用户名: 密码: 验证码:
二元Pb合金结构和性质的分子动力学模拟及真空蒸馏实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子动力学能够准确模拟体系的宏观性质,同时又能存储大量的微观信息,已成为研究液态合金性质的重要方法。合金熔体的微观结构、高温下合金的热力学性质和熔体内部的传输性质均对固态合金的结构和性质产生重要影响,并且决定了冶金中合金的分离、提纯等动力学过程,因此对液态合金的结构、热力学和动力学性质的模拟已成为目前分子动力学研究的热点问题。本文针对在分子动力学领域模拟较少的四种Pb-Cu、Pb-Au、Pb-Ag、Pb-Mg二元合金,模拟高温下合金的熔体结构、熔体内部的团簇情况、合金的热力学性质和扩散性质;模拟四种金属单质Pb、Ag、Cu、Au的扩散性质;同时针对Pb-Cu、Pb-Au、Pb-Ag合金,进行真空蒸馏的实验研究,其目的在于考察合金的熔体结构和扩散性质对合金真空蒸馏产生的影响。本文的主要工作包括以下几点:
     首先模拟不同成分下Pb-Cu、Pb-Au、Pb-Ag和Pb-Mg合金的熔化过程,计算不同温度下合金的对相关函数、配位数、相关半径及熔体团簇的原子个数。采用熔体结构参数分析熔体内部不同原子间相互作用的大小,并进行比较;分析合金的配位数和偏配位数随温度和成分的变化规律,并使用配位数分析合金内部同种和异种原子间的成键情况;采用合金的相关半径分析合金内部的团簇情况及无序区与合金成分的关系,采用对相关函数第一峰高度分析合金内部团簇的晶化程度与Pb含量的关系。
     计算不同温度下Pb-Cu、Pb-Ag、Pb-Au合金的焓值、结合能和形成能等能量函数,得到的计算值与实验值较为符合,丰富了二元Pb合金的热力学数据库。在相同温度和Pb含量时,比较Pb-Cu,Pb-Au和Pb-Ag三种合金的形成能,可以看出Pb-Ag和Pb-Cu合金为正偏差体系,Pb-Au合金为负偏差体系;在相同温度下Pb-Cu的形成能大于Pb-Ag的形成能,说明Pb-Cu合金的偏离程度大于Pb-Ag的偏离程度;随着温度的升高,合金形成能的绝对值不断降低趋近于0,合金与理想熔体间的偏离程度不断降低,趋近于理想熔体。
     然后计算Cu, Ag, Au, Pb四种液态金属扩散性质,并与已有的实验值和其他研究者的计算结果进行比较,通过比较可以发现:本文得到的Ag, Au, Cu, Pb金属单质的自扩散系数在熔点附近的计算值与实验值的误差最大不超过1.9%。计算四种金属单质的自扩散激活能和指前因子,可以看出计算得到的金属自扩散激活与指前因子与实验值符合较好,从而验证了GEAM势对高温下液态金属单质自扩散系数计算的准确性。
     采用分子动力学方法结合NRTL方程提出了一种计算合金互扩散系数的新方法,使得采用分子动力学方法模拟二元合金的扩散性质成为可能。该方法首先模拟得到合金中各组分的自扩散系数,然后使用NRTL方程计算合金的热力学因子,进而结合Darken公式得到合金在目标温度下的互扩散系数。本文使用该方法计算Pb-Cu、Pb-Mg、Pb-Au、Pb-Ag合金在目标温度下的互扩散系数。可以看出计算结果与已有的实验值符合较好,互扩散系数的变化趋势与实验值一致,同时从微观熔体结构角度分析了影响合金扩散系数的因素。通过分析可以看出合金中原子的成键情况、原子的团簇情况和晶化程度共同影响合金的扩散系数。计算了合金中两组份的相关性,可以看出,合金中两组份的相关性是由合金中异种原子的成键数目决定的,异种原子的成键数越多合金两组份的相关性越强。
     最后采用真空蒸馏的方法对Pb-Cu、Pb-Ag和Pb-Au二元合金进行实验研究,结果表明真空蒸馏可以较好的分离三种合金,并从熔体结构和合金的扩散性质两方面对合金真空蒸馏的实验现象进行了解释。
     计算了三种二元Pb-Ag、Pb-Au和Pb-Cu合金在真空蒸馏过程中Pb的挥发速率和Pb在熔体内部的扩散通量,通过比较可以看出,当残留物中Pb的浓度差为1%-5%时,合金中Pb的扩散通量与Pb的挥发速率极为接近,合金熔体内部的扩散速率决定了Pb的挥发速率;当Pb的浓度差在5%-10%时,合金中Pb的扩散通量小于Pb的挥发速率,但两者差值不大,表明此时Pb的挥发受温度和扩散性质共同影响,其中扩散系数的影响较大;当残留物中Pb的浓度差大于10%时,Pb的扩散通量远小于Pb的挥发速率,表明此时Pb的挥发速率受温度的控制。
Molecular dynamics has become one of the key methods in researching the structure of the melt because it can simulate the macroscopic properties and can collective lots of microcosmic information. Microstructure, thermodynamic and transmission properties of the alloy at high temperature are all important parameters for the structure and properties of solid state alloy, and also effect the separation and purification progress of the alloy and become the focus of the present molecular dynamics reserch. Microstructures, clusters, thermodynamic properties, and diffusion properties of Pb-Cu, Pb-Au, Pb-Ag and Pb-Mg alloy were simulated at this research. And also did systemic vacuum distillation experiments for Pb-Cu, Pb-Ag and Pb-Au binary alloy to explore the effcte of Microstructures and diffusion properties on vacuum distillation of binary alloy. The central work and conclusion of this paper includes:
     Firstly, we simulate the melting process for Pb-Cu, Pb-Ag, Pb-Au and Pb-Mg binary alloy. The pair correlation function, correlation radius, coordination number and atomic number of the cluster were calculated. With the parameter of the pair correlation function, atmic interaction was analyzed. The vatiations of the coordination number with content of Pb are discussed, and compared the bond of homologous and heterologous atom by coordination number. With the correlation radius the cluster and the vatiations of the disorderd region in binary alloy with content of Pb are discussed. The height of the first peak in the partial pair correlation function was used to analyze the content of Pb dependence of crystallization of Cu cluster.
