用户名: 密码: 验证码:
MEMS压阻式三维微触觉测头及其在纳米测量机上的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对微小结构和器件对大范围、高精度的坐标测量方法和装置的需求,本论文研究了一种基于压阻检测原理的MEMS三维微触觉式测头,并基于纳米测量机(NMM)构建了相应的几何量测量系统。论文完成了以下主要工作:
     1.设计了一种采用由测杆和悬挂系统组成的压阻式微触觉测头,并基于结构矩阵分析和材料力学原理,创建了测头的力学分析模型。计算了测头的整体刚度、敏感梁的应力分布、测头灵敏度、变形范围和线性范围等参数,建立了测端位移与压阻敏感单元应力变化之间的对应关系;研究了测量过程中测头和样品之间静态力、动态力等受测头结构参数和坐标测量机运动参数的影响机理;同时建立了测头压阻敏感单元的三维检测模型,分析了敏感梁的应力分布状况,确定了压阻单元的敏感方向、类型、压阻数目、网络排布方式和结构尺寸。
     2.建立了测头有限元仿真模型并进行测头结构的优化。模拟计算了测头的应力分布、刚度、机械强度、疲劳极限、共振频率等性能参数,选择合适的测头悬挂系统拓扑结构和测杆结构,并在工艺实现的基础上,创新性地提出了微尺度下的测杆与中心连接体的定位和对准方法和装置,实现了测头各单元之间的精密装配;基于测头力学模型确定结构参数的大概范围,根据测头的梁、中心连接体、测杆等结构参数对性能影响程度,选择了测头各单元最优化的结构形式和参数;基于理论分析的结论,与优化参数的仿真数据进行了的比对和验证。
     3.研究了微触觉测头的工艺加工技术。设计了测头悬挂系统的MEMS版图,研究了加工过程中有关压阻、凸角补偿等关键工艺,制定工艺流程,并与北大微电子所合作加工了测头悬挂系统;基于超精密加工技术,实现了测杆及其顶端触觉小球的制造,并根据NMM对测头工作空间的要求,研究测头的封装方式和固定方法,实现和外围处理电路的电连接。
     4.开展了微触觉测头的性能测试。首次创建了基于NMM的微触觉测头的性能测试系统,研究了压阻检测电桥输出微弱电信号的滤波、放大等方法,设计了压阻信号采集调理电路中及相应的软件功能模块;开展了对测头的线性、灵敏度、迟滞、和耦合特性的测试;利用精密压电陶瓷驱动器,构建测头低频振动测试平台,考察和测量了测头对低频信号的响应情况,分析了测头性能的稳定性。
     5.结合NMM平台,实现对被测结构的三维高精度几何量测量。通过给NMM引入微测头输出的反馈信号,实现NMM的运动控制功能;利用NMM的计量学功能,实现了对被测物的高精度几何量测量,通过对被测物的线扫描分析和表面形貌扫描,研究了测头的扫描测量的性能;最后,分析了测量过程中测头自重、磁性、振动等因素对测量过程造成的误差影响。
In measurement field of micro structure and device’s 3D dimension, position, and topography, the coordinate measurement method and instrument with large range and high precision play important roles. As the probe of Nanomeasuring machine (NMM), a MEMS 3D micro tactile probe based on piezo-resistance effect is developed. Based on the NMM, probe performance test and measuring system is constructed. The follow is the main contents of this paper:
     1. Based on structure matrix analysis and material mechanical theory, a mechanical module of probe is presented. The stress distribution of beam, stiffness, sensitivity, and linearity of probe are calculated. Relationship between displacement of probe tip and stress distribution of piezo-resistors is set up. Influence mechanism of the static force and dynamic force between probe and sample during the measurement, induced by probe structure parameters and coordinate measurement machine parameters is studied. Meanwhile, 3D analytical module of piezo resistors is presented. Stress distribution of beam is analyzed. The direction, type, number, arrangement and dimension of piezo resistors are designed.
