用户名: 密码: 验证码:
熔体直接发泡法制备纯铝基泡沫铝材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泡沫铝是由金属相和气孔组成的复合材料,它把连续相铝的金属特点(如强度大,耐高温等)和分散相气孔的特性(如阻尼,隔热,隔声,消音,减震,屏蔽等)有机结合在一起,可广泛应用于交通运输、建筑机械、冶金化工、电子通讯和航天航空等多个领域,其研究成为当今世界材料科学高技术领域的重要研究、开发内容之一。
     目前在工业应用中,人们对泡沫铝的力学性能越来越关注,尤其是其能量吸收性能。由于基体金属纯铝是一种很好的韧性材料,纯铝基泡沫铝作为一种韧性泡沫金属材料越来越受到人们的关注。但由于基体材料纯铝的熔点较高,与发泡剂氢化钛的分解温度不相匹配,以及凝固时收缩较大,用熔体直接发泡法制备纯铝基泡沫铝材料较为困难。本文系统地进行了熔体直接发泡法制备纯铝基泡沫铝材料的实验室试验和工程化试验研究。
     研究了纯铝基泡沫铝材料的凝固过程。研究表明,纯铝基泡沫铝材料具有独特的凝固性质,在自然冷却条件下冷却时,外层泡沫以层状凝固方式进行凝固,内层泡沫以体积凝固方式进行凝固,内层泡沫泡孔泡壁上有许多分散性的微小缩孔;当在强制水冷条件下进行冷却时,凝固得到的泡沫铝泡壁表面粗糙,凝固收缩在垂直于泡壁方向进行,均匀分布于整个泡壁。垂直于泡壁方向的凝固收缩消除了泡壁局部由于凝固而产生的裂纹,收缩的结果使泡壁变薄。由对纯铝基泡沫铝材料凝固特性的分析建立了泡孔凝固模型。通过对泡沫铝凝固过程中基体材料以及气孔内气体的体积变化的计算可知,纯铝基泡沫铝材料在凝固过程中孔隙率有所增大。
     讨论了熔体直接发泡法制备泡沫铝过程中工艺条件的控制。纯铝基泡沫铝制备过程中,在金属钙的添加量、搅拌温度、发泡时间和冷却条件一定的条件下,通过改变氢化钛的加入量和搅拌时间可以控制泡沫铝的孔隙率。制备的纯铝基泡沫铝材料的最大孔隙率可达92%以上,最小密度可达0.25g/cm3以下。
     对无泡层的形成与控制进行了研究,在泡沫铝制备过程中无泡层的形成分为三个阶段:第一阶段为发泡初期短时间内形成,在这个过程中,气泡向上运动,部分液体未被气泡运动所携带成为泡沫中的液膜,最后残留在底部形成无泡层;第二阶段和第三阶段为气泡长大过程中,由于Plateau边界处液体与液膜处液体存在压力差,促使液膜处的液体流向Plateau边界处,最后通过Plateau通道流向底部形成无泡层。在泡沫铝制备过程中,当熔体的粘度越大,表面张力越小时,无泡层的厚度越小。向含有3wt.%Ca的铝熔体中再加入0.5wt.%Mg后,熔体的表面张力显著降低,制得的泡沫铝中的无泡层厚度得到了很好的控制。
     通过工程化生产纯铝基泡沫铝材料的试验,确立了纯铝基泡沫铝材料产业化完整的工艺条件,成功地制造出了可商业化销售的纯铝基泡沫铝板材(1000×1800×Xmm3)。
     研究了熔体直接发泡法制备纯铝基泡沫铝材料时铝熔体泡沫的稳定性。在熔体直接发泡法制备纯铝基泡沫铝过程中,金属钙加入到熔体中以后产生了金属间化合物Al20CaTi2、Al4Ca和氧化物Al2O3。金属间化合物Al20CaTi2、Al4Ca弥散在铝熔体中使熔体的粘度增大,抑制了熔体的排液;而A12O3存在于界面处,这些氧化物在界面处的存在改变了曲面的毛细曲率,从而减缓了液膜和Plateau边界处间的毛细流动,而且氧化物对氢的吸附作用降低了界面能。上述三种作用提高了铝熔体泡沫的稳定性。
     对纯铝基闭孔泡沫铝材料和Al-6Si基闭孔泡沫铝材料进行了静态和动态压缩,试验中发现,纯铝基闭孔泡沫铝和铝硅基闭孔泡沫铝材料在静态和动态压缩过程中,均表现出不同的特点:纯铝基闭孔泡沫铝材料的压缩曲线较为平缓,显示出比较明显的塑性泡沫材料的特征;而铝硅基闭孔泡沫铝材料的压缩曲线则波动比较大,显示出比较明显的脆性泡沫材料的特征;通过分析两种基体材料的微观形貌和成分,发现Al基闭孔泡沫铝微观形貌主要是小块状和球状(Al20CaTi2),无大块或长条状金相;而Al-6Si基闭孔泡沫铝微观形貌主要是大片状和长条状相(Al3.21Si0.47、Al2O3、CaAl2Si2和Al3Ti)。
     对闭孔泡沫铝的能量吸收性能进行了分析,从闭孔泡沫铝的能量吸收能力、能量吸收效率和能量吸收图进行了详细的研究,结果表明:压缩速率相同,密度相等时,纯铝基闭孔泡沫铝的能量吸收能力要大于Al-6Si基闭孔泡沫铝的能量吸收能力;纯铝基泡沫铝材料能量吸收效率最高可达80%;对纯铝基泡沫铝材料能量吸收图的研究发现,纯铝基闭孔泡沫铝材料作为缓冲吸能材料使用时,具有相当好的能量吸收能力,且最大容许应力也较好。
Aluminum foam is a composite material consisting of metallic matrix and gas bubbles. It has an extensive application in different areas, including automotive, transportation, architecture, machinery, metallurgy, chemical engineering, communication and aerospace, due to its advantages such as, high strength, fire-resistance, sound and energy absorption, sound isolation, impact absorption and interception of electric wave. At present, tremendous research activities concerning aluminum foam have been implemented.
