分析[J].土木工程学报, 2000, 33(01): 32-35.
    [18]方东平,俞茂宏,宫本裕,等.木结构古建筑结构特性的试验研究[J].工程力学, 2000, 17(02): 75-83.
    [19]方东平,俞茂宏.木结构古建筑的结构与保护研究—第九届全国结构工程学术会议邀请报告[J].工程力学, 2000, A01(S): 001-018.
    [20]方东平,俞茂宏,宫本裕,等.木结构古建筑结构特性的计算研究[J].工程力学, 2001, 18(01): 137-144.
    [21] Fang D P, Iwasaki S, Yu M H, et al. Ancient Chinese timber Architecture I: Experimental Study [J]. Journal of Structural Engineering, 2001, 127(11): 1348-1357.
    [22] Fang D P, Iwasaki S, Yu M H, et al. Ancient Chinese timber Architecture II: Dynamic Characteristics [J]. Journal of Structural Engineering, 2001, 127(11): 1358-1364.
    [23]丁磊,王志骞,俞茂宏.西安鼓楼木结构的动力特性及地震反应分析[J].西安交通大学学报, 2003, 37(9): 986-988.
    [24]俞茂宏.古建筑结构研究的历史性、艺术性和科学性—第十三届全国结构工程学术会议邀请报告[J].工程力学, 2004, A01(S): 199-213.
    [25]俞茂宏,ODA Y,方东平,等.中国古建筑结构力学研究进展[J].力学进展, 2006, 36(01): 43-64.
    [26]成卜乾.钟楼结构特点及其抗震特性分析[D].西安:西安交通大学, 1986.
    [27]方东平.木结构的静力、动力及抗震性能研究[D].西安:西安交通大学, 1988.
    [28]方东平.中国古代木结构静动力特性的试验与有限元分析研究[D].福冈:日本九州大学, 1993.
    [29]王源.西安东门城楼(国家重点保护文物)结构力学分析[D].西安:西安交通大学, 1996.
    [30]张宇清.西安东门城楼动力特性及其地震响应分析[D].西安:西安交通大学, 1997.
    [31]赵均海.中国古代木结构的结构特性研究[D].西安:西安交通大学, 1998.
    [32]陈平,姚谦峰,赵东.西安钟楼抗震能力分析[J].西安建筑科技大学学报, 1998, 30(3): 277-279, 283.
    [33]丁磊.西安鼓楼动力特性和抗震动性能研究[D].西安:西安交通大学, 2003.
    [34]孟昭傅,袁俊,吴敏哲.行驶车辆对西安钟楼木结构微震动影响的试验研究[J].西安建筑科技大学学报(自然科学版), 2009, 41(4): 512-517.
    [35]孟昭博,袁俊,吴敏哲,等.古建筑高台基对地震反应的影响[J].西安建筑科技大学学报(自然科学版), 2008, 40(6): 835-840.
    [36]孟昭博,吴敏哲,胡卫兵,等.考虑土—结构相互作用的西安钟楼地震反应分析[J].世界地震工程, 2008, 24(4): 125-129.
    [37]周乾,闫维明,杨小森,等.汶川地震古建筑轻度震害研究[J].工程抗震与加固改造, 2009, 31(5): 101-107.
    [38] Zhou Q, Yan W M. Dynamic Character and A seismic Capacity of Chinese Ancient Buildings [C]// 2009 International Joint Conference on Computational Sciences and Optimization. Washington, DC: IEEE Computer Society, 2009: 233-238.
    [39]周乾,闫维明,周锡元,等.中国古建筑动力特性及地震分析[J].北京工业大学学报, 2010, 36(1): 13-17.
    [40]周乾,闫维明,周宏宇.中国古建筑木结构随机地震响应分析[J].武汉理工大学学报, 2010, 32(9): 115-118.
    [41]周乾,闫维明,李振宝,等.古建筑木结构加固方法研究[J].工程抗震与加固改造, 2009, 31(1): 84-90.
    [42]周乾,闫维明.古建筑榫卯节点抗震加固数值模拟研究[J].水利与建筑工程学报, 2010, 8(3): 23-27.