     Enthalpy of formation, cohesive energy and formation energy at different temperature were calculated and agreed well with the experimental value. Formation energy of Pb-Cu, Pb-Au and Pb-Ag alloy at the same temperature and the same lead content was compared, formation energy of Pb-Ag and Pb-Cu alloy are positive so the alloy belong to positive deviation system, the Pb-Au alloy belong to negative deviation system. With the temperature increased, the deviation degree decreased and the alloy approaches to ideal melt. Formation energy of Pb-Cu alloy is higher than that of Pb-Ag alloy at the temperature, namely the deviation degree of Pb-Cu alloy is higher than that of Pb-Ag alloy.
     Diffusion properties of liquid pure Cu, Ag, Au and Pb were calculated and compared with the experimental ones, calculation errors of four pure metals are less than 1.9% near the melting point. Activation energy and pre-factor of self diffusion were calculated and agree well with the experimental values, high calculation precision of self diffusion coefficient appears in this paper.
     A new method to calculate the mutual diffusion coefficient was proposed based on molecular dynamics and NRTL thermodynamic equation. At first, self diffusion coefficient was calculated with molecular dynamics, then thermodynamic factor was calculated with NRTL equation, mutual diffusion coefficient was obtained with Darken equation. Mutual diffusion coefficients of Pb-Cu, Pb-Mg, Pb-Au and Pb-Ag alloy at different temperature were obtained in this paper and the calculated value agrees well with the experimental one. Influencing factors to diffusion coefficient was analyzed with crystallization, cluster and the bond of atom influence the self and mutual diffusion coefficients. The relevance of the two component was calculated, we can obtian form the result that the relevance of the two component are determined by the number of heterologous atom bond, the more numbers of heterologous atom bond the stronger relevance we have.
     Vacuum distillation experiments were carried out with Pb-Cu、Pb-Ag and Pb-Au binary alloy, from the result we can see Pb-Cu、Pb-Ag and Pb-Au binary alloy can separate well with vacuum distillation method, some special experiment phenomena were observed, and analysed with microstructure of melt and diffusion coefficients.
     The mass flux and evaporation velocity of Pb in binary alloy were calculated and compared, when the concentration difference of Pb in residuum is 1%-5%, the mass flux and evaporation velocity is similar, the evaporation velocity of Pb in binary alloy was controlled by the mass flux. When the concentration difference of Pb is 5%-10%, the mass flux is less than the evaporation velocity of Pb, but the differences between them are not so significant, so the evaporation velocity of Pb in binary alloy was controlled by the mass flux and the temperature, and the effect of the mass flux makes a big difference compared with that of the temperature. When the concentration difference of Pb is more than 10%, the mass flux is much less than the evaporation velocity of Pb, which means the evaporation velocity of Pb in binary alloy was controlled by the temperature.
引文
[1]D.罗伯编著,项金钟and吴兴惠译,计算材料学.2002,北京:化学工业出版社.