     2. Through the ANSYS Finite Element Method, the stress distribution, stiffness, and resonance of probe are simulated. The suspending topological structure and stylus are designed. For the consideration for MEMS technics implement, methods and equipments about position and alignment between stylus and intermediate are presented, and precision assembly with self-alignment and self-position is achieved. Compared with the probe performance of standard parameters, according to the influence degree of structure parameters of beam, intermediate body, and stylus, optimum structure and parameters are chosen. Simulated data of optimum structure are compared and validated with the conclusion of theoretical anlysis.
     3. The MEMS layout of suspending structure is designed. Key technics, such as piezoresistors, convex compensation of KOH are studied. Cooperated with Department of Microelectronics of Beijing University, the suspending structure is fabricated. Using the high precision fabrication technique, the tip and stylus are machined. According to requirement of workspace of NMM,package and fix house of probe are designed to connect to signal conditioning circuit.
     4. Combined with NMM positioning platform, the performance test system of micro tactile probe is constructed. The filter and amplification theory and method of output weak signal by Wheatstone bridge of piezoresistors are studied. Signal conditioning circuit and corresponding functional modules are designed. The linearity, sensitivity, resolution, cross-talk and hysteresis are tested and analyzed. A low frequency vibration test system of probe using the precision PZT is constructed. The response to low frequency vibration signal is observed, and stability of performance is analyzed.
     5. Through feedbacking output signal of probe into NMM, movement control of NMM is achieved. Using the metrological function of NMM, dimension measurement with high precision is realized. By analysis of line scan and topographical scan, the scanning performance is studied. Finally, the errors induced by gravity of stylus, magnetic force, shift of stylus and vibration of environment are discussed.
引文
[1] H N Hansen, K Carneriro, H Haitjema, et al. Dimensional micro and nano metrology. Annals of the CIRP. 2006, 55: 1-23.
    [2] 李智,王向军. MEMS 中几何量的测试方法. 微细加工技术. 2003, 51-56.
    [3] 马金鑫,朱国凯. 扫描电子显微镜入门. 1985. 北京, 科学出版社.
    [4] 顾晓渝,线宽测量仪的实验研究. 1997. 清华大学硕士论文.
    [5] 白立芬,李庆祥,薛实福等. 微细台阶测量技术的发展现状. 电子工业专用设备. 2007, 30(2): 1-6.
    [6] Thickness Measurement of micromachined silicon wafers using machine vision. 2002, http://www.vatechnologies.com/omms.htm.
    [7] Sylviebosch Charpenay, Jiazhang XU, John Haigis. Real-time etch-depth measurements of MEMS devices. Microelectromechanical Systems. 2002, 11(2): 111-117.
    [8] 郭彤. 基于显微干涉技术的微机电系统动态测试方法和系统的研究. 2004, 天津大学博士论文.
    [9] Whitelight confocal microscope. 2002. http://www.nanofocus-inc.com/pdfs/nanosurf_datasheet.pdf.
    [10] 李艳军,左洪福,吴振锋等. 显微观测技术的新进展和应用. 光学仪器. 2002, 24(2): 32-37.
    [11] 谢峰,李建林,谢铁邦. 光针式轮廓仪的研制. 现代计量测试. 1999, (2): 10-15.
    [12] 王向军,王峰. 显微精密成像与微型机械尺寸检测技术. 光学精密工程. 2001, 9(2): 511-513.
    [13] 白春礼. 扫描力显微术. 2000, 北京, 科学出版社.
    [14] Hans-Ulrich Danzebrink, Luger Koenders, Gunter Wilkening, ect. Advances in scanning force microscop for dimensional metrology. Annals of the CIRP. 2006, 55(2): 1-38.
    [15] Comtet G, Dujardin G, Hellner L, Lastapis M, Martin M, Mayne AJ, Riedel D. Atomic-scale STM experiments on semiconductor surfaces: towards molecular nanomachines. Philosophical Transactions of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences 2004, 362 (1819):1217-1226.
    [16] Chao-Jung Chen, Tsai-Fu Wu, Hsiang-Han Hsu, et al. Design and construction of long range traceable scanning probe microscope. 2005, IWK 2005 proceeding
    [17] 李晓东,李晓玲. 影响轮廓仪测量精度因素的分析. 理化实验-物理分册. 2005, 41(3): 134-136.