    [43]李小伟,赵均海,张玉芬,等.清代九檩大式殿堂弹塑性动力性能分析[J].建筑结构, 2009, 39(8): 80-83.
    [44]李小伟,赵均海,孙姗姗,等.侧脚与斗栱对清代九檩大式殿堂动力性能的影响[J].世界地震工程, 2009, 25(3): 145-149.
    [45]薛建阳,张鹏程,赵鸿铁.古建木结构抗震机理的探讨[J].西安建筑科学大学学报, 2000, 32(01) : 8-11.
    [46]张鹏程,赵鸿铁,薛建阳,等.中国古建筑的防震思想[J].世界地震工程, 2001, 17(04): 1-6.
    [47]高大峰,赵鸿铁,薛建阳,等.中国古建木构架在水平反复荷载作用下的试验研究[J].西安建筑科技大学学报(自然科学版), 2002, 34(04): 317-319, 324.
    [48]张鹏程,赵鸿铁,薛建阳,等.中国古代大作木结构振动台试验研究[J].世界地震工程, 2002, 18(4): 35-41.
    [49]高大峰,赵鸿铁,薛建阳,等.中国古建木构架在水平反复荷载作用下变形及内力特征[J].世界地震工程, 2003, 19(01): 9-14.
    [50]张鹏程,赵鸿铁,薛建阳,等.斗栱结构性能试验研究[J].世界地震工程, 2003, 19(01): 102-106.
    [51]高大峰,赵鸿铁,薛建阳,等.中国古代木构建筑抗震机理及抗震加固效果的试验研究[J].世界地震工程, 2003, 19(02): 1-10.
    [52]高大峰,赵鸿铁,薛建阳,等.中国古代大作木结构斗栱竖向承载力的试验研究[J].世界地震工程, 2003, 19(03): 56-61.
    [53]高大峰,赵鸿铁,薛建阳.中国古代大木作结构抗震构造研究[J].世界地震工程, 2004, 20(01): 101-104.
    [54]薛建阳,赵鸿铁,张鹏程.中国古建筑木结构模型的振动台试验研究[J].土木工程学报, 2004, 37(6): 7-11.
    [55]姚侃,赵鸿铁.木构古建筑柱与柱础的摩擦滑移隔震机理研究[J].工程力学, 2006, 23(08): 127-131, 159.
    [56]姚侃,赵鸿铁,葛鸿鹏.古建木结构榫卯连接特性的试验研究[J].工程力学, 2006, 23(10): 168-173.
    [57]张鹏程.中国古代木构建筑结构及其抗震发展研究[D].西安:西安建筑科技大学, 2003.
    [58]葛鸿鹏.中国古代木结构建筑榫卯加固抗震试验研究[D].西安:西安建筑科技大学, 2004.
    [59]罗勇.古建木结构建筑榫卯及构架力学性能与抗震研究[D].西安:西安建筑科技大学, 2006.
    [60]于业栓.古建筑榫卯节点加固试验研究[D].西安:西安建筑科技大学, 2006.
    [61]魏安国.古建筑木结构的力学性能及ANSYS分析[D].西安:西安建筑科技大学, 2007.
    [62]吴照华.碳纤维布加固古建筑木梁的性能研究[D].西安:西安建筑科技大学, 2007.
    [63]王鲲.碳纤维增强材料(CFRP)加固古建筑木结构试验研究[D].西安:西安建筑科技大学, 2007.
    [64]高大峰,赵鸿铁,薛建阳.木结构古建筑中斗栱与榫卯节点的抗震性能—试验研究[J].自然灾害学报, 2008, 17(2): 58-64.
    [65]谢启芳,赵鸿铁,薛建阳,等.中国古建筑木结构榫卯节点加固的试验研究[J].土木工程学报, 2008, 41(1): 28-34.
    [66]隋,赵鸿铁,薛建阳,等.古建木构斗栱侧向刚度的试验研究[J].世界地震工程, 2009, 25(4): 145-147.
    [67]赵鸿铁,张海彦,薛建阳,等.古建筑木结构燕尾榫节点刚度分析[J].西安建筑科技大学学报(自然科学版), 2009, 41(4): 450-454.