    [2]物理学评述委员会,90年代物理学凝聚态物理学.1994,北京:科学出版社.
    [3]Alder B J. and Wainwright T.E., Phase transition for a hard sphere system. The Journal of Chemical Physics,1957.27:1208-1209.
    [4]Rahman A., Correlations in the motion of atoms in liquid argon. Phys. Rev B,1964.136(2A): 405-411.
    [5]Verle L., Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Physical Review,1967.159(1):98-103.
    [6]Alder B.J. and Wainwright T.E., Decay of the Velocity Autocorrelation Function.Physical Review A, 1970.1(1):18-21.
    [7]Andersen H.C., Molecular dynamics simulations at constant pressure and/or temperature. The Journal of Chemical Physics,1980.72:2384.
    [8]Parrinello M. and Rahman A., Crystal Structure and Pair Potentials:A Molecular-Dynamics Study. Physical Review Letters,1980.45(14):1196-1198.
    [9]Rahman A. and Stillinger F.H., Molecular dynamics study of liquid water. The Journal of Chemical Physics,1971.55(7):3336.
    [10]Nose S., A molecular dynamics method for simulations in the canonical ensemble. Molecular Physics,1984.52(2):255-268.
    [11]Nose S., A unified formulation of the constant temperature molecular dynamics methods. J.Chem.Phys.,1984.81:511-519.
    [12]Lee B.J., Lee T.H. and Kim S.J., A modified embedded-atom method interatomic potential for the Fe-N system:A comparative study with the Fe-C system. Acta Materialia,2006.54(17):4597-4607.
    [13]Amirouche L. and Erkoc S., Correlations between the energetics of ZnCd nanoparticles and some of their corresponding bulk properties:molecular-dynamics simulations. Journal of Crystal Growth, 2005.275:361-367.
    [14]Cleri F. and Rosato V., Tight-binding potentials for transition metals and alloys. Physical Review B, 1993.48(1):22-33.
    [15]Hachiya K., Molecular dynamics simulations of the self-diffusion phenomena in Ni2Y intermetallic phase. Journal of Alloys and Compounds,1998.279:171-178.
    [16]Verlet L., Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Physical Review,1967.159(1):98-103.
    [17]Honeycutt R.W., The potential calculation and some applications. Methods in Computational Physics,1970.9:136-211.
    [18]Gear C.W., Numerical Initial Value Problems in Ordinary Differential Equation, ed. E. Cliffs.1971, Englewood Cliffs:NJ:Prentice-Hall.
    [19]Hoffmann K.H. and Schreiber M., Computational physics.1996, Berlin Heidelberg:Springer-Verlag.
    [20]魏明志,Zr纳米晶体热稳定性与相变的分子动力学模拟,2006,湖南大学:长沙.
    [21]Berendsen.H.J.C., Postma J.P.M, and Gunsteern W.F.V., Molecular dynamis with coupling to an external bath. Journal of Chemical Physics,1984.81:3684.
    [22]孙世金,方钴矿热电材料基本力学性能的分子动力学模拟.2006,北京科技大学:北京.
    [23]Hoover W.G., Canonical dynamics:Equilibrium phase-space distributions. Physical Review A,1985. 31(3):1695-1697.
    [24]Hoover W.G., Computational Statistical Mechamics.1991, New York:Elsenieer.
    [25]Melchiionna S., Ciccotti G. and Holian B.L., Hoover NPT dynamics for systems varying in shape and size Molecular Physics,1993.78:533.
    [26]Berendsen H.J.C., Postma J.P.M., Gunsteren.W.FV., et al., Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics,1984.81:3684.
    [27]戚力,简单金属及二元合金的熔化与快冷过程分子动力学模拟.2005,中科院金属研究所:沈阳.
    [28]Parrinello M. and Rahman A., Strain fluctuations and elastic constants. The Journal of Chemical Physics,1982.76:2662.
    [29]Parrinello M. and Rahman A., Polymorphic transitions in single crystals:A new molecular dynamics method Journal of Applied Physics,1981.52:7182.
    [30]文玉华,朱如曾,周富信,et al.,分子动力学模拟的主要技术.力学进展,2003.33(1):65-73.
    [31]王飞,GaAs(114)表面电子结构和面心立方金属表面扩散的计算和理论研究.2005,郑州大学:郑州.
    [32]范韶蓉,分子动力学等温算法金属材料熔化温度计算结果的影响.2006,北京科技大学:北京.
    [33]Allen M.P. and Tildesley D.J., Computer Simulation of liquids.1987, Oxford:Clarendon Press.
    [34]倪晓东,金属间化合物中有序无序转变的计算机模拟.1997,北京科技大学:北京.