    [18] 吕会娣,郎岩梅. 触针式轮廓仪的测针形状及其检定. 工具技术. 2003, 37(7): 70-71.
    [19] E Morrison. The development of a prototype high-speed stylus profilometer and its application to rapid 3D surface measurement. Nanotechnology. 1996, 7: 37-42.
    [20] 周肇飞,张涛,周卫东等. 在线检测超精细表面微观形貌的激光轮廓仪. 28. 2001, (2): 7-10.
    [21] 朱蔚,井文才,张红霞等. 微表面轮廓仪中三维扫描系统的实现. 机械与电子. 2005, 4: 47-49.
    [22] 张国雄. 三坐标测量机. 1999, 天津, 天津大学出版社.
    [23] 王伯雄,陈非凡,董英. 微纳米测量技术. 2006, 北京, 清华大学出版社.
    [24] 戴立铭;江潼君. 激光三角测量传感器的精密位移测量. 仪器仪表学报. 1994, 15(4): 400-404.
    [25] 李晓莹,马炳和. 基于光切法的微结构三维尺寸测量. 1998, 34(5): 38-40.
    [26] 郝煜栋,赵洋. 光学投影式三维轮廓测量技术总署. 光学技术. 1998, (5): 57-60.
    [27] E J C Bos, F L M Delbressine, H Haitjema. High-accuracy CMM Metrology for micro systems. 2004, http://yp.wtb.tue.nl/showabstract.php/4906.
    [28] A Weckenmanm, G Peggs, J Hoffmann. Probing systems for dimensional micro- and nano-metrology. Meas.Sci.Technol. 2006, 17: 504-509.
    [29] Mike Holmesa. The long-range scanning stage: a novel platform for scanned-probe microscopy. Precision Engineering. 2000, 24: 191-209.
    [30] GUO Tong, FU Xing, CHEN Jingping, et al. Realization of a Large Range Metrological AFM using NMM. ACTA METROLOGICA SINICA. 2005, 26(1): 1-4.
    [31] Gaoliang Dai. Metrological large range scanning probe microscope. REVIEW OF SCIENTIFIC INSTRUMENTS. 2004, 75(4): 962-969.
    [32] Proksch R, Bocek D, Cleveland J, Mehr T. Sensor-based nanopositioning for atomic force microscopes. Biophotonics International. 2004, 11(5): 48-49.
    [33] Yakimov V N. A piezomotor-based versatile positioner for SPM. Meas Sci Technol. 1997, 8: 338-339.
    [34] A Weckenmann, J Hoffmann. Micro and nano coordinate measuring technique. 2005, IWK 2005 proceeding.
    [35] Gaoliang Dai FP. Micro and nano dimensional metrology on the basis of nano measuring machine. 2005, IWK2005 proceeding.
    [36] J Kramar JJWP. THE MOLECULAR MEASURING MACHINE. Proceedings of the 1998 International Conference on Mechatronic Technology. 1998, 477-487.
    [37] Molecular Measuring Machine Research and Development. 2005. http://www.mel.nist.gov/div821/webdocs-14/m3.pdf
    [38] D A Swyt. Length and dimensional measurements at NIST. Journal of research of the NIST. 2001, 106(1): 1-23.
    [39] E C Teague. The national institute of standards and technology molecular measuring project:Metrology and precision engineering design. J.Vac.Sci.Technol.B. 1989, 7(6): 1898-1902.
    [40] Leach R, Haycocks J, Jackson K, Lewis A, Oldfield S, Yacoot A. Advances in traceable nanometrology at the National Physical Laboratory. Nanotechnology 2001 March;12(1):R1-R6.
    [41] Hocken R J, Wang Chun-hai. Progress on the sub-atomic measuring machine. Nanotechnology and Precision Engineering. 2003, 1(1): 1-6.
    [42] Kiyoshi Takamasu SOTAASRFSO. Basic Concepes of Nano-CMM. The Japan - China Bilateral Symposium on Advanced Manufacturing Engineering. 1996, 155-158.