    [68] Sui Y, Zhao H T, Xue J Y, et al. Experimental research on the later stiffness of ancient wooden Dou-Gong Brackets [J]. J. Xi’an Univ. of Arch. & Tech. (Natural Science Edition), 2009, 41(5): 668-671.
    [69]隋,赵鸿铁,薛建阳,等.古建木构件铺作侧向刚度的试验研究[J].工程力学, 2010, 27(3): 74-78.
    [70]赵鸿铁,董春盈,薛建阳,等.古建筑木结构透榫节点特性试验分析[J].西安建筑科技大学学报(自然科学版), 2010, 42(3): 315-318.
    [71]隋,赵鸿铁,薛建阳,等.古建筑木结构直榫和燕尾榫节点试验研究[J].世界地震工程, 2010, 26(2): 88-92.
    [72]葛鸿鹏,周鹏,伍凯,等.古建木结构榫卯节点减震作用研究[J].建筑结构, 2010, 40(S): 30-36.
    [73]隋,赵鸿铁,薛建阳,等.古代殿堂木结构建筑模型振动台试验研究[J].建筑结构学报, 2010, 31(2): 35-40.
    [74]赵鸿铁,薛自波,薛建阳,等.古建筑木结构构架加固试验研究[J].世界地震工程, 2010, 26(2): 72-76.
    [75]高大峰,刘经伟,张锁柱,等.西安东岳庙大殿动力特性分析[J].水利与建筑工程学报, 2009, 7(2): 36-38.
    [76]高大峰,刘经伟,李小珠.西安东岳庙大殿动力特性分析[C]//第四届全国防震减灾工程学术研讨会论文集.福州:中国土木工程学会, 2009: 290-294.
    [77]李诫.营造法式[M].北京:中国书店,2008.
    [78]熊仲明,韦俊,权吉柱,等.古建筑殿堂型结构耗能减震性能的有限元分析研究[J].振动与冲击, 2008, 27(12): 139-142.
    [79]权吉柱.木结构古建筑殿堂型结构的耗能减震机理分析[D].西安:西安建筑科技大学, 2007.
    [80]李海娜,翁嶶.古建筑木结构单铺作静力分析[J].陕西建筑, 2008, 152: 10-12.
    [81]吴磊,张海彦,王俊峰,等.古建木构斗栱的破坏分析及承载力评定[J].四川建筑, 2009, 29(4): 178-179.
    [82]冯建霖,张海彦,王欢,等.古建筑大木作铺作层的振动分析[J].四川建筑, 2009, 29(4): 132-133.
    [83]董益平,竺润祥,俞茂宏,等.宁波保国寺大殿北倾原因浅析[J].文物保护与考古科学, 2003, 15(04): 1-5.
    [84]竺润祥,董益平,任茶仙,等.榫卯连接的古木结构静力分析[J].工程力学, 2003, A01(S): 10-14.
    [85]仓盛,竺润祥,任茶仙,等.榫卯连接的古木结构动力分析[J].宁波大学学报(理工版), 2004, 17(03): 332-335.
    [86]董益平.古建木结构静力与梁柱连接计算[D].西安:宁波大学, 2001.
    [87]曲慧,肖碧勇,王林安.蓬莱阁木构架承载力有限元分析[J].烟台大学学报(自然科学与工程版), 2010, 23(01): 59-63.
    [88] Wang L A, Hou W D, Xiao B Y, et al. FE-based Strength Analysis of Penglai Pavilion [C]// 11th World Conference on Timber Engineering. 11th World Conference on Timber Engineering. Riva del Garda: WCTE, 2010: 318.
    [89]刘妍,杨军.独乐寺辽代建筑结构分析及计算模型简化[J].东南大学学报(自然), 2007, 37(05): 887-891.
    [90]杨艳华,王俊鑫,徐彬.古木建筑榫卯连接M-θ相关曲线模型研究[J].昆明理工大学学报(理工版), 2009, 34(1): 72-76.
    [91]李重根,胡传双,廖红霞,等.榫卯结构破坏特征及其抗拉强度的试验[J].华南农业大学学报, 2007, 28(4): 108-111.