    [35]赵岩,齐锦刚,刘兴江,et al.,分子动力学模拟技术及其在金属熔体结构研究中的应用.金属热处理,2006.33(1):13-16.
    [36]钱学森,物理力学讲义.1962,北京:科学出版社.
    [37]Cotterill R.M.J. and Doyama M., Energier and atomic configuration of line defects and plane defects, lattice defects and their interactions 1967, New York:Gordon and Breach science publishers.
    [38]Chen N. and Ren G., Carlsson-Gelatt-Ehrenreich technique and the M bius inversion theorem. Physical Review B,1992.45(14):8177-8180.
    [39]Chen N.X., Hao S.Q., Wu Y., et al., Phase stability and site preference of Sm (Fe, T) 12. J. Magn. Magn. Mater,2001.233:169-180.
    [40]Born M. and Mayer J.E., Zur gittertheorie der ionenkristalle. Z Phys.,1932.75(1):1-18.
    [41]Rose J.H., Vary J.P. and Smith J.R., Nuclear equation of state from scaling relations for solids. Physical Review Letters,1984.53(4):344-347.
    [42]Liu S.J., Shi S.Q., Huang H. et al., Interatomic potentials and atomistic calculations of some metal hydride systems. Journal of Alloys and Compounds,2002.330:64-69.
    [43]欧阳义芳,钟夏平,凝聚态物质计算和模拟中使用的相互作用势.力学进展,2006.36(003):321-343.
    [44]Daw M.S. and Baskes M.I., Embedded-atom method:Derivation and application to impurities, surfaces, and other defects in metals. Physical Review B,1984.29(12):6443-6453.
    [45]Daw M.S. and Baskes M.I., Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Physical Review Letters,1983.50(17):1285-1288.
    [46]N(?)rskov J.K. and Lang N.D., Effective-medium theory of chemical binding:application to chemisorption. Physical Review B,1980.21(6):2131.
    [47]舒小林,金属间化合物物理性能、点缺陷及扩散的改进分析型EAM模型研究.2001,湖南大学:长沙.
    [48]Finnis M. W. and Sinclair J.E., A simple empirical N-body potential for transition metals. Philosophical Magazine A,1984.50(1):45-55.
    [49]Ercolessi F., Tosatti E. and Parrinello M., Au (100) surface reconstruction. Physical Review Letters, 1986.57(6):719-722.
    [50]Bester G., Meyer B. and Fahnle M., Atomic defects in D0_{3}-Ni_{3} Sb:An ab initio study. Physical Review B,1998.57(18):11019-11022.
    [51]Satta A., Willaime F. and de Gironcoli S., First-principles study of vacancy formation and migration energies in tantalum. Physical Review B,1999.60(10):7001-7005.
    [52]Soderlind P., Yang L.H., Moriarty J.A., et al., First-principles formation energies of monovacancies in bcc transition metals. Physical Review B,2000.61(4):2579-2586.
    [53]Stott M.J. and Zaremba E., Quasiatoms:An approach to atoms in nonuniform electronic systems. Physical Review B,1980.22(4):1564-1583.
    [54]Johnson R.A., Phase stability of fcc alloys with the embedded-atom method. Physical Review B, 1990.41(14):9717-9720.
    [55]Johnson R.A. and Oh D.J., Analytic embedded atom method model for bcc metals. Journal of Materials Research,1989.4(5):1195-1201.
    [56]Johnson R.A., Alloy models with the embedded-atom method. Physical Review B,1989.39(17): 12554-12559.
    [57]Oh D.J. and Johnson R.A., Simple embedded atom method model for fee and hep metals. J. Mater. Res,1988.3(3):471-478.
    [58]Johnson R.A., Analytic nearest-neighbor model for fcc metals. Physical Review B,1988.37(8): 3924-3931.
    [59]Baskes M.I., Application of the embedded-atom method to covalent materials:A semiempirical potential for silicon. Physical Review Letters,1987.59(23):2666-2669.
    [60]Baskes M.I., Nelson J.S. and Wright A.F., Semiempirical modified embedded-atom potentials for silicon and germanium. Physical Review B,1989.40(9):6085-6100.
    [61]张邦维,胡望宇and舒小林,嵌入原子方法理论及其在材料科学中的应用.2004,长沙:湖南大学出版社.
    [62]Zhang.B.W, Ouyang.Y.F, Liao.S.Z, et al., An analytic MEAM model for all BCC transition metals. Physica B Condensed Matter,1999.262:218-225.
    [63]Ouyang.Y.F and Zhang.B.W, Analytic embedded-atom potentials for bcc metals:application to calculating the thermodynamic data of bcc alloys. Physics Letters A,1994.192(1):79-86.