     In industry applications, mechanical behavior, especially, energy-absorbing performance has attracted significant attention. Because of excellent toughness of the matrix metal, pure aluminum matrix foam can be utilized as toughness reinforcing metal foam material. Current knowledge reveals that the preparation of pure aluminum matrix foam by direct foaming in melt is difficult because of the higher melting point temperature, which does not match the decomposition temperature of foaming agent, and the bigger shrinkage during solidification. In this paper, both laboratory scale and pilot plant trials of the direct foaming in melt method for fabricating pure aluminum matrix foam are investigated and discussed in details.
     Solidification process of pure aluminum matrix foam material was studied. Results showed that pure aluminum matrix foam material had special solidification character. When pure Aluminum matrix foam was cooled by free cooling, outer foam solidified in the layer solidification way, inner foam solidified via bulk solidification way, and some minute shrinkage voids formed dispersedly at the cells of inner foam; when pure Aluminum matrix foam was cooled by water, the surfaces of cells were ragged, solidification shrinkage occurred uniformity at the cell walls along the vertical direction. The vertical direction shrinkage eliminated the cracks, and made the cells wall thinner. Solidification model of cells were established. Volume change of bulk material and gas during solidification were explained, showing that the porosity of pure aluminum matrix foam become bigger during solidification.
     In addition, the control method of preparation techniques conditions of aluminum foam by direct foaming in melt was discussed. When Ca addition、stirring temperature、foaming time and cooling condition were constant, the porosity of aluminum foam could be controlled by changing the TiH2 addition and the stirring time. The biggest porosity could reach above 92%, and the lowest density could reach below 0.25g/cm3.