    [92]张文芳,李世温.一类斗栱结构恢复力特性的腜褪匝檠芯縖J].东南大学学报, 1997, 27(S): 65-70.
    [93]太原理工,山西省文物局.应县木塔木材取样试验报告[R].太原:太原理工大学, 1979.
    [94]李铁英,张善元,李世温.古木塔场地抗震性能评价及地震参数选择[J].岩土工程学报, 2002, 24(5): 660-662.
    [95]李铁英,张善元,李世温.古木塔风压模型试验分析[J].试验力学, 2002, 17(3): 354-362.
    [96]魏德敏,李世温.应县木塔残损特征的分析研究[J].华南理工大学学报(自然学科版), 2002, 30(11):119-121.
    [97]魏剑伟,李铁英.古木建筑风洞模型试验研究[J].工程力学, 2002, A01(S): 262-265.
    [98]魏剑伟,李铁英.古木塔风作用动力分析[J].工程力学, 2002, A01(S): 430-433.
    [99]魏剑伟,李世温.应县木塔地震影响分析[J].太原理工大学学报, 2003, 34(05): 601-605.
    [100]魏剑伟,李铁英,张善元,等.应县木塔地基工程地质勘测与分析[J].工程地质学报, 2003, 11(01): 70-78.
    [101]李铁英,张善元,李世温.应县木塔风作用振动分析[J].力学与实践, 2003, 25(2): 40-42.
    [102]李铁英,魏剑伟,张善元,等.木结构双参数地震损坏准则及应县木塔地震反应评价[J].建筑结构学报, 2004, 25(2): 91-98.
    [103]李铁英,魏剑伟,张善元,等.高层古建筑木结构——应县木塔现状结构评价[J].土木工程学报, 2005, 38(02): 51-58.
    [104]李铁英,魏剑伟,张善元,等.应县木塔实体结构的动态特性试验与分析[J].工程力学, 2005, 22(1): 141-146.
    [105]李铁英,秦慧敏.应县木塔现状结构残损分析及修缮探讨[J].工程力学, 2005, 22(S): 199-212.
    [106]张建丽,李铁英.应县木塔内槽柱残损分析[J].科技情报开发与经济, 2007, 17(09): 159-160.
    [107]李铁英,魏剑伟,李世温,等.应县木塔扭转振动特性和地面强迫振动试验与分析[C]//第16届全国结构工程学术会议论文集(第Ⅲ册).太原:工程力学编辑部, 2007: 349-356.
    [108]李铁英,严旭,魏剑伟,等.应县释迦塔扭转振动特性和地面周期性强迫振动试验与分析[J].太原理工大学学报, 2008, 39(5): 519-522.
    [109]李铁英.应县木塔现状结构残损要点及机理分析[D].太原:太原理工大学, 2004.
    [110]陈国顺,郭文生,贾蕾.山西应县木塔损坏的原因及其环境地质研究概述[J].山西地震, 1998, 03(04): 39- 41.
    [111]陈国顺,贾蕾.山西应县木塔周围的自然环境概况[J].山西地震, 1998, 03(04): 42-49.
    [112]隋坤,郭文生,陈国顺.用工程测量方法研究应县木塔损坏的原因[J].山西地震, 1998, 03(04): 50-53.
    [113]郭文生,李喜和,陈国顺.用工程物探方法研究应县木塔西北侧活动断层及塔基土和地下水的分布[J].山西地震, 1998, 03(04): 54- 59.
    [114]陈国顺,贾蕾,郭文生.山西应县木塔环境地质及活动断层的研究[J].山西地震, 1998, 03(04): 60- 71.
    [115]贾蕾,陈国顺,郭文生,等.用工程地质方法分析应县木塔塔基土的稳定性[J].山西地震, 1998, 03(04): 72- 85.
    [116]温瑞智,周正华,毛国宾,等.应县木塔环境振动试验[J].地震工程与工程振动, 2006, 26(4): 136-140.
    [117]车爱兰.应县木结构古塔动力特性及地震响应分析[D].上海:上海交通大学, 2006.
