用户名: 密码: 验证码:
铽镝铁磁致伸缩材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铽镝铁磁致伸缩材料是水声换能器、精密致动器、智能传感器等器件的核心材料,广泛应用于军事装备、超声探测、精密自动控制、机器人等高技术领域。我国研制铽镝铁磁致伸缩材料起步较晚,目前制备工艺不太先进,制造成本较高,材料性能指标落后于国际水平,造成产品应用规模较小且不能满足高档器件的要求。论文采用“一步法”定向凝固、铸造—粉末烧结、速凝成晶—粘结等工艺,重点研究了工艺制度对微观组织和性能的影响,为制备高性能的材料提供了实验基础。此外还研究了材料的表面改性处理。
     研究了具有自主知识产权的“一步法”定向凝固工艺中凝固速率、合金成分、热处理温度等对微观组织和性能的影响,并得到了优化的工艺参数。当凝固速率V=70mm/h时,晶体以胞状晶生长方式生长,<110>择优取向,材料性能较高;V=110-150mm/h,晶体以胞枝晶生长方式生长,<110>取向减弱,<113>增强;V=200mm/h,晶体以发达的枝状晶生长方式生长,择优取向失败,材料性能较差。对于(TbxDy1-x)Fe1.95合金,x=0.3时的磁晶各向异性场最低,偏离此值的材料性能均有所下降。提高Tb/Dy比例可增大磁晶负的各向异性常数,降低自旋再取向温度Tr,材料低温特性较好;当x=0.35,在无压应力、160kA/m磁场时,材料的磁致伸缩温度系数很小(-1.9×10-6/℃),适用于低温且温度变化大(如-50℃~40℃)的特殊工作环境。900℃和950℃热处理,使得合金中的富稀土相由网状分布变为球状分布,减少了与主相之间的相界面,磁致伸缩性能得到明显提高;高温热处理(如>1000℃)造成合金中析出第二相REFey(y=3-5),性能几乎没有改善。利用高纯金属和优化的工艺参数(如V=70-85mm/h,950℃热处理2h),制备了Φ50mm的(Tb0.3Dy0.7)Fe1.95棒材,10MPa、80kA/m下的磁致伸缩系数λ为1380×10-6,达到国际先进水平,并在大功率水声换能器和磁致伸缩驱动阀等器件中得以应用。
     研究了铸造—粉末烧结工艺与材料性能的关系。粒度小于0.147mm时,烧结样品的性能和密度较高;磁场对<111>取向的作用最大,取向度达到40.56%;增大等静压力和延长压制时间有利于提高样品的性能和密度;烧结温度1200℃,可获得高性能的材料。在240kA/m外磁场、8.0MPa预应力,样品λ达到1613×10-6,居国内领先水平。
     提出速凝成晶技术制备TbDyFe粘结磁致伸缩材料的方法,并研究了工艺参数与性能的关系。研究发现:随着冷却速度的增加,速凝合金片的晶体生长方式由枝状晶向胞枝晶变化,择优取向由<112>向<110>转变,<112>择优取向样品的λ高于<110>的样品。得到了优化的工艺参数:选用弹性模量小的粘结剂(如环氧树脂),环氧树脂含量4%;粉末粒度对样品的性能存在一定影响,优化的粉末粒度为≤(100-150)μm;固化温度150℃、固化时间2h;磁场取向成型有利于性能的提高。实验获得了高性能的粘结材料,在240kA/m磁场下λ达到740×10-6。
     首次采用离子渗氮技术对稀土磁致伸缩材料进行了表面改性处理的研究。研究结果表明:在材料表面生成了一层FeN化合物,有效延缓了富稀土相在酸介质中的腐蚀速度,显著改善了材料的耐腐蚀性能、表面硬度(从587HV提高到622HV)以及耐磨性能,提高了材料在恶劣环境中的应用可靠性。表面离子渗氮对材料性能几乎没有影响,是一种较好的稀土磁致伸缩材料表面处理方法。
Tb-Dy-Fe magnetostrictive materials are the core materials used for producing underwater acoustic transducer, precision actuator, intelligent sensor and the like devices, and they are widely used in high-tech fields such as military equipment, ultrasonic detection, precision automation and robot etc.. In china, the research on Tb-Dy-Fe magnetostrictive material is done with a later start. Up to now, the preparation technologies are not advanced enough, the main problems are the higher producing cost, the lower performance than international level, the less application scale and the inferior properties which can not meet the requirements of the high-grade devices. In this paper, the research involving the effects of the processing parameters on microstructures and properties was carried out by using the " one-step " directional solidification process, casting-powder sintering method and strip-casting binding method, thus it can provide the experiment foundations for preparing the materials with high quality. Furthermore, the surface-modified treatment for Tb-Dy-Fe material is also investigated in this paper.