     The formation and control of bubble-free layer were researched. A triple-step process was established for the formation of bubble-free layer:for the initial stage, bubbles moved upwards, and a portion of liquid was remained at the bottom and a bubble-free layer was formed; the second and the third processes were during the process of growing of bubbles, the bigger pressure of liquid stored in films made liquid in films flow to plateau borders during these stages, and then the liquid in plateau borders flowed to the bottom through plateau channels, and formed bubble-free layer. When 0.5wt.%Mg was added into aluminum melt which contained 3wt.%Ca, the surface tension of melt decreased significantly, and aluminum foam block with thin bubble-free layer could be gained.
     Industrialization technique and formation conditions of pure Aluminum matrix foam were established through the experimentation in semi-industry, and the commercial pure aluminum matrix foam slabs (1000×1800×Xmm3) were obtained.
     The stability of aluminum melt foam during the preparation of pure aluminum matrix foam material by direct foaming in melt was investigated. Intermetallics, such asAl2oCaTi2、Al4Ca and Al2O3 were confirmed in the melt after adding Ca. Those intermetallic compounds Al4Ca and Al20CaTi2 will enhance the viscosity, and restrained the drainage of melts; Al2O3 at the surface of cell walls changed the curvature of curved face, which slowed up the capillary flow between liquid film and the plateau borders, and also had an adsorption force-field for H2, moreover, the adsorption action could reduce the interface energy. The three above processes stabilized the pure aluminum matrix foam.
     Researches on static and dynamic compressions of pure aluminum matrix foam and Al-6Si matrix foam have been conducted. Results showed that there were different compression processes between aluminum matrix foam and Al-6Si matrix foam during static compression and dynamic compression. The compression curves of pure aluminum matrix foam were flat, indicating that more obvious characteristics of the plastic foam; while the compression curves of Al-6Si matrix foam were more undulated, apparently showing that more obvious characteristics of the brittleness foam. The microscopic patterns and phase compositions of matrix were studied, the results showed the microstructures of pure aluminum matrix foam existed basically in small pieces (Al20CaTi2); whereas the microcosmic pattern of Al-6Si matrix foam mainly existed as big pieces、long needles (Al3.21Si0.47、Al2O3、CaAl2Si2 and Al3Ti).
     Energy absorption characteristic of closed-cell aluminum foam was systematically analyzed, with energy absorption capabilities, efficiencies and figures of aluminum foams were studied. The results showed that the energy absorption capability of pure aluminum matrix foam were more bigger than that of Al-6Si matrix foam under the same compressing speed and the density; The energy absorption efficiency of pure aluminum matrix foam could be as high as 80%; it is also found, from the energy absorption figure of pure aluminum matrix foam, that pure aluminum matrix foam had goodish energy absorption capability and the maximal allowable stress as energy absorption material.
引文
1. Lorna J.Gibson,Michael F.Ashby著,刘培生译,多孔固体结构与性能[M],北京:清华大学出版社,2003,2.
    2. A.Sosnik.US Patent 2434775,1948 Elliott J C. Method of producing metal foam [P], US2751289, 1956.
    3.韩福生.一种新型的物理功能材料——泡沫铝[J],中外技术情报,1996,6:3-6
    4.武小娟,孙伟成,隋志成.泡沫铝的制备与应用[J],《新技术新工艺》·材料与表面处理,2002,4:49-51.
    5.崔舜,曾庆学,张维玉.泡沫铝制备工艺的试验研究[J],江苏冶金,1998,(2):31-35.
    6. Gara B A, Bogetti T A, Fink B K, et al. Aluminum foam integral armor:A new dimension in armor design[J], Composite Structures,2001, (52):381-395.
    7. Ji Q, Le L H, Filipow L J. Ultrasonic wave propagation in water-saturated aluminum foams [J], Ultrasonics,1998, (36):759-765.
    8. Williamsen J, Howard E. Video imaging of debris clouds following penetration of lightweight spacecraft materials [J], International Journal of Impact Engineering,2001, (26):865-877.