    [118]张舵,卢芳云.木结构古塔的动力特性分析[J].工程力学, 2004, 21(01): 81-86.
    [119]张舵.木结构古塔的动力特性分析[D].长沙:国防科技大学, 2002.
    [120]王珏.应县木塔扭、倾变形张拉复位的数字化模拟和安全性评估[D].扬州:扬州大学, 2008.
    [121]常婧雅.应县木塔有限元模拟[D].北京:北京工业大学, 2009.
    [122]杜雷鸣,李海旺,薛飞,等.应县木塔抗震性能研究[J].土木工程学报, 2010, 43(S): 363-370.
    [123]樊承谋,王林安,潘景龙.应县木塔修缮用木材的防裂措施[J].北京林业大学学报, 2006, 28(01): 88-102.
    [124]王林安.应县木塔梁柱节点增强传递压力效能研究[D].哈尔滨:哈尔滨工业大学, 2006.
    [125]王林安,樊承谋,潘景龙.应县木塔横纹承压构件GFRP棒增强加固试验研究[J].中国文化科学研究, 2008, 04(01): 34-37.
    [126]肖碧勇.应县木塔斗栱解读及二层明层柱头斗栱传力机理研究[D].长沙:湖南大学, 2010.
    [127]王智华.应县木塔斗栱调查与力学性能分析[D].西安:西安建筑科技大学, 2010.
    [128]李铁英,魏剑伟,李世温.独乐寺观音阁动力特性实测分析[J].太原理工大学学报, 2002, 33(4): 430-432.
    [129]苏军,高大峰.中国木结构古建筑抗震性能的研究[J].西北地震学报, 2008, 30(3): 239-244.
    [130]金良生.山西应县佛宫寺释迦塔实测记[J].北京建筑工程学院学报, 1995, 11(1): 60-64.
    [131]吴玉敏,张景堂,陈祖坪.殿堂型建筑木构架体系的构造方法与抗震机理[J].古建园林技术, 1996, 06(04): 32-36.
    [132]于倬云,周苏琴.中国古建筑抗震性能初探[J].故宫博物院院刊, 1999, 02(04):1-8.
    [133]李煜.浅析抗震概念设计中体现的中国古建筑防震思想[J].云南电大学报, 2004, 09(01): 62-64.
    [134]朱向东,张同乐.浅谈中国传统建筑木结构的抗震技术特点[J].山西建筑, 2006, 15(07): 3-4.
    [135]马付彪,滑程耀,王博.灵泉村古建木结构构造探讨[J].山西建筑, 2007, 02(01): 23-24.
    [136]津和佑子,藤田香织,金惠园.传统木结构建筑构件的动力荷载试验(第一部分)微动测定与自由振动试验[C]//日本建筑学会大会学术讲演论文集.京都:日本建筑学会, 2004: 23-24.
    [137]金惠园,藤田香织,津和佑子.传统木结构建筑构件的动力荷载试验(第二部分)荷载变形关系与变形特征[C]//日本建筑学会大会学术讲演论文集.京都:日本建筑学会, 2004: 25-26.
    [138]藤田香织,金惠园,津和佑子.传统木结构建筑构件的动力荷载试验(第三部分)恢复力特性与刚度的讨论[C]//日本建筑学会大会学术讲演论文集.京都:日本建筑学会, 2004: 27-28.
    [139] Seo J M, Choi I K, Lee J R. Static and cyclic behavior of wooden frames with tension joints under lateral load [J]. J. Struct. Engrg., ASEC, 1999, 125(3): 344-349.
    [140] Tsuwa I, Koshihara M, Fujita K, et al. A Study on the Size Effect of Bracket Complexes Used in Traditional Timber Structures on the Vibration Characteristics [C]// 10th World Conference on Timber Engineering. Miyazaki: WCTE, 2008: 238.
    [141] Kyuke H, Kusunoki T, Yamamoto M, et al. Shaking Table Tests of‘MASUGUMI’Used in Traditional Wooden Architectures [C]// 10th World Conference on Timber Engineering. Miyazaki: WCTE, 2008: 308.