     The effects of directional solidification rate, alloy composition and heat treatment systems used in the "one-step" directional solidification process on the microstructures and properties are studied, and the preferred processing parameters are obtained. When the directional solidification rate is 70mm/h, the crystal growth mode is a cellular morphology, and the material has a<110> preferred orientation and thus can obtain better properties. When the directional solidification rate is 110-150mm/h, the crystal growth mode is still a cellular morphology, but the<110> orientation becomes weak while the<113> orientation enhance. When the directional solidification rate is 200mm/h, the crystal growth mode is a developed dendrite morphology, thus the material fails to get a preferred orientation and thereby obtain an inferior performance. For the (TbxDy1-x)Fe1.95 alloys, the anisotropism of the magnetocrystalline is the lowest when x=0.3, and the properties of materials in which x is deviated from the value are worsened to some extent. By increasing the ratio of Tb/Dy, the anisotropy constant can be increased and the spinning reorientation temperature Tr can be decreased, thus the material has better properties at lower temperature. When x is 0.3, the magnetic field is 160kA/m and there is no compression stress, the temperature coefficients for this magnetostrictive material is very small(-1.9×10-6/℃), so this material is suitable for0 using in the specific working circumstance which has lower and sharply changed temperature(e.g.-50℃-40℃). After the heat-treatment at 900℃and 950℃, the RE-riched phase in this alloy is changed from netlike distribution to spherical distribution, thus the phase interface between this phase and the main phase is decreased, and the magnetostrictive performance is markedly enchanced. The heat-treatment at higher temperature (e.g.>1000℃) can lead to a segregation of the second-phase REFey(y=3-5) in the alloy, and the performance is barely enchanced. By using the metal with higher purity and the preferred processing parameters(e.g.V=70-85mm/h, heat-treatment at 950℃for 2hs), a rod-shaped (Tb0.3Dy0.7)Fe1.95 material (φ50mm) with advanced world standard is obtained, wherein, it'sλis up to 1380×10-6 under lOMPa and 80kA/m, and it can be used in high power underwater-acoustic-transducer and magnetostrictive driving-valve etc..
     Moreover, the relationship between the casting-powder sintering producing process and the material properties therefrom is also studied. When the particle size is smaller than 0.147mm, the performance and the density of the sintered sample is higher, and the magnetic field has the most effect on the orientation of<111> crystal orientation, furthermore, the degree of the orientation is up to 40.56%. Increasing the isostatic-pressure and extending the pressing time are helpful to improve the performance and the density of the sample. When the sintering is carried out at 1200℃, the material with higher performance can be obtained. With the external magnetic field of 240kA/m and the pre-stressing force of 8.0MPa, the magnetostriction for this sample can up to 1613×10-6 which is the leading national level.
     The strip-casting technology for preparing TbDyFe bonded magnetostrictive material is put forward in this paper. And the relationship between the process and the material properties is studied. As the cooling speed increase, the crystal growth mode will transform from the dendrite morphology to the cellar morphology, and the preferred orientation changes from<112> to<110>, wherein, the sample with a preferred orientation<112> has the better performance than that with a preferred orientation<110>. The binder with small elastic modulus (e.g. epoxy resin) is helpful for the performance, and the optimized concentration of it is 4%.The particle size of the powder has some effect on the performance, and the preferred particle size of the powder is≤100-150μm. The optimized curing temperature is 150℃and the curing time is 2hs. The reorientation resulted by the magnetic field has a good effect on the performance. The binding material with higher performance is obtained through this research, and theλis up to 1380×10-6 under the magnetic field of 240kA/m.
     The surface modifying on the magnetostrictive material by ion nitriding process is performed for the first time. By ion nitriding process, a FeN compound layer is formed on the surface of the material, and thus it can delay the corrosion speed of RE-riched phase under acid circumstance. And the anti-corrosion property, surface hardness and wearable property of the sample are remarkablely improved, wherein, the said surface hardness can be increased. from 587HV to 622HV. Ion nitriding process on the surface nearly has no effect on the property of the material, so it is a better surface-treating method to modifying Tb-Dy-Fe magnetostrictive material.