    9. Andrews E W, Gioux G, Onck P, Gibson L J. Size effects in ductile cellular solids. Part Ⅱ:experimental results [J], International Journal of Mechanical Sciences,2001, (43):701-713.
    10. Andrews E W, Gibson L J. On notch-strengthening and crack tip deformation in cellular metals [J], Materials Letters,2002, (57):532-536
    13.今川耕治,上野英俊,秋山茂.发泡金属と多孔性金属[J],工业材料,1982,30(10):69-75.
    15.谷克人.发泡金属[J],工业材料,1982,30(10):83-88.
    18.柿泽纪世雄.特许出愿力かち见た发泡材料の动向[J],工业材料,1987,35(14):51-53.
    19.今川耕治,秋山茂,上野英俊.发泡金属の开发·利用动向[J],工业材料,1987,35(14):45-46.
    21.王祝堂.泡沫铝材:生产工艺、组织性能及应用市场(1)[J],轻合金加工技术,1999,27(10):5-8.
    22. Akiyama S, Imagawa K, Kitahara A, et al. Foamed metal and method of producing same[P], US4713277,1987.
    23. Miyoshi T, Itoh M, Mukai T, M. Mabuchi, T. G. Nieh, K. Higashi. Enhancement of energy absorption in a closed-cell aluminum by the modification of cellular structures [J], Scripta Materialia,1999, 41(10):1055-1060.
    24. Wen C E, Mabuchi M, Yamada Y. Processing of fine-grained aluminum foam by spark plasma sintering[J], Journal of Materials Science Letters,2003, (22):1407-1409.
    25. Baumgartner F, Duarte I, Banhart J. Industrialization of powder compact foaming process [J], Advanced Engineering Materials,2000,2(4):168-174.
    26. Beals J T, Thompson M S. Density gradient effects on aluminum foam compression behavior [J], Journal of Materials Science,1997, (32):3595-3600.
    27.左孝青,孙加林.泡沫金属制备技术研究进展[J],材料科学与工程学报,2004,22(3):452-456.
    28. Duarte I, Banhart J. A study of aluminium foam formation—kinetics and microstructure [J], Acta Materialia,2000, (48):2349-2362.
    29. Baumeister J, Banhart J, Weter M. Aluminium foams for transport industry [J], Materials & Design, 1997,18(4/6):217-220
    30. J Banhart. Industrialisation of Aluminium Foam Technology [C]. Proceedings of the 9th International Conference on Aluminium Alloys (2004):764-770.
    31. Miller R E. A continuum plasticity model for the constitutive and indentation behaviour of foamed metals [J], International Journal of Mechanical Sciences,2000, (42):729-754.
    32. www.cymat.com.
    33. Hideo Nakajima. Fabrication, properties and application of porous metal with directional pores [J], Progress in materials science,2007,52(7):1091-1173.
    34.陈祥,李言祥.金属泡沫材料研究进展[J],材料导报,2003,17(5):5-11.
    35. Shapovalov V. I. Method for manufacturing porous articles[P], US5181549,1993.
    36. Kennedy A R. The effect of TiH2 heat treatment on gas release and foaming in Al-TiH2 preforms[J], Scripta Materialia,2002, (47):763-767.
    37. Gergely V, Curran D C, Clyne T W. The FOAMCARP process:foaming of aluminium MMCs by the chalk-aluminium reaction in precursors [J], Composites Science and Technology,2003,63 (16): 2301-2310.
    38. Oak S M, Kim B, Chun M S, Moon Y H. Physical modeling of bubble generation in foamed-aluminum[J], Journal of Materials Processing Technology,2002,130-131 (20):304-309.
    39. Kim S Y, Kang B H, Kim J H. Forced convection from aluminum foam materials in an asymmetrically heated channel [J], International Journal of Heat and Mass Transfer,2001,44 (7):1451-1454.