    [142] King W S, Yen J Y, Yen Y N. Joint Characteristics of Traditional Chinese Wooden Frames [J]. Engineering Structures, 1996, 18(8): 635-644.
    [143] William M. Bulleit L. Bogue S, et al. O’Bryant. Behavior and modelling of wood-pegged timber frames [J]. J. Struct. Engrg., ASCE, 1999, 125(1): 3-9.
    [144] Chang W S, Hsu M F, Chen C J. Estimating Rotational Stiffness of Timber Joints by Using Fractional Factorial Experiments Combined with Computer Simulation [C]// 8th World Conference on Timber Engineering. Lahti: WCTE, 2004: 101-106.
    [145] Shanks J, Walker P. Testing of Traditional Connections in Green Oak Carpentry [C]// 8th World Conference on Timber Engineering. Lahti: WCTE, 2004: 183-186.
    [146] Han S R, Lee J J. Mechanical Performance of Korean Traditional Wooden Bulding of the Column-girder Tenon-joint by Joint Type [C]// 9th World Conference on Timber Engineering. Portland: WCTE, 2006: 23.
    [147] Uchida A, Minowa C, Kawai N, et al. Seismic Performance of Japanese Wooden Pagodas [C]// 8th World Conference on Timber Engineering. Lahti: WCTE, 2004: 453-356.
    [148] Ono T, Kameyama Y, Sato A, et al. Experiments on Seismic Safety of Traditional Timber Temples Part1: Results of Horizontal Loading Test [C]// 9th World Conference on Timber Engineering. Portlan: WCTE, 2006: 383.
    [149] Nakaji H, Suzuki Y, Gotou M, et al. Seismic Performance Evaluation of Traditional Wooden House by Alternate Cyclic Loading Test [C]// 9th World Conference on Timber Engineering. Portlan: WCTE, 2006: 381.
    [150] Kameyama Y, Ono T, Sato A, et al. Experiments on Seismic Safety of Traditional Timber Temples Part2: Results of Vibration Test [C]// 9th World Conference on Timber Engineering. Portlan: WCTE, 2006: 384.
    [151] Kawai N, Minowa C, Maekawa H, et al. Dynamic Characteristics of Japanese Pre-modern Five-storied Pagodas [C]// 9th World Conference on Timber Engineering. Portlan: WCTE, 2006: 3231.
    [152] Kawai N, Minowa C, Hanazato T, et al. Micro Tremor Measurements and Vibration Models of Japanese Pagodas [C]// 10th World Conference on Timber Engineering. Miyazaki: WCTE, 2008: 484.
    [153] Tanahashi H, Suzuki Y. Static and Dynamic Loading Tests of Traditional Wooden Frames [C]// 11th World Conference on Timber Engineering. 11th World Conference on Timber Engineering. Riva del Garda: WCTE, 2010: 508.
    [154] Chiba K, Fujita K. Evaluation of Structural Performance of Existing Traditional Timber Structures in Japan by Microtremor Measurements [C]// 11th World Conference on Timber Engineering. 11th World Conference on Timber Engineering. Riva del Garda: WCTE, 2010: 588.
    [155] Minowa C, Kawai N, Maekawa H, et al. Observation of Wind and Eqrthquake Responses of National Heritage Five Story Wooden Pagoda [C]// 11th WorldConference on Timber Engineering. 11th World Conference on Timber Engineering. Riva del Garda: WCTE, 2010: 590.
    [156] Chang W S, Hsu M F, Mao L. Full-scale Experiment on Traditional Timber Frames of Taiwan [C]// 10th World Conference on Timber Engineering. Miyazaki: WCTE, 2008: 526.
    [157] Chen W J, Chou S H, Hsu M F, et al. Experimental Study on Traditional Mud Shear Wall In-filled in Timber Frames [C]// 10th World Conference on Timber Engineering. Miyazaki: WCTE, 2008: 528.
    [158] Chang W S, Hsu M F. Full-scale Experiment on Reinforced Taiwanese Traditional Timber Frames [C]// 11th World Conference on Timber Engineering. 11th World Conference on Timber Engineering. Riva del Garda: WCTE, 2010: 830.