    [43] ISARA Ultra Precision CMM. 2007, http://www.ibspe.com/ibs_precision_engineering_uk/pdfs/Isara.pdf.
    [44] J K V Seggelen, P C J N Rosielle, P H J Schellekens, et.al. Design of a 3D-Coordinate Measuring Machine for measuring small products in array. 2006. http://www.mate.tue.nl/mate/pdfs/3082.pdf
    [45] F25 CMM: Measuring Nanometers.http://www.zeiss.com/4125682000247242/Contents-Frame/6c11c0c44b95e20986257154006be6db?opendocument.
    [46] UMAP Vision System. 2007, http://www.mitutoyo.com.sg/documents/manuals/individual/11-4_UMAP.pdf.
    [47] LIU Dejun, Huang Qingcheng, Che Rensheng, et.al. A measuring model study of a new coordinate-measuring machine based on the parallel kinematic mechanism. Meas.Sci.Technol. 1999, 10: 1020-1024.
    [48] 范光照,朱志良,钟添东. 小型微、纳米级三坐标测量机的研制. 纳米技术与精密工程. 2003, 1(1): 17-23.
    [49] K C Fan, C Y Lin, L H Shyu. The development of a low-cost focusing probe for profile measurement. Meas Sci Technol. 2000, 11(1): 1-7.
    [50] H N Hansen, K Carneriro, H Haitjema, L De Chiffre. Dimensional micro and nano metrology. Annals of the CIRP. 2006, 55: 1-23.
    [51] K Enami, M Hiraki, K TaKamasu. Nano-probe using optical sensing. 2000, IMEKO-XVI World congress.
    [52] Yasuhiro Takaya HSSTTM. Fundamental study on the new probe technique for the nano-CMM based on the laser trapping and Mirau interferometer. Measurement. 1999, 9-18.
    [53] S.Butefisch, S.Buttgenbach, T K-B, U.Brand. Micromechanical three-axial tactile force sensor for micromaterial characterisation. Microsystem Technologies. 2001, 7: 171-174.
    [54] S.Cao, W.Haessler-Grohne, U.Brand, et.al. A three dimensional measurement system with micro tactile sensor. Proc.SPIE. 2002, 4902: 52-59.
    [55] W. Pril. Development of High Precision Mechanical Probes for Coordinate Measuring Machines. Doctor dissertation of Eindhoven University. 2002.
    [56] H.Haitjema, W. Pril, P.H.J.Schellekens. A Silicon-Etched Probe for 3-D CoordinateMeasurements With an Uncertainty Below 0.1 m. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT. 2001, 50: 1519-1523.
    [57] H Haitjema, W O Pril, P H J Schellekens. Development of a silicon-based nanoprobe system for 3-D measurements. 2006.
    [58] H Haitjema, P H J Schellekens, S F C L Wetzels. Calibration of displacement sensors up to 300 μm with nanometre accuracy and direct traceability to a primary standard of length. Metrologia. 2000, 37: 25-33.
    [59] F.Meli, .Fracheboud, S.Bottinelli, .Bieri. High precision, low force 3D touch probe for measurements on small objects. euspen Int.Topical Conference, Aachen, Germany. 2003.
    [60] N Yazid, A Salian, K Najafi. A High Sensitivity Capacitive Microaccelerometer With A Folded-Electrode Structure. IEEE 12th Int Conf on Micro Electro Mechanical Systems. 1999, 600-605.
    [61] Analog Devices. ADXL05-monolithic accelerometer with signal conditioning. data sheet. 1995.
    [62] ZhiXiong Xiao, Guoying Wu, Dacheng Zhang, et al. Lateral Capacity Sensed Accelerometer Fabricated with the Anodic bonding and the High Aspect Ratio Etching. IEEE The 10th International Conference on Solid- State Sensors and Actuators (Transducers'99). 1999, 921-924.
    [63] G Zhang, H Xie, L E Rosset, et al. A Lateral Capacitive CMOS Accelerometer With Structural Curl Compensation. Proceedings of The 12th IEEE International Conference on Micro Electro Mechanical Systems (MEMS '99). 1999, 606-611.