引文
[1]Wang B W, Li S Y, Yang R G, et al.. Magnetostrictive properties for epoxy bonded TbxDy1-xFe2composities[J], Journal of Rare Earths,2003,21 (1):155-158.
    [2]杨兴.磁场与位移感知型超磁致伸缩微位移执行器及其相关技术研究[D],大连:大连理工大学,2001.
    [3]何中波,王新宇,赵海涛.超磁致伸缩材料特性及其工程应用综述[J],军械工程学院学报,2007,19(2):63-69.
    [4]王博文.超磁致伸缩材料制备与器件设计[M],北京:冶金工业出版社,2003,1-2.
    [5]宛德福,马兴隆.磁性物理学[M],成都:电子科技大学出版社,1995,185.
    [6]贾宇辉.超磁致伸缩微驱动技术的研究[D],哈尔滨:哈尔滨工业大学,1999.
    [7]陆文定.铁磁学(中册)[M],北京:科学出版社,1987,4-6.
    [8]周寿增,董清飞.超强永磁体-稀土铁系永磁体[M],北京:冶金工业出版社,1999,25-26.
    [9]倪嘉瓒,洪广言.稀土新材料和新流程进展[M],北京:科学出版社,1998:200.
    [10]冯端等.金属物理学(第一卷)[M],北京:科学出版社,1987,133-140.
    [11]A.E.Clark, J.Cullen, O.D.McMasters, E.Callen. Rhombohedral distortion in highly magnetostrictive Laves phase compounds[C], AIP Conf. Proc.,1976,29(1):192-193.
    [12]J.Cullen, A.E.Clark, Magnetostriction and structural distortion in rare-earth intermetallics[J], Phys.Rev.B.,1977,15 (9):4510-4515.
    [13]H.T.Savage, A.E.Clark, N.C.Koon, C.M.Williams. The temperature and composition dependence of the magnetomechanical coupling factor in rare-earth-Fe2 alloys [J], IEEE Trans. Magn.,1977, MAG-13:1517-1518.
    [14]A.Branwood, A.L.Janio, A.R.Piercy. Domain structure in polycrystalline Tb0.27Dy0.73Fe2 (Terfenol) in the applied field region of optimum magnetoelastic properties[J], J.Appl.Phys.,1987,61 (8-11):3796-3798.
    [15]Wu G H, Zhao X G, Wang J H, et al..<111> oriented and twin-free single crystals of Terfenol-D grown by Czochralski method with cold crucible[J], Appl.Phys.Lett., 1995,67 (14):2005-2007.
    [16]Zhao X G, Wu G H, Wang J H, et al.. Stress dependence of magnetostriction and strains in<111>oriented single crystals of Terfenol-D [J], J. Appl. Phys.,1996,79(8): 6225-6227.
    [17]Mei W, M.Yoshizumi, T.Okane, et al.. Crystal growth of giant magnetostrictive TbDyFe alloy[J], J.Alloys Compd.,1997,258 (1-2):34-38.
    [18]Mei W, T.Okane, T.Umeda. Magnetostriction of TbDyFe crystals [J], J. Appl. Phys., 1998,84 (11):6208-6213.
    [19]J.D.Verhoeven, E.D.Gibson, O.D.McMasters, et al.. The growth of single crystal Terfenol-Dcrystals[J], Metall.Trans.A,1987,18 (3):223-231.
    [20]A.E.Clark, D.Verhoeven, O.D.McMasters, et al.. Magnetostriction in twinned<112> crystals of Tbo.27Dyo.73Fe2[J], IEEE Trans.Magn.,1986,22 (5):973-975.
    [21]Mei W, T.Umeda, Zhou S Z, et al.. Magnetostriction of grain-aligned Tb0.3Dy0.7Fe1.95[J], J.Alloys Compd.,1995,224 (1):76-80.
    [22]Mei W, T.Okane, T.Umeda, et al.. Directional solidification of TbDyFe magnetostrictive alloy[J], J. Alloy Compd.,1997,248 (1-2):151-158.