    [159] Maeno M, Suzuki Y, Saito S. Moment Resistance of Traditional Wooden Structure [C]// 8th World Conference on Timber Engineering. Lahti: WCTE, 2004: 493-498.
    [160] Tsuguomi H. Study on Lateral Strength of Wooden Frame Structure [C]// 8th World Conference on Timber Engineering. Lahti: WCTE, 2004: 231-234.
    [161] Shimizu H, Iwamoto I, Ymada M, et al. Seismic Performance Evaluation of Penetrating Tie Beam with Large Cross-Section by Full-Scale Shaking Tests [C]// 9th World Conference on Timber Engineering. Portland: WCTE, 2006: 293.
    [162] Fujita K. Shaking Table Test and Earthquake Response Monitoring of Traditional Japanese Timber Pagoda [C]// 9th World Conference on Timber Engineering. Portland: WCTE, 2006: 382.
    [163] Shirayama A, Suzuki Y, Sasaki T, et al. Seismic Performance Evaluation of Traditional Wooden Structures Reinforced with Horizontal Member by Static and Dynamic Tests [C]// 9th World Conference on Timber Engineering. Portlan: WCTE, 2006: 1183.
    [164] Fujita K, Chiba K, Kawai N, et al. Earthquake Response Analysis of Traditional Japanese Timber Pagoda [C]// 10th World Conference on Timber Engineering. Miyazaki: WCTE, 2008: 1116.
    [165] Kitamor A, Jung K, Hassel I, et al. Mechanical Analysis of Lateral Loading Behaviour on Japanese Traditional Frame Structure Depending on the VerticalLoad [C]// 11th World Conference on Timber Engineering. 11th World Conference on Timber Engineering. Riva del Garda: WCTE, 2010: 698.
    [166] Kawai N, Isoda H, Nakagawa T, et al. Shake Table Tests on Frames with Hanging Walls Used in Japanese Traditional Wood Houses [C]// 11th World Conference on Timber Engineering. 11th World Conference on Timber Engineering. Riva del Garda: WCTE, 2010: 677.
    [167]张鹏程,赵鸿铁.中国古代建筑抗震[M].北京:地震出版社, 2007.
    [168]潘谷西,何建中.营造法式解读[M].南京:东南大学出版社, 2005.
    [169]傅熹年.傅熹年建筑史论文集[M].北京:文物出版社, 1998.
    [170] Hibbitt, Karlsson & Sorensen, Inc. ABAQUS Version 6.6 Theory Manual [M]. Rhode Island: Pawtucket, 2005.
    [171]潘德华.斗栱[M].南京:东南大学出版社, 2004.
    [172]沈聿之.斜栱演变及普拍枋的作用[J].自然科学史研究, 1995, 14(2): 176-184.
    [173] Marcia P M, Stenven M C, Frederick W S, et al. Nonlinear Material Models for Analysis of Bolted Wood Connections [J], Journal of Structural Engineering, 1997, 123(8): 1063-1070.
    [174] Hill R. A theory of the yielding and plastic flow of anisotropic metals [C]// Proc. R. Soc. Lond. A. London: Mathematical, Physical & Engineering Sciences, 1948: 281-297.
    [175]王震鸣.复合材料力学和复合材料结构力学[M].北京:机械工业出版社, 1991.
    [176] Hoffman O. The Brittle Strength of Orthotropic Materials [J]. Journal of Composite Materials, 1967, 1: 200-206.
    [177] Tsai S W, Wu E M. A General Theory of Strength for Anisotropic Materials [J]. Journal of Composite Materials, 1971, 5: 58-80.
    [178] Hashin Z. Failure Criteria for Unidirectional Fiber Composites [J]. Journal of Applied Mechanics, 1980, 47: 329-334.
    [179] Norris C B. Strength of Orthotropic Materials Subjected to Combined Stress [R]. Madison: Forest Products Lab. FPL, 1995.
    [180] Yamada S E, Sun C T. Analysis of Laminate Strength and Its Distribution [J]. Journal of Composite Materials, 1978, 12: 275-284.