    [64]X.W. Zhou, H.N.G. Wadley and D.X. Wang, Transient hole formation during the growth of thin metal oxide layers. Computational Materials Science,2007.39:794-802.
    [65]X.W. Zhou, D.A. Murdick, B. Gillespie, et al., Atomic assembly during GaN film growth:Molecular dynamics simulations. Physical Review B,2006.73(4):45337.
    [66]汪复兴,金属物理.1990,北京:冶金工业出版社.
    [67]刘相法,AlTiB中间合金的遗传性研究.1997,山东工业大学:济南.
    [68]Bian X.F. and Wang W., Thermal-rate treatment and structure transformation of Al-13 wt.%Si alloy melt Materials Letters,2000.44(1):54-58.
    [69]边秀房,刘相法and马家骥,铸造金属遗传学.1999,济南:山东科学技术出版社.
    [70]边秀房,王伟民,李辉,et al.,金属熔体结构.2003,上海:上海交通大学出版社.
    [71]Waseda Y., The structure of Non-crystalline materials; Liquid and amorphous solids.1980, New York:McGraw-Hill.
    [72]Foiles S.M., Ashcroft N. W. and Reatto L., A crossover integral equation for the structure of simple liquids. The Journal of Chemical Physics,1984.80:4441.
    [73]de Wijs G.A., Pastore G., Selloni A., et al., First(?\)principles molecular(?)\dynamics simulation of liquid CsPb. The Journal of Chemical Physics,1995.103:5031.
    [74]Sadigh B., Dzugutov M. and Elliott S.R., Vacancy ordering and medium-range structure in a simple monatomic liquid. Physical Review B,1999.59(1):1-4.
    [75]M. Dzugutov, B. Sadigh and S.R. Elliott, Medium-range order in a simple monatomic liquid. Journal of non-crystalline solids,1998.232:20-24.
    [76]Chen.K.Y, Liu.H.B and Hu.Z.Q, Structure features in binary liquid Li'CTl alloys. The Journal of Chemical Physics,1995.103:9083.
    [77]陈魁英,李庆春,深过冷液态Mg-Ca合金的微观动力学行为.物理学报,1993.42(2):8.
    [78]李基永,刘让苏,周征,液态金属的初始状态对凝固微结构影响的模拟研究.原子与分子物理学报,1998.15(2):193-197.
    [79]Jin Z.H., Gumbsch P., Lu K., et al., Melting mechanisms at the limit of superheating. Physical Review Letters,2001.87(5):55703.
    [80]Zhou X.W., Johnson R.A. and Wadley H.N.G., Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Physical Review B,2004.69(14):144113.
    [81]Zhou X.W. and Wadley H.N.G., Atomistic simulations of the vapor deposition of Ni/Cu/Ni multilayers:The effects of adatom incident energy. Journal of Applied Physics,1998.84:2301.
    [82]下地光雄and郭淦钦译,液态金属.1987,北京:科学出版社.
    [83]Takamichi I. and Rodefick I.L., The Physical Properties or Liquid Metals.1993, Oxford:Clarendon Press.
    [84]王海川,金属熔体热力学模型的研究进展.安徽工业大学学报,2001.18(001):1-4.
    [85]AD Pelton and SN Flengas, An analytical method of calculating thermodynamic data in ternary systems. Canadian Journal of Chemistry,1969.47(12):2283-2292.
    [86]王之昌,三元系热力学性质的解析计算法.中国科学A辑,1986.16(8):862-873.
    [87]蒋国昌,张晓兵and徐匡迪,C-Fe-X (X= Mn, Si, Cr, Ni)熔体中组元活度的解析.金属学报,1992.28(006):240-246.
    [88]唐恺,徐建伦 and 丁伟中,Fe-Si-C合金熔体的活度解析计算.华东冶金学院学报,1997.14(003):190-195.
    [89]Pelton A.D. and Flengas S.N., An analytical method of calculating thermodynamic data in ternary systems. Canadian Journal of Chemistry,1969.47(12):2283-2292.
    [90]Mcdonald I.R., NPT-ensemble Monte Carlo calculations for binary liquid mixtures. Molecular Physics,1972.23(1):41-58.
    [91]Frenkel D. and Smit B., Understanding Molecular Simulation-From Algorithms to Applications.1996, London:Academic Press.
    [92]Frenkel D. and Ladd A.J.C., NEW MONTE-CARLO METHOD TO COMPUTE THE FREE-ENERGY OF ARBITRARY SOLIDS-APPLICATION TO THE FCC AND HCP PHASES OF HARD-SPHERES. Journal of Chemical Physics,1984.81(7):3188-3193.