    [64] Pau-Ling Chen RSMeal. Integrated silicon microbeam PI-FET accelerometer. IEEE Transactions on Electron Devices. 1982, 27-33.
    [65] P.G.Hartwell ea. Single Mask Lateral Tunneling Accelerometer. Proceedings of the 1998 IEEE 11th Annual International Workshop on Micro Electro Mechanical Systems. 1998, 340-344.
    [66] A M Leung JJEC, et al. Micromachined Accelerometer Based On Convection Heat Transfer. Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS). 1998, 627-630.
    [67] 陈明. 声表面波传感器. 1997. 西安, 西北工业大学出版社.
    [68] P L Meunier PH. Cantilever-Beamed SAW Accelerometers. 1982 Ultrasonics Symposium. 1982, 299-302.
    [69] R P van Kampen, R F Wolffenbuttel. Modelling the mechanical behavior of bulk-micromachined silicon accelerometers. Sensors and Actuators A. 1998, 64: 137-150.
    [70] V.Nesterov, U.Brand. Modelling and investigation of the silicon twin design 3D micro probe. J.Micromesh.Microeng. 2005, 15: 514-520.
    [71] J S Przemieniecki. Theory of matrix structural analysis. 1968. New York, McGraw-Hill.
    [72] 李源,栗大超,胡小唐等. 横向负载下的三维 MEMS 微接触传感器力学模型. 纳米技术精密工程. 2007, 5(1): 6-10
    [73] 许本安, 李. 材料力学. 1988. 上海, 上海交通大学出版社.
    [74] J S Przemieniecki. Theory of matrix structural analysis. 1968. New York, McGraw-Hill.
    [75] Min-Hang Bao. Micro mechanical transducers-pressure sensors, accelerometers and gyroscopes. 2000. Oxford, Elsevier.
    [76] S P Timoshenko. Theory of plate and shells. New Yorks, McGraw-Hill.
    [77] Istvan Szabo. Hother Technische mechanic. 1977. Berlin, Springer-Verlag.
    [78] 唐露新. 传感与检测技术. 2006. 北京, 科学出版社.
    [79] 王强. 高 g 值微硅加速度计的研制. 东南大学硕士论文. 2001.
    [80] Min-Hang Bao. Analysis and design principle of MEMS devices. Elsevier. 2005.
    [81] D.V.Dao, T.Toriyama, J.Wells. Micro Force-Moment sensor with six-degree of freedom. INTERNATIONAL SYMPOSIUM ONMICROMECHATRONICS AND HUMAN SCIENCE, IEEE. 2001, 93-98.
    [82] Kanda Y. A graphical representation of the piezoresisance coefficients in silicon. IEEE Trans.Electron Devices. 1982, 29: 64-70.
    [83] D.V.Dao, T Toriyama, J Wells, et.al. Silicon piezoresistive six-degree of freedom force-moment micro sensor. 2005.
    [84] 李晶晶,岳瑞峰,刘理天. 压阻式压力传感器零点输出研究. 传感器技术. 2002, 21(7): 9-11.
    [85] Antonino S.Fiorillo. A Piezoresistive Tactile Sensor. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT. 1997, 46: 15-17.
    [86] R.Amarasinghe, D.V.Dao, T.Toriyama. Design & Fabrication of Piezoresistive Six Degree of Freedom Accelerometer for Biomechanical Applications. Proc. 2004.
    [87] W.L.Jin, C.D.Mote. Development of a Six-Component Miniature Force Sensor Using Silicon Micromachining and Conventional Machining Technologies. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT. 1998, 47(3): 715-719.
    [88] 牛德芳,闫卫平,马灵芝. 多晶硅压力传感器的设计. 仪表技术与传感器. 2005, 6: 13-17.
    [89] 孙以材, 刘玉岭. 压力传感器的设计、制造与应用. 2000. 北京, 冶金工业出版社.
    [90] Byunghoon Bae, Bruce R Flachsbart, Kyihwan Park. Design optimization of a piezoresistive pressure sensor considering the output signal-to-noise ratio. J.Micromesh.Microeng. 2004, 14:1597-1607.