    40. Gniloskurenko S V, Raichenko A I, Nakamura T. Theory of initial microcavity growth in a liquid metal around a gas-releasing particle. n. bubble initiation conditions and growth kinetics[J], Powder Metallurgy and Metal Ceramics,2002,41(1-2):90-96
    41. Yang C C, Nakae H. Foaming characteristics control during production of aluminum alloy foam [J], Journal of Alloys and Compounds,2000,313 (1-2):188-191.
    42. Yang C C, Nakae H. The effects of viscosity and cooling conditions on the foamability of aluminum alloy [J], Journal of Materials Processing Technology,2003,141 (2):202-206.
    43. Degischer H P. Innovative light metals:metal matrix composites and foamed aluminium[J], Materials & Design,1997,18(4/6):221-226
    44. Reyes A, Hopperstad O S, Berstad T, Hanssen A G, Langseth M. Constitutive modeling of aluminum foam including fracture and statistical variation of density[J], European Journal of Mechanics A/Solids, 2003,22 (6):815-835.
    45.张国梁.铸造多孔铝合金的探讨[J],特种铸造及有色合金,1989,6(14):53-54.
    46.张国梁.泡沫铝合金熔融发炮工艺的初步研究[J],特种铸造及有色合金,1992,2(4):15-17.
    47.张勇,朱光冀,何德坪.泡沫铝的低压渗流工艺及常见缺陷分析[J],东南大学学报,1994,24(1):54-58.
    48.马立群,何德坪.新型泡沫铝的制备及其孔结构的控制[J],材料研究学报,1994,8(1):11-17.
    49.李子全,吴炳尧,赵子文.渗流铸造法制备ZL104泡沫铝合金[J],特种铸造及有色合金,1997,(1):1-3.
    50.程桂萍,陈锋,何德坪.用渗流法制备通孔泡沫金属时几个工艺因素的探讨[J],铸造,1997,(2):1-4.
    51.何德坪,马立群,余兴泉.新型通孔泡沫铝的传热性质[J],材料研究学报,1997,11(4):431-434.
    52.宋振纶,何德坪.铝熔体泡沫形成过程中粘度对孔结构的影响[J],材料研究学报,1997,11(3):275-279.
    53.王斌,何德坪,舒光冀.铝合金泡沫化过程中影响成核的两个工艺因素对孔结构的影响[J],铸造,1998,(4):8-11.
    54.王怡红,赵军,宋苇,等.TiH2的SiO2凝胶包裹对其释氢的影响[J],东南大学学报,1999,29(6):145-148.
    55. Zhen-lun Song, Jin-song Zhu, Li-qun Ma, De-ping He. Evolution of foamed aluminum structure in foaming process [J], Materials Science and Engineering A,2001,298 (1-2):137-143.
    56.吴照金,何德坪.泡沫铝凝固过程中孔隙率的变化[J],科学通报,2000,45(8):825-835.
    57.杨东辉,何德坪,杨上润.氢化钛热分解反应动力学及铝合金熔体泡沫化研究[J],中国科学B辑化学,2004,34(3):195-201.
    58.王月.压缩率和密度对泡沫铝吸声性能的影响[J],机械工程材料,2002,26(3):29-31.
    59.李道韫,徐连棠,赵庭良,等.泡沫铝的孔隙结构和透流特性[J],吉林工业大学学报,1994,24(4):68-72.
    60. www.aluminumfoam.cn.
    61.李道韫,徐连棠,赵庭良,战松江,吴林美.泡沫铝的孔隙结构和透流特性[J],吉林工业大学学报,1994,24(4):68-72.
    62.赵庭良,徐连棠,李道韫,战松江,吴林美,周为.泡沫铝的吸声特性[J],内燃机工程,1995,16(2):55-59.
    63.陆晓军,孙巍,梁杰.工业射芯机泡沫铝排气消声器实验研究[J],噪声与振动控制,2000,2(12):47-48.
    64. http://www.zhonghuiaf.com.
    65.左孝青,张金娅,王茗,孙加林,史庆南,刘荣佩.泡沫铝发泡过程动力学[J],昆明理工大学学报,2003,8(5):45-51.