    [93]Arregui E.O., Caro M. and Caro A., Numerical evaluation of the exact phase diagram of an empirical
    Hamiltonian:Embedded atom model for the Au-Ni system-art.. Physical Review. B. Condensed Matter,2002.6605(5):no.054201.
    [94]齐卫宏,汪明朴,铅纳米薄膜熔化温度尺寸效应的分子动力学研究.中国有色金属学报,2006.16(007):1161-1165.
    [95]Qi W.H., Size, shape and structure dependent cohesive energy and phase stability of metallic nanocrystals. Solid state communications,2006.137(10):536-539.
    [96]Ujihara T., Fujiwara K., Sazaki G., et al., Evaluation of the diffusion coefficients in liquid GaGe binary alloys using a novel method based on Fick's first law. Journal of non-crystalline solids,2002. 312:196-202.
    [97]赵建华,刘日平,周镇华,et al.,一种测量液态金属扩散系数的新方法——固/液-液/固复合三层膜法.物理学报,1999.48(03):416-420.
    [98]Kawakami M., Yokoyama S., Takagi K., et al., Effect of aluminum and oxygen content on diffusivity of aluminum in molten iron. ISIJ international,1997.37(5):425-431.
    [99]Botton V., Lehmann P., Bolcato R., et al., Measurement of solute diffusivities. Part Ⅱ. Experimental measurements in a convection-controlled shear cell. Interest of a uniform magnetic field International Journal of Heat and Mass Transfer,2001.44(17):3345-3357.
    [100]Miyake T., Inatomi Y. and Kuribayashi K., Measurement of diffusion coefficient in liquid metal under static magnetic field Japanese Journal of Applied Physics Part 2-Letters,2002.41(7A): L811-L813.
    [101]Belashchenko D.K., Kravchunovskaya N.E. and Ostrovski O.I., Properties of iron under Earthi-s core conditions:Molecular dynamics simulation with an embedded-atom method potential. Inorganic Materials,2008.44(3):248-257.
    [102]Chen F.F., Zhang H.F., Qin F.X., et al., Molecular dynamics study of atomic transport properties in rapidly cooling liquid copper. Journal of chemical physics,2004.120:1826-1831.
    [103]Protopapas P. and Parlee N.A.D., Theory of transport in liquid metals* 1::Ⅲ. Calculation of shear viscosity coefficients of binary alloys. Chemical Physics,1975.11(1):201-215.
    [104]Akhter J.I., Ahmed E. and Ahmad M., Study of diffusion coefficients in liquid noble metals. Materials Chemistry and Physics,2005.93(2-3):504-507.
    [105]Dalgic S. and Olakoeullari M., Self-Diffusion Coefficients in Liquid Ag Using the Embedded Atom Model Based Effective Pair Potentials. Turkish Journal of Physics,2006.30:303-310.
    [106]Ahmed A.Z.Z. and Bhuiyan G.M., Application of the EAM potentials to the study of diffusion coefficients of liquid noble and transition metals. International Journal of Modern Physics. B, Condensed Matter Physics,2002.16:25.
    [107]Belashchenko D.K. and Zhuravlev Y.V., Application of the embedded-atom method to liquid copper. Inorganic Materials,2008.44(9):939-945.
    [108]Mei J. and Davenport J.W., Molecular-dynamics study of self-diffusion in liquid transition metals. Physical Review B,1990.42(15):9682-9684.
    [109]Shimoji M., Liquid metals.1977, London:Acad. Pr.
    [110]Kazanc S., Molecular dynamics study of pressure effect on crystallization behaviour of amorphous CuNi alloy during isothermal annealing. Physics Letters A,2007.365:473-477.
    [111]Caro A., Caro M., Lopasso E.M., et al., Thermodynamics of Fe-Cu alloys as described by a classic potential. Journal of Nuclear Materials,2006.349(3):317-326.
    [112]Liu J., Zhao J.Z. and Hu Z.Q., MD study of the glass transition in binary liquid metals:Ni6Cu4 and Ag6Cu4. Intermetallics,2007.15(10):1361-1366.
    [113]张林,孙海霞,Cu59团簇在升温过程中结构变化的分子动力学研究.东北大学学报(自然科学版),2009.30:909-912.
    [114]Qi L., Zhang H.F. and Hu Z.Q., Molecular dynamic simulation of glass formation in binary liquid metal:Cu-Ag using EAM. Intermetallics,2004.12(10-11):1191-1195.
    [115]Bian X.F., Wang W. and Qin J., Liquid structure of Al-12.5% Si alloy modified by antimony. Materials Characterization,2001.46:25-29.