    [23]A.E.Clark, H.T.Savage, Magnetostriction of rare earth-Fe2 compounds under compressive stress[J], J. Magn. Magn. Mater.,1983,31 (34):849-851.
    [24]. J.P.Teter, A.E.Clark. Anisotropic magnetostriction in Tb0.27Dy0.73Fe1.95[J], J. Appl. Phys.,1987,61 (2B):3787-3790.
    [25]J.D.Verhoeven, J.E.Ostenson, E.D.Gibson, et al.. The effect of composition and magnetic heat treatment on the magnetostriction of TbxDy1-xFey twinned single crystals[J], J.Appl. Phys.,1989,66 (2):772-779.
    [26]J.D.Verhoeven, E.D.Gibson, O.D.McMasters, et al.. Directional solidification and heat treatment of Terfenol-D magnetostrictive materials [J], Metall.Trans.A,1990,21 (8): 2249-2255.
    [27]A.E.Clark, J.P.Teter, O.D.McMasters. Magnetostriction " jumps " in twinned Tb0.3Dy0.7Fe1.9[J], J.Appl.Phys.,1988,63:3910-3912.
    [28]Jiang C B, Zhou S Z, XuHB, et al.. Investigation on the formation of the preferred orientations in a TbDyFe alloy with directional solidification[J], Mate.Sci.& Eng., 1999,58 (3):191-194.
    [29]Jiang C B, Zhou S Z, Wang R.. Magnetostriction of the oriented crystals in a TbDyFe alloy [J], Chin. Phys. Lett.,1998,15 (5):379-381.
    [30]O.Bonino, P.D.Rango, R.Tournier.<110>directional growth of polycrystalline magnetostrictive TbDyFe compounds by casting in a strong unidirectional gradient[J], J.Magn. Magn. Mater.,2000,212 (1-2):225-230.
    [31]Ji C C, Li J G, Ma W Z, et al.. Preparation of Terfenol-D with precise<110> orientation and observation of the oriented growth crystal morphology[J], J.Alloys Compd.,2002,333 (1-2):291-295.
    [32]Zhao Y, Jiang C B, Zhang H, et al.. Magnetostriction of<110> oriented crystals in the TbDyFe alloy[J], J.Alloys Compd.,2003,354 (1-2):263-268.
    [33]Jiang C B, Zhao Y, Xu H B.<110> and<112> oriented growth of TbDyFe giant magnetostrictive alloy[J], Acta Metal. Sin.,2004,40 (4):373-377.
    [34]Zhang M C, Gao X X, Zhou S Z, et al.. High performance giant magnetostrictive alloy with<110> crystal orientation[J], J.Alloys Compd.,2004,381 (1-2):226-228.
    [35]N.Galloway, M.P.Schulze, R.D.Greenough, et al.. Enhanced differential magnetostrictive response in annealed Terfenol-D[J], Appl. Phys. Lett.,1993,63 (6): 842-844.
    [36]O.W.Jones, J.S.Abell, D.Fort, et al. Preparation of rare earth materials, crystals and specimens[J], J.Mag.Mag.Mater.,1982,29 (1-3):20-30.
    [37]Weinberg F., Chamers B. J.Phys.,1951,29:382.
    [38]D.S.Jonath, O.D.Mcmasters.Optimized Terfenol-D manufacturing processes[J], J.Alloys and Composites,1997,258:24-29.
    [39]郑子樵,李红英.稀土功能材料[M],北京:化学工业出版社,2003,135.
    [40]A.E.Clark, J.D.Verhoeven, O.D.Mcmasters, et al.. IEEE Trans.Magn.,1986, Mag-22: 849-850.
    [41]何国,周寿增,李建国等.我国稀土超磁致伸缩材料的研究与应用现状[J],材料导报,1996,5:12-17.
    [42]M.Malekzadeh, M.R.Pickus. Magnetostrictive properties of rare earth-iron laves phase materials prepared by powder metallurgy techniques [J], IEEE Trans.Magn.,1980, Mag-16 (3):536.
    [43]M.P.Dariel, M.Malekzadeh, M.R.Pickus. AIP conf.Proc.,1976,29:583.
    [44]Mei W, T.Umeda, Zhou S Z. Preparation and magnetostrition of TbDyFe sintered compacts[J], J.Magn.Magn.Mater.,1997,174:100-108.
    [45]大桥芳雄,瓜生胜.磁致伸缩器件[P],CN1611624A.