    [181]高洪波,徐世烺,吴智敏,等.双K断裂模型粘聚韧度K Icc实用插值计算方法[J].计算力学学报, 2010, 27(1): 47-52.
    [182]钟红,林皋.高栱坝地震损伤破坏的并行计算研究[J].计算力学学报, 2010, 27(2): 218-224.
    [183]邵长江,钱永久.混凝土的一种标量损伤弹塑性本构模型[J].计算力学学报, 2010, 27(2): 298-302.
    [184] Simo J C, Ju J W. Stress- and Strain-Based Continuum Damage Models, Parts I and II [J]. International Journal of Solids and Structures, 1987, 23(7): 841-869.
    [185] Chen H F, Saleeb A F. Elasticity and Plasticity [M]. Beijing: China Architectural & Building Press, 2004.
    [186] Sandler I, DiMaggio F L, Barron M L. An Extension of the Cap Model Inclusion of Pore Pressure Effects and Kinematic Hardening to Represent an Anisotropic Wet Clay [M]. New York: John Wiley, 1984.
    [187] Van der Put T A C M. Derivation of the Bearing Strength Perpendicular to the Grain of Locally Loaded Timber Blocks [J]. Holz als Roh– und Werkstoff, 2008, 66(6): 409-417.
    [188]尹思慈.木材学[M].北京:中国林业出版社, 1996: 158-183.
    [189]成俊卿.木材学[M].北京:中国林业出版社, 1985: 380-482, 568-769.
    [190]木结构设计手册编辑委员会.木结构设计手册(第三版)[M].北京:中国建筑工业出版社, 2005: 5-34.
    [191] Kretschmann D E, and David W G. Modelling Moisture Content- Mechanical Property Relationships for Clear Southern Pine [J]. Wood and Fiber Science, 1996, 28(3): 320–337.
    [192]曹金凤,石亦平. ABAQUS有限元分析常见问题解答[M].北京:机械工业出版社,2009: 231.
    [193] Jozsef B A J, Benjamin. Mechanics of Wood and Wood Composites [M]. Malabar: Krieger Publishing Company. 1982: 280-334.
    [194]王永维.建筑结构木材强度设计值分级的新系统研究[J].木结构标准通讯, 1981: 003.
    [195]故宫博物院古建部编,王璞子主编.工程做法注释(清雍正十二年武英殿本)[M].北京:中国工业出版社, 1995.
    [196]《古建筑木结构维护与加固规范》编辑组.古建筑木结构用材的树种调查及其主要材性的实测分析[J].四川建筑科学研究, 1994, 01: 11-14.
    [197]李世温,陈正廷.应县木塔的荷载研究[R].太原:太原理工大学, 2000.
    [198]郭勤涛,张令尔,费庆国.结构动力学有限元模型修正的发展—模型确认[J].力学进展, 2006, 36(1): 36-42.
    [199]王小平,曹立明.遗传算法—理论、应用与软件实现[M].西安:西安交通大学出版社, 2002.
    [200]王娴明.建筑结构试验[M].北京:清华大学出版社, 1988.
    [201] Pearson R G. The effect of duration of load on the bending strength of wood [J]. Holzforschung, 1972, 26(4): 153-158.
    [202] Kretschmann D E, David W G. Modelling Moisture Content-Mechanical Property Relationships for Clear Southern Pine [J]. Wood and Fiber Science, 1996, 28(3): 320-337.
    [203]杨小军,孙友富,吴淼,等.裂纹对木梁承压与抗弯强度的影响[J].木材加工机械,2007, 01(06): 11-13.
    [204]王丽宇,鹿振友,申世杰.白桦材12个弹性常数的研究[J].北京林业大学学报,2003, 25(6): 64-67.
    [205] Inayama M. Design of traditional otoshikomi shear wall [M]. Tokyo: Xknoledge, 2003: 274-279.
    [206] McKenzie W M, Karpovic H. Frictional behaviour of wood [J]. Wood Science and Technology, 1968, 02(02): 138-152.
    [207] Murase Y. Friction of wood sliding on various materials [J]. Journal of The Faculty of Agriculture Kyushu University, 1984, 28(4): 147-160.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700