    [116]Bian X.F., Sun B.A., Hu L.N., et al., Fragility of superheated melts and glass-forming ability in Al-based alloys. Physics Letters A,2005.335(1):61-67.
    [117]郝维新,杨根仓,谢辉,过冷Cu-37.4%Pb偏晶合金凝固组织对磨损行为的影响.材料导报,2004.18(004):98-100.
    [118]刘向荣,王楠,魏炳波,无容器条件下Cu-Pb偏晶的快速生长.物理学报,2005.54(004):1671-1678.
    [119]徐锦锋,代富平,魏炳波,急冷条件下Cu-Pb偏晶合金的相分离研究.物理学报,2007.56(007):3996-4003.
    [120]Foiles S.M., Baskes M.I. and Daw M.S., Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Physical Review B,1986.33(12):7983-7991.
    [121]Tomanek D., Mukherjee S. and Bennemann K.H., Simple theory for the electronic and atomic structure of small clusters. Physical Review B,1983.28(2):665-673.
    [122]Zhou X.W., Wadley H.N.G., Johnson R.A., et al., Atomic scale structure of sputtered metal multilayers. Acta Materialia,2001.49(19):4005-4015.
    [123]Wadley H.N.G., Zhou X.W., Johnson R.A., et al., Mechanisms, models and methods of vapor deposition. Progress in Materials Science,2001.46(3-4):329-377.
    [124]Haile J.M., Molecular Dynamics Simulation-Elementary Methods.1997, New York:Wiley Inter Science.
    [125]温树林,材料结构科学.1988,北京:科学出版社.
    [126]傅恒志,非平衡凝固新型金属材料.2004,北京:科学出版社.
    [127]Hultgren R., Dessai P.D., Hawkins D.T., et al., Selected of the Thermodynamic Properties of Binary Alloy.1973, Ohio:ASM:Metal Park.
    [128]叶大伦,胡建华,实用无机物热力学手册.2002,北京:冶金工业出版社.
    [129]Smith C. J., Metals Reference Book.1976, London:Butterworrd.
    [130]Tao D.P., Prediction of the thermodynamic properties of binary continuous solid solutions by infinite dilute activity coefficients. Thermochimica acta,2003.408(1-2):67-74.
    [131]Chou K.C., The calculation and application of R function in ternary systems. Calphad,1987.11(3): 287-292.
    [132]Bale C.W. and Pelton A.D., The unified interaction parameter formalism:Thermodynamic consistency and applications. Metallurgical and Materials Transactions A,1990.21(7):1997-2002.
    [133]乐启炽,张新建and崔建忠,金属合金溶液热力学模型研究进展.金属学报,2003.39(001):35-42.
    [134]李荐,温俊杰,粗铅火法精炼工艺中加锌除银技术探讨.甘肃有色金属,1999(1):17-19.
    [135]Hager J.P. and Wilkomirsky R.A., Galvanic cell studies using a molten oxide electrolyte Part1-Thermodynamic properties of the lead-silver system. Transactions of the metallurgical society of AIME,1968.242:183-189.
    [136]Kim Y., Kim S.J. and Song T.Y., Actinide and Fission Product Partitioning & Transmutation, in Abstracts of Eighth Information Exchange Meeting.2004:Las Vegas, Nevada, USA.
    [137]Khairulin R.A., Kosheleva A.S. and Stankus S.V., Thermal properties of liquid alloys of magnesium-lead system. Thermophysics and Aeromechanics,2007.14(1):75-80.
    [138]Stankus S.V. and Khairulin R.A., Temperature and interface density changes of magnesium in solid and liquid states. Tsvetnye Metally,1990.9:65-67.
    [139]HAGER J.P. and WILKOMIRSKY R.A., Galvanic cell studies using a molten oxide eletrolyte:Part 2-Thermodynamic properties of the Pb-Au system. Trans Met Soc AIME,1969.245:2307-2312.
    [140]Dybkov V.I, Barmak K., Lengauer W., et al., Interfacial interaction of solid nickel with liquid bismuth and Bi-base alloys. Journal of Alloys and Compounds,2005.389(1-2):61-74.
    [141]Tomlinson W.J. and Easterlow A., Kinetics and microstructures of oxidation of CoO to CoO3O4 at 700-800oC. The Journal of physics and chemistry of solids,1985.46(1):151-153.
    [142]Duchenko O.V., Vereshchaka V.M. and Dybkov V.I., Phase formation and reaction kinetics in Co-Zn diffusion couples. Journal of Alloys and Compounds,1999.288(1-2):164-169.
    [143]Cherne F.J. and Deymier P.A., Calculation of the transport properties of liquid aluminum with equilibrium and non-equilibrium molecular dynamics. Scripta Materialia,2001.45(8):985-991.