    [46]森辉夫,野村武史,野老诚吾,梅原直道.烧结体的制造方法、烧结体和磁致伸缩材料[P],CN1457370A.
    [47]M.Malekzadeh, M.R.Pickus. Magnetostrictive properties of rare earth-iron Laves phase materials prepared by powder metallurgy techniques [J], IEEE Trans. Magn., 1980, Mag-16 (3):536.
    [48]L.Sandual, M.Fahlander, T.Cedell, et al.. Magnetostriction, elastic moduli, and coupling factors of composite Terfenol-D[J], J.Appl.Phys.,1994,33 (5):1379.
    [49]S.H. Lim. Magnetostrictive properties of polymer-bonded Terfenol-D composites[J], J.Mag. Mag.Mater.,1999,191:113-121.
    [50]解伟,吴双霞,江丽萍等.粉末冶金粘结磁致伸缩材料[J],金属功能材料,2001,8(4):29-32.
    [51]张羊换,王国清,陈梅艳等.粘结TbDyFe合金的组织及磁致伸缩性能[J],包头钢铁学院学报,2002,21(1):23-26.
    [52]T.Cedell, L.Sandlund. Magnetostrictive powder composite and methods for the manufacture thereof[P], US5792284A.
    [53]KOJIMAAKINORI (JP), MAKINO AKIHIRO (JP).Magnetostrictive material[P], US6312530A.
    [54]江民红,杨平生.超磁致伸缩复合材料及其在超声中的应用[J],国外金属热处理,2003,24(3):10-15.
    [55]鲍芳,李继荣,王春茹.磁致伸缩器件及其应用研究[J],传感器技术,2001,20(8):1-3.
    [56]S.C.Busbridge, A.R.Piercy. Magnetomechanical properties and anisotropy compensation in quaternary rare earth-iron materials of the type TbxDyyHozFe2[J], IEEE Trans. Magn.,1995,31 (6):4044-4046.
    [57]M.Wun-Fogle, J.B.Restorff, A.E.Clark. et al.. Magnetization and magnetostriction of dendritic [112] TbxDyyHozFe1.95 (x+y+z=1) rods under compressive stress[J], J.Appl. Phys.,1998,83 (11):7279-7281.
    [58]M.Wun-Fogle, J.B.Restorff, A.E.Clark. Hysteresis and magnetostriction of TbxDyyHozFe1.95 [112] dendritic rods[J], J.Appl.Phys.,1999,85 (8):6253-6255.
    [59]J.B.Restorff, M.Wun-Fogle, A.E.Clark. Temperature and stress dependence of the magnetostriction in ternary and quaternary Terfenol alloys[J], J.Appl.Phys.,2000, 87 (9):5786-5788.
    [60]Wu C H, Ge W Q, Jin X M, et al.. Structure and magnetostriction of Dy0.9-xPrxTb0.1Fe2 pseudobinary compounds[J], J.Alloys Compd.,1993,191 (2):169-171.
    [61]Wang B W, Tang S L, Jin X M, et al.. Microstructure and magnetostriction of (Dy0.7Tb0.3)1-xPrxFe1.85and(Dy0.7Tb0.3)0.7Pro.3Fe alloys[J], Appl.Phys.Lett.,1996,69 (22):3429-3431.
    [62]Guo Z J, Wang B W, Zhang Z D, et al.. The structure, magnetostriction and anisotropy compensation of (Tb1-xPrx)(Fe0.4Co0.6)1.9 alloys[J], Appl.Phys.Lett.,1997,71 (19): 2836-2838.
    [63]Guo Z J, Busbridge S C, Wang B W, et al.. Structure and magnetic and magnetostrictive properties of (Tb0.7Dy0.3)0.7Pr0.3(Fe1-xCox)1.85 (0≤x≤0.6)[J], IEEE Trans. Magn.,2001,37 (4):3025-3027.
    [64]Wang B W, Chuang Y C, Jin X M, et al.. Structure and magnetostriction of R(Fe1-xAlx)2(R=Dy0.65Tb0.25Pr0.1)alloys[J], J.Alloys Compd.,1996,237(2):58-60.
    [65]Ren W J, Zhang Z D, Zhao X G, et al.. Magnetostriction and anisotropy compensation in TbxDy1-xPr0.3(Fe0.9B0.1)1.93alloys[J], Appl.Phys.Lett.,2004,84(4):562-564.