    66.左孝青,张金娅,王茗,孙加林,史庆南,刘荣佩.泡沫铝发泡过程热力学[J],昆明理工大学学报,2003,28(5):45-51.
    67.左孝青,潘晓亮,高芝.泡沫铝气泡长大动力学[J],中国有色金属学报,2006,16(12):2040-2046.
    68.刘源,李言祥,张华伟.藕状多孔金属Mg的Gasar工艺制备[J],金属学报,2004,40(11)1121-1126.
    69.张华伟,李言祥.金属熔体中气泡形核的理论分析[J],物理学报,2007,56(8):4864-4871.
    70. http://tech.tom.com.
    71.张晓明,姚广春.连通孔泡沫铝材料的研究[J],轻合金加工技术,1999,27(5):36-39.
    72.罗洪杰.熔体发泡法制备泡沫铝材料的研究[D],沈阳:东北大学,2005.
    73.郭志强,姚广春,尉海军,李红斌.泡沫铝材的泡体演化过程[J],过程工程学报,2006,6(6):978-982.
    74.祖国胤,张敏,姚广春,李红斌.轧制复合-粉末冶金发泡工艺制备泡沫铝夹心板[J],过程工程学报,2006,6(6):974-977.
    75.张敏,祖国胤,姚广春,段水亮.泡沫铝芯夹心板的制备及泡沫孔的研究[J],东北大学学报(自然科学版),2006,27(5):519-519.
    76.张敏,祖国胤,姚广春,段水亮.泡沫铝夹心板的制备及其界面结合机理的研究[J],功能材料,2006,37(2):281-283.
    77.王兵.新型泡沫铝材料日前在东北大学研制成功[J],功能材料信息,2006,3(4):41.
    78.何德平,马立群,余兴全.新型通孔泡沫铝的传热特性[J],材料研究学报,1997,11(4):431-434
    79.凤仪,朱震刚,陶宁,郑海务.闭孔泡沫铝的导热性能[J],金属学报,2003,39(8):817-820.
    80.方正春,马章林.泡沫铝在噪声控制中的应用[J],材料开发与应用,1999,14(4):42-46.
    81. Yu Hai-jun, Li Bing, Yao Guang-chun. Sound absorption and insulation property of closed-cell aluminum foam [J], Transactions of Nonferrous Metals Society of China.2006,16(s3):1383-1387.
    82. Yu Hai-jun, Yao Guang-chun, Wang Xiao-lin. Sound insulation property of Al-Si closed-cell aluminum foam bare board material [J], Transactions of Nonferrous Metals Society of China.2007, 17(1):93-98.
    83.王祝堂.泡沫铝材:生产工艺、组织性能及应用市场(3)[J],轻合金加工技术,1999,27(12):1-5
    84.刘培生,李铁藩,傅超.多孔金属材料的应用[J],功能材料,2001,32(1):12-15.
    85.尉海军,姚广春,李兵,郭志强.Al-Si闭孔泡沫铝电磁屏蔽效能[J],功能材料,37(8):1239-1241.
    86. B Chuba. Electroless copper/nickel shielding:high performance solution to electromagnetic interference [J], Plating and Surface Finishing,1989, (9):30-33.
    87.凤仪,郑海务,朱震刚.闭孔泡沫铝的电磁屏蔽性能[J],中国有色金属学报,2004,14(1):33-36.
    88. Jerry Lord & Pail Grant, National Physical Laboratory, Teddington, Middlesex, UK, Review of Indusrial Suevey on Metallic foam, December 2000.
    89.刘志东,王景丽,黄因慧,陈劲松,田宗军.泡沫金属的制备方法及应用[J],航空精密制造技术,2008,1(44):59-62.