    [91] W L Jin, C.D.Mote. A novel silicon sensing element for high-ntural-frequency,low-range dynamometrical sensors. Sensors and Actuators A. 1998, 64: 165-171.
    [92] 周南生,居水荣,宫俊等. 硅压力传感器的灵敏度和非线性分析. 传感技术学报. 1994, 4: 48-51.
    [93] Gab-Soon Kim, Dae-Im Kang, Se-Hun Rhee. Design and fabrication of a six-component forcer/moment sensor. Sensors and Actuators A. 1999, 77: 209-220.
    [94] J A Plaza, H Chen, J Esteve, et.al. New bulk accelerometer for triaxial detection. Sensors and Actuators A. 1998, 66: 105-108.
    [95] Kijin Kwon, Sekwang Park. A bulk-micromachined three-axis accelerometer using silicon direct bonding technology and polysilicon layer. Sensors and Actuators A. 1998, 66: 250-255.
    [96] S.Butefisch, R.Wilke, S.Buttgenbach. Silicon three-axial tactile probe for the mechanical characterization of microgrippers. Proc.SPIE. 2001, 4568: 61-67.
    [97] Tao Mei, Wen J.Li, Yu Ge, Yong Chen. An integrated MEMS three-dimensional tactile sensor with large force range. Sensors and Actuators A. 2000, 80: 155-162.
    [98] B.Folkmer, P.Steiner, W.Lang. A pressure sensor based on a nitride membrane using single-crystalline piezoresistors. Sensors and Actuators A. 1996, 54: 488-492.
    [99] Zs.Vizvary, P.Furjes, M.Adam, et. al. Mechanical modelling of an intrgrabel 3D force sensor by silicon micromachining. 2005.
    [100] Lin Wang, Dacid J Beebe. A silicon-based shear force sensor, development and characterization. Sensors and Actuators A. 2000, 84: 33-44.
    [101] L.Beccai, S.Roccella, A.Arena, et al. Design and fabrication of a hybrid silicon three-axial force sensor for biomechanical applications. Sensors and Actuators A. 2005, 120: 370-382.
    [102] G N Peggs, AJ Lewis, S oldfield. Design for a compact high-accuracy CMM. Annals of the CIRP. 2007, 47(1): 447-450.
    [103] 李刚. 硅微机械三维加速度计研究. 北京大学硕士论文. 2000.
    [104] Product catalog. Saphirewerk Industrieprodukte AG. 2007.
    [105] Zhang Jinghua, Shi Gengchen. Study of piezoresistive micro electro-mechanical accelerometer design platform. Journal of Beijing Institute of Technology. 2005, 14(3): 289-292.
    [106] L Steffensen, O Than, S Buttenbach. A modular environment for the desin of micromachined silicon devices. IEEE Transducers. 1997, 1023-1026.
    [107] 李源,栗大超,胡小唐等. 应用于纳米测量机的 MEMS 微接触式测头的结构设计和优化. 传感技术学报. 2006, 19(5): 1512-1515.
    [108] 鲍敏杭. 微机械加工技术发展概况(二). 仪器技术与传感器. 1998, (6): 1-2.
    [109] 黄庆安. 硅微机械加工技术. 1996. 北京, 科学出版社.
    [110] 鲍敏杭. 微机械加工技术发展状况(一). 仪表技术与传感器. 1998, (5): 1-3.
    [111] Gregory T A Kovacs NIMeal. Bulk Micromaching of Silicon. 86. 1998, (8): 1536-1550.
    [112] 孙以材. 压力传感器芯片版图设计中若干重要问题(二). 半导体杂志. 1999, 24(2): 22-33.
    [113] 孙以材. 压力传感器芯片版图设计中若干重要问题(一). 半导体杂志. 1999, 24(1): 25-37.
    [114] T.Toriyama, S.Sugiyama. Analysis of Piezoresistance in p-Type Silicon for Mechanical Sensors. Journal of Microelectromechanical system. 2002, 11(5): 598-604.