    [66]Zhang M C, Gao X X, Zhou S Z, et al.. High performance giant magnetostrictive alloy with<110> crystal orientation[J], J.Alloys Compd.,2004,381 (1-2):226-228.
    [67]高有辉,周谦莉,祝景汉.稀土—铁大磁致伸缩材料[J],金属功能材料,1994,1:19-21.
    [68]A.E.Clark, J.P.Teter, O.D.McMasters. Magnetostrictive properties of Tt0.3Dy0.7-(Fe1-xCox)1.9and Tb0.3Dy0.7(Fe1-xNix)1.9[J], IEEE Trans. Magn.,1987,23:3526-3528.
    [69]Chin T S, Chen F M, Fang J S. Magnetostricitve properties of Tbo.3Dyo.7(Fe1-xVx)2 alloys [J], IEEE Trans. Magn.,1997,33 (5):3946-3948.
    [70]Mei W, T.Okane, T. Umeda. Phase diagram and inhomogeneity of (TbDy)-Fe(T) (T=Mn,Co,Al,Ti)systems[J], J.Alloys Compd.,1997,248 (1-2):132-138.
    [71]Wu L, Zhan W S, Chen X C. Rietveld X-ray spectrum analysis for Tb0.27Dy0.73Fe2-xSix[J], J.Alloys Compd.,1997,255 (1):236-238.
    [72]K.Prajapati, A.G.Jenner, R.Greenough. Magnetomechanical behavior of rare earth iron-aluminum compounds [J], IEEE Tans. Magn.,1993,29 (6):3514-3516.
    [73]K.Prajapati, A.G.Jenner, M.P.Schulze, et al.. Magnetoelastic behavior of aluminum substituted Terfenol-D at elevated temperatures [J], IEEE Tans. Magn.,1995,31 (6): 3976-3978.
    [74]Zheng X P, Xue D S, Li F S. Magnetostriction, spin reorientation and Mossbauer study of Tbo.27Dyo.73(Fe1-xAlx)1.95 intermetallic compounds[J], Acta Phys. Sin.,2002,51 (6):922-927.
    [75]K.Prajapati, A.G.Jenner, M.P.Schulze, et al.. Magnetoelastic effects in rare-erath iron-aluminum compounds[J], J. Appl. Phys.,1993,73 (10):6171-6173.
    [76]Wu L, Zhan W S, Chen X C, et al.. The effects of boron on the magnetostrictive properties of Tb0.27Dy0.73Fe2[J], J. Alloys Compd.,,1994,216 (1):85-87.
    [77]J.S.Shih, T.S.Chin, C.A.Chen, et al.. The effect of beryllium addition on magnetostriction of Tb0.3Dy0.7Fe2 alloy[J], J.Magn.Magn.Mater.,1999,191 (1): 101-106.
    [78]F.M.Chen, J.S.Fang, T.S.Chin. The effect of carbon on magnetostrictive properties of the Tb0.3Dy0.7Fe2alloy[J], IEEE Trans. Magn.,1996,32 (6):4776-4778.
    [79]Tang S L, Wu C H, Jin X M, et al. Structure and magnetostriction of R(Fe1-xGax)1.85 and R(Fe1-xCrx)1.85 alloys (R=Dy0.65Tb0.25Pr0.1)[J], J.Alloys Compd.,1997,256 (1-2): 247-251.
    [80]A.E.Clark, J.P.Teter, M.Wun-Fogle. Anisotropy compensation and magnetostriction in TbxDy1-x(Fe1-yTy)1.9(T=Co,Mn)[J], J.Appl. Phys.,1991,69(8):5771-5773.
    [81]T.Funayama, T.Kobayashi, I.Sakai, et al. Mn substitution effect on magnetostriction temperature dependence in Tb0.3Dy0.7Fe2[J], Appl. Phys. Lett.,1992,61 (1):114-115.
    [82]T.Kobayashi, I.Sakai, T.Funayama, et al.. Magnetic properties and magnetostriction in grain-oriented TbxDy1-x(Fe1-yMny)1.95 compounds[J], J.Appl.Phys.,1994,76(10): 7024-7026.