    90.刘荣佩,左孝青,杨晓源.泡沫金属渗流铸造工艺及填料的研究[J],昆明理工大学学报,2000,25(4):29-31
    91.许庆彦,陈玉勇,李庆春.多孔泡沫金属的研究现状[J],铸造设备研究,1997,(1):18-24
    92.孙伟成,武小娟.电沉积泡沫铝[J],金属功能材料,2003,10(2):19-21
    93.陈雯,刘中华,朱诚意.泡沫金属材料的特性、用途及制备方法[J],有色矿冶,1999,(1):33-36
    94. Shapovalov V I.U.S.Pat,5 181549.1993-01-26.
    95.李言祥,刘源.金属/气体共晶定向凝固规则多孔金属的研究进展[J],材料导报,2003,17(4):14.
    96. Hans-Peter Degischer,Brigitte Kriszt.Handbook of Cellular Metals[M],左孝青,北京:化工工业出版社,2005,9-10.
    97. Tetsuji Miyoshi, Masao Itoh, Shigeru Akiyama. ALPORAS Aluminum Foam:Production Process, Properties, and Applications [J], Advanced engineering materials,2000,2 (4):179-183.
    98. L.Ma, Z.Song. Celluar structure control of aluminium foams during foaming process of aluminium melt[J],Scripta Mater.1998,39(11):1523-1528
    99. Baumgartner F, Duarte I, Banhart J. Industrialization of powder compact foaming process[J], Advanced Engineering Materials,2000,2(4):168-174
    100.赵玉园.制备泡沫铝的一种新方法:烧结溶解法,世界科技研究与发展,2003,25(1):66-71
    101.尉海军,李兵,郭志强,姚广春.Al基和Al-6Si基闭孔泡沫铝的动态压缩性能[J],中国有色金属学报,2007,17(5):704-709.
    102.祖国胤,姚广春,李红斌.轧制制度对闭孔泡沫铝材料塑性的影响[J],东北大学学报(自然科学版),2007,28(2):237-240.
    103.姚广春,刘宜汉.先进材料制备技术[M],沈阳:东北大学出版社,2006:29.
    104.大角泰章.金属氢化物的性质与应用[M],北京:化学工业出版社,1990:36.
    105.高洪吴,刘士魁,赵彦波,刘顺华,李长茂.加热氧化处理对TiH2释氢行为的影响[J],中国有色金属学报,2005,15(3):363-367.
    106.罗洪杰,吉海宾,杨国俊,姚广春.氢化钛的分解行为及其在制备泡沫铝中的应用[J],东北大学学报,2007,1(28):87-90.
    107.马宏声.有色金属锭坯生产技术[M],化学工业出版社,北京,2007:118.
    108.章四琪,黄劲松.有色金属熔炼与铸锭[M],化学工业出版社,北京,2006:113-115.
    109.胡忠,张启勋,高以熹.铝镁合金铸造工艺及质量控制[M].北京:航天工业出版社,1990.
    110. Baruas H A, Hutton J F,吴大诚,等译.流变学导引[M],中国石化出版社,1992.
    111.V.Gergely, T.W.Clyne. Drainage in standing liquid metal foam:modeling and experiment observations [J], Acta Material,2004,52(10):3047-3058.
    112. Koehler SA, Hilgenfeldt S, Stone HA. A Generalized view of Foam Drainage:Experiment and Theory [J], Langmuir,2000,16(15):6327-6341.
    113. P.Grassia, S.J.Neethling, C.Cervantes, H.T.Lee. The growth, Drainage and bursting of foams [J], Colloids and Surfaces A:Physicochem. Eng. Aspects.2006,274(1-3):110-124.
    114.张建生,左军建.气体运输方程及应用[J],军械工程学院学报,2001,13(2):3-38.
    115. Kendoush A A. Hydrodynamic model for bubbles in a swarm [J], Chem. Eng. Sci.,2001,56(1): 235-38.
    116.李兵,姚广春,王永,罗洪杰.纯铝基泡沫铝材料的制备工艺[J],东北大学学报(自然科学版),2007,28(8):1159-1162.
    117. Ashok Bhakta, Eli Ruchenstein. Decay of standing foams:drainage, coalescence and collapse [J], Advances in Colloid and Interface science,1997,70(7):1-124.