    [144]Poirier D. and Geiger G.H.,Transport phenomena in materials processing.1994, Warrendale, PA: The Minerals, Metals and Materials Society.
    [145]Wadley H.N.G., Zhou X.W., Johnson R.A., et al., Mechanisms, model and methods of vapor deposition. Progress in Material Science,2001.46:329-377.
    [146]Hao X.G., Yu Q.M., Jiang S.Y., et al., Molecular dynamics simulation of ion selectivity traits of nickel hexacyanoferrate thin films. Trans.Nonferrous Met. Soc. China,2006.16:897-902.
    [147]Liu J., Zhao J.Z. and Hu Z.Q., MD study of the glass transition in binary liquid metals:Ni6Cu4 and Ag6Cu4. Intermetallics,2007.15:1361-1366.
    [148]杨剑瑜,胡望宇,Ag低指数表面非谐效应的分子动力学模拟.中国有色金属学报,2005.15(11):1859-1863.
    [149]Belashchenko D.K.. and Zhuravlev Y.V., Application of the embedded-atom method to liquid copper. Inorganic Materials,2008.44(9):939-945.
    [150]Waseda Y., The Structure of Non-Crystalline Materials.1980, New York:Mc Graw-Hill.
    [151]陈建奇,范同祥and张荻,二元液态合金互扩散系数的预测模型.上海交通大学学报,2006.40:1720.
    [152]Schwitgebel G.and Langen G., Application of the hard sphere theory to the diffusion of binary liquid alloy systems. Naturforsch,1981.36a:1225-1232.
    [153]Quan J.J., Zhou X.W. and Wadley H.N.G., Low energy ion assisted atomic assembly of metallic superlattices. Surface Science,2006.600(11):2275-2287.
    [154]Zhou X. W., Zimmerman J.A., Reedy E.D., et al., Molecular dynamics simulation based cohesive surface representation of mixed mode fracture. Mechanics of Materials,2008.40(10):832-845.
    [155]方俊鑫and陆栋,固体物理学.1980,上海:科学技术出版社.
    [156]Allen M.P. and Tildesley D.J., Computer simulation of liquids.1987, Oxford Press:Oxford Univemity.
    [157]Allan M.P. and Tildesley D.J., Computer simulation of liquids.1987, Oxford:Oxford University Press.
    [158]Protopapas P., Andersen H.C. and Parlee N.A.D., Theory of transport in liquid metals. II. Calculation of shear viscosity coefficients. Chemical Physics,1975.8(1-2):17-26.
    [159]Dalgi S. and Olakoeullari M., Self-Diffusion Coefficients in Liquid Ag Using the Embedded Atom Model Based Effective Pair Potentials. Turkish Journal of Physics,2006.30:303-310.
    [160]Yang L., Kado S. and Derge G., Diffusion of Silver in Molten Silver. Trans. Met. Soc. AIME,1958. 212:628.
    [161]Henderson J. and Yang L., Self-diffusion of copper in molten copper. TRANS METALL SOC AIME,1961.221(1):72-73.
    [162]Alemany M.M.G., Rey C. and Gallego L.J., Transport coefficients of liquid transition metals:A computer simulation study using the embedded atom model. The Journal of Chemical Physics,1998. 109:5175.
    [163]Belashchenko D.K. and Ostrovski O.I., Nickel Crystallization at High Supersaturations:A Computer Simulation Study. Zh. Fiz. Khim,2008.82(3):443-455.
    [164]Chhabra R.P. and Sridhar T., Temperature dependence of self diffusion in liquid metals. Physics and Chemistry of Liquids,1983.13(1):37-46.
    [165]Renon H. and Prausnitz J.M., Local compositions in thermodynamic excess functions for liquid mixtures. AICHE Journal,1968.14(1):135-144.
    [166]Renon H. and Prausnitz J.M., Estimation of parameters for the NRTL equation for excess Gibbs energies of strongly nonideal liquid mixtures. Industrial & Engineering Chemistry Process Design and Development,1969.8(3):413-419.
    [167]Palchaudhuri S. and Joarder R.N., Partial Structure Factors and Self-Diffusion in Liquid Copper-Lead Alloys. Phys. Stat. Sol,1984.126:443-452.
    [168]Khairulin R.A. and Stankus S.V., The concentration dependences of molar volume, thermal expansion coefficient, and interdiffusion coefficient for liquid lead-magnesium system. Journal of Nuclear Materials,2008.377:501-505.
    [169]Wang Z.J., Chen M. and Guo Z.Y., Modified transition state theory for evaporation and condensation Chin.Phys.Lett,2002.19(4):537-539.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700