    [83]J.P.Teter, A.E.Clark, M. Wun-Fogle, et al.. Magnetostriction and hysteresis for Mn substitutions in TbxDy1-x(Fe1-yMny)1.95[J], IEEE, Trans. Magn.,1990,26 (5): 1748-1750.
    [84]Yan J C, Han W B, Xie X Q, et al.. Simulation on domain rotation path and magnetostriction of Terfenol-D alloy[J], J.Mast.Sci.Tech.,2001,17 (4):473-475.
    [85]朱厚卿.稀土超磁致伸缩材料的应用[J],应用声学,1998,17(5):3-10.
    [86]杜挺,张洪平,邝马华.稀土-铁系超磁致伸缩材料的应用研究[J],金属功能材料,1997(4):173-176.
    [87]贾宇辉,谭久彬.超磁致伸缩材料微位移驱动系统的研究[J],仪器仪表学报,2000,21(1):38-41.
    [88]赵仑,任冲.稀土超磁致伸缩材料的应用研究现状[J],湛江海洋大学学报,2003,23(3):77-80.
    [89]朱厚卿,张洪平,刘建国.Terfenol-D水声换能器的设计[C],宜昌:1993年全国水声学学术会议论文集,1993,11-13.
    [90]Edaetc. Machine Tool Equipped with a Giant magnetostriction Actuator-Development of New Materials Tbo.27Dyo.73 (FeMn) 1.93 and Their Appication[J], Annals of CIRP, 1992,41 (1):421.
    [91]李扩社,徐静,张深根.稀土超磁致伸缩材料进展[J],金属功能材料,2003,10(6):30.
    [92]张深根,徐静,张世荣等.稀土超磁致伸缩材料一步法制备工艺及设备和制备的产品[P],CN1490435A.
    [93]P.Westwood, J.S.Abell, K.C.Pitman. Phase relationship in the TbDyFe ternary system[J], J.Appl.Phys.,1990,67 (9):4998-5000.
    [94]U.Atzmony, M.Dariel, E.Bauminger, et al.. Spin orientation diagrams and magnetic Anisotropy of rare-earth-iron ternary cubic laves compounds[J], Phys. Rev. B,1973, 7 (9):4220-4232.
    [95]A.E.Clark, J.P.Teter, M.Wun-Fogle. Anisotropy compensation and magnetostriction in TbxDy1-x(Fe1-yTy)1.9(T=Co,Mn)[J], J.Appl.Phys.,1991,69 (8):5771-5773.
    [96][96]李培,伍虹,高军等.(TbDy)Fe2基定向凝固磁致伸缩合金的性能与组织和成分的关系[J],中国稀土学报,1998,16(4):332.
    [97]赵青,张茂才,邵东朗等.TbxDy1-xFe1.95合金不同晶体方向的磁致伸缩应变[J],功能材料,1999,30(2):152.
    [98]O.D.McMasters. Proceedings of International Symposium on Gaint Magnetostrictive Materials and their Application[C], Published by Advanced Machining Technology and Development Association, Tokyo,1992,5.
    [99]Li K S, Yang H C, Xu J, et al.. Heat transfer analysis during "One-Step" directional solidification process for giant magnetostrictive materials[J], Journal of Rare Earths, 2004,22 (2):183-185.
    [100]蒋成保,周寿增,张茂才等.定向凝固TbDyFe合金的取向、组织和磁致伸缩性能[J],金属学报,1998,34(2):164-170.
    [101]蒋成保.定向凝固Tb0.3Dy0.7(Fe,M)1.95超磁致伸缩合金的组织与性能[D].北京:北京科技大学,1996.
    [102]高学绪,张茂才,包小倩等.<113>轴向取向稀土磁致伸缩材料的制备与性能[J],中国稀土学报,2004,22(2):234-237.
    [103]Goran Engdahl. Handbook of Giant magnetostrictive materials[M], Sa Diego: Acedemic Press,2000,55.
    [104]蒋成保,赵岩,徐惠彬.定向凝固Tb-Dy-Fe合金的热处理组织与性能[J],金属学报,2004,40(4):378-382.
    [105]A.E.Clark, R.Abbundi, H.T.Savage, et al.. Magnetostriction of rare-earth-Fe2 laves phase compounds[J], Physica.,1977,73:86.
    [106]Y.J.Bi, J.S.Abell, A.M.H. Hwang. Defects in TERFENOL-D crystals[J], J.Magn. Magn. Mater.,1991,99 (1-3):159-166.