    [115] 石进杰. 基于MEMS技术的压阻式大过载惯性器件的研究. 2005. 北京大学硕士论文.
    [116] R.C.Jeager, J.C.Suhling, R.Ramani. Errors Associated With the Design, Calibration andApplication of Piezoresistive Stress Sensors in (100) Silicon. IEEE TRANSACTIONS ON COMPONENTS, PACKAGING, AND MANUFACTURING TECHNOLOGY-PART B: ADVANCED PACKAGING. 1994, 17(1): 97-107.
    [117] Umech technologies. MMA (MEMS Motion Analyzer) Handbook. 2003.
    [118] Gregory T A Kovacs. Bulk micromachinin for microelectromechanical system. Proceedings of the IEEE. 1998, 86(8): 1536-1551.
    [119] 崔铮. 微纳米加工技术及其应用. 2005. 北京, 高等教育出版社.
    [120] B Puers, W Samsem. Compensation structure for convex corner micromachining in silicon. Sensor & Actuator A. 1990, A21-A23: 1036-1041.
    [121] M Bao, Chr Burrer, J Esteve, et al. Etching from control of <100> strips for corner compensation. Sensor & Actuator A. 1993, A37-A38: 727-732.
    [122] P Enoksson. New structure for corner compensationin anisotropic KOH etching. J.Micromech.Microeng. 1997, 7: 141-144.
    [123] M K long, J W Burdick, E K Antonsson. Design of compensation structures for anisotropic etching. Processing 2nd of the international conference on modeling and simulation of microsystems. 1999, 124-127.
    [124] Oliver Powell, H Barry Harrrison. Anisotropic etching of {100} and {110} planes in (100) silicon. J.Micromech.Microeng. 2001, 11: 217-220.
    [125] Wei Fan, Dacheng Zhang. A simple approach to convex corner compensation in anisotropic KOH etching on a (100)silicon wafer. J.Micromesh.Microeng. 2006, 16: 1951-1957.
    [126] SONG Xu, LIU Sheng. A performance prediction model for a piezoresistive transducer pressure sensor. Nanotechnology and Precision Engineering. 2004, 2(2): 106-111.
    [127] W.L.Jin, C.D.Mote. A six-component silicon micro force sensor. Sensors and Actuators A. 1998, 65: 109-115.
    [128] 赵大博,栗大超,李源等. 三维微触觉传感器的校准系统和方法. 传感技术学报. 2006, 19(5): 1516-1519.
    [129] Jager G, Grunwald R, Manske E, Hausotte T. A Nanoposition and Nanomeasuring Machine: Operation-Measured Results. Nanotechnology and Precision Engineering. 2004, 2(2): 81-84.
    [130] Jager G, Schott W manske E, etc. Nanomeasruing technology-nanomeasuring machine. ASPE 2001 Annual Meeting. 2001, 1-10.
    [131] 沙占友. 智能传感器系统设计和应用. 2004. 北京, 电子工业出版社.
    [132] 刘俊,张斌珍. 微弱信号检测技术. 2005. 北京, 电子工业出版社.
    [133] 张国雄. 测控电路. 2000. 北京, 机械工业出版社.
    [134] Nanoposition and nanomeasruing maching. User manual. 2006. SIOS GmbH.
    [135] 李源,栗大超,胡小唐等. 用于微几何量测量的 MEMS 三维微触觉传感器的性能测试. 计量学报. (2007 年 9 月发表)
    [136] E Manske, T Hausotte, R Mastylo, et al. New applications of the nanopositioning and nanomeasuring machine by using adcanced tactile and non-tactile probes. Meas Sci Technol. 2007, 18: 520-527.
    [137] I Schmidt, T Hausotte, U Gerhardt, et al. investigation and caculations into decreasing the uncertainty of a nanopositioning and nanomeasuring machine(NPM-Machine). Meas Sci Technol. 2007, 18: 482-486.
    [138] S Buttenbach, S Butefisch, M Schmidt, et.al. Micro mechanical three-axial tactile sensor and application to the characterization of micro components. 2002. Ludwigsburg, Proc.Sensor Conf.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700