    [107]蒋成保,宫声凯,徐惠彬等.定向凝固Tb0.3Dy0.7(Fe,M)1.95超磁致伸缩合金微观缺陷的研究[J],功能材料,1997,28(6):570.
    [108]Mei W, T.Umeda, Zhou S Z, et al.. Preparation and magnetostriction of Tb-Dy-Fe sintered compacts [J], J.Magn.Magn.Mater.,1997,174:100.
    [109]师昌绪,李恒德,周廉主编.材料科学与工程手册[M],北京:化学工业出版社,2004,1-5.
    [110]I.Nakano, T.Tsuchiya, Y.Amitani. The international symposium on giant magnetostrictive materials and their applications [C], Tokyo, Japan,1992,77.
    [111]郭常霖,吴毓琴.层状结构铁电材料热压择优取向度的X射线测定法[J],物理学报,1980,29(12):1640.
    [112]王盘鑫.粉末冶金学[M],北京:冶金工业出版社,2005,6.
    [113]黄培云.粉末冶金原理[M],北京:冶金工业出版社,2004,169.
    [114]F.Thummler, et al.. Meta.& Mate. and Met. Rev.,1967,1 (6):69.
    [115]森辉夫,野村武史,野老诚吾等.烧结体的制造方法、烧结体和磁致伸缩材料[P],CN1457370A.
    [116]L.Sandlund, M.Fahlander, T.Cedell, et al.Magnetostriction, elastic moduli and coupling factors of composite Terfenol-D[J], J.Appl.Phys.,1994,75(10):5656-5658.
    [117]胡汉起主编.金属凝固原理[M],北京:机械工业出版社,2000,87-88,285.
    [118]徐建林,李红卫,张世荣等.粉末冶金法制备稀土超磁致伸缩材料的研究[J],中国稀土学报,2006,24(3):323-327.
    [119]杨红川,李红卫,张世荣等.制备稀土超磁致伸缩材料的方法和超磁致伸缩材料[P],CN1570187A.
    [120]Chen Y, Snyder J E, Schwichtenberg C R, et al.. Effect of the elastic modulus of the matrix on magnetostrictive strain in composites[J], Appl. Phys. Lett.,1999,74(8): 1159-1161.
    [121]徐建林,李红卫,张世荣等.速凝成晶-烧结法制备稀土超磁致伸缩材料的研究[J],稀有金属,2006,24(3):323-327.
    [122]王德中.环氧树脂生产与应用[M],北京:化学工业出版社,2001,47.
    [123]张开.高分子界面化学[M],北京:中国石化出版社,1996.
    [124]Chin T S, Hung M P, Tsai D S. Compaction and sintering behaviors of a Nd-Fe-B permanent magnet alloy[J], J.Appl.Phys.,1988,64 (10):5531-5533.
    [125]杜挺,邝马华.稀土-铁系超磁致伸缩材料的耐腐蚀特性[J],金属功能材料,1998,5(6):276-280.
    [126]钮鄂.力-磁-环境耦合作用下的超磁致伸缩材料断裂行为的研究[M],北京:北京科技大学,2006.
    [127]潘林.化学热处理应用技术[M],北京:机械工业出版社,2004,6,1-12,96-105.
    [128]P.Westwood, J.S.Abell, I.H.Clarke. Microstructure and magnetostriction in rare earth iron alloys[J], J.Appl.Phys.,1988,64 (10):5414-5416.
    [129]新井智久,山宫秀树,冈村正己等.超磁致伸缩材料和制造方法及其磁致伸缩致动器和传感器[P],CN1308379A.
    [130]J.Kolbel. The formation of nitride layers in glow dicharge nitriding[J], Gennan, Ibids, 1965,1555.
    [131]Martin. Hudis. Study of ion-nitriding [J], J.Appl.Phys.,1977,44 (4):1489-1496.
    [132]C.GTibbetts. Role of nitrogen atoms in ion-nitriding [J], J.Appl.Phys.,1974,45 (11): 5072.
    [133]徐冰仲,张颖智.离子氮化氮的渗入机理[J],金属热处理,1983,10:29-31.
    [134]刘洪喜,李小棒,李琪君.氮离子体浸没离子注入技术改善轴承钢滚动接触疲劳寿命和机械性能的研究[J],真空科学与技术,2007,27(1):31-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700