    118.罗洪杰.熔体直接发泡法制备泡沫铝材料的研究[D].沈阳:东北大学,2005:20-25.
    119.魏莉,李振江,姚广春.泡沫铝发泡过程中气泡的稳定性[J],东北大学学报(自然科学版),2005,26(11):1090-1092.
    120. S. W. Ip, Y. Wang, J. M. Toguri. Aluminum foam stabilization by solid particles [J], Canadian Metallurgical Quarterly,1999,38(1):81-91.
    121. N. Babcsan, D. Leitlmeier, J. Banhart. Metal foams—high temperature colloids:Part Ⅰ. Ex situ analysis of metal foams [J], Colloids and Surfaces A:Physicochemical and Engineering Aspects,2005, 261 (1-3):121-130.
    122. A.Hailbel, A.Rack, J.Banhart. Why are metal foams stable?[J], applied physics letters,2006,89(15): 154102/01-154102/03.
    123. John Banhart. Metal Foams:Production and Stability [J], advanced engineering materials,2006, 8(9):781-794.
    124. Carolin Korner, Michael Arnold, Robert F. Singer. Metal foam stabilization by oxide network particles [J], Materials Science and Engineering A,2005,396(1-2):28-40.
    125. Th. Wiibben, S. Odenbach. Stabilisation of liquid metallic foams by solid particles [J], Colloids and Surfaces A:Physicochemical and Engineering Aspects,2005,266(1-2):207-213.
    126.吴铿,潜伟,储少军.制备泡沫铝时增粘过程的基础研究[J],中国有色金属学报,1998,1(15):80-85.
    127.马宏声.有色金属锭坯生产技术[M],化学工业出版社,北京,2007:94-95.
    128. E. Koza, M. Leonowicz, S. Wojciechowski, F. Simancik. Compressive strength of aluminium foams [J], Materials letters,2003,58:132-135.
    129.郑明军,何德坪.胞状铝(合金)的准静态压缩性能[J],功能材料,2005,4(36):536-538.
    130.田杰,胡时胜.基体性能对泡沫铝力学行为的影响[J],工程力学,2006,23(8):168-171.
    131.程和法,黄笑梅,许玲.基体对泡沫铝压缩行为与吸能性的影响[J],有色金属,2003,55(3):10-13.
    132.尉海军,姚广春,李兵,王勇.Al-Si闭孔泡沫铝材料的压缩形为[J],东北大学学报(自然科学版)2006,27(10):1126-1129.
    133. Cao X Q, Wang Z H, Ma H W, Zhao L M, Yang G T. Effects of heat treatment on dynamic compressive properties and energy absorption characteristics of open-cell aluminum alloy foams [J], Trans Nonferrous Met Soc China,2006,16:159-163.
    134. Wang Z H, Ma H W, Zhao L M, Yang G T. Studies on the dynamic compressive properties of open-cell aluminum alloy foams [J], Scripta Mater,2006,54:83-87.
    135. Paul A. Ramamurty U. Strain rate sensitivity of closed-cell aluminum foam [J], Mater Sci Eng A,2000, A281:1-7.
    136.康颖安,张俊彦,谭加才.相对密度对泡沫铝力学性能和能量吸收性能的影响[J],功能材料,2006,37(2):247-254.
    137. F. S. Han, Z.G Zhu, J.C. Gao. Compressive deformation and energy absorbing characteristic of foamed aluminum [J], Metall Mater Trans A,1998; 29A:2497-2502.
    138.曾斐,潘艺,胡时胜.泡沫铝缓冲吸能评估及其特性[J],爆炸与冲击.2002;22(4):358-362.
    139. Gibson L J, Ashby M F. Cellular Solids:Structure and Properties [M], Oxford:Pergamon Press,1997. 330.
    140. Rusch K C. Load-compression behavior of flexible foams [J], Journal of Applied Polymer Science, 1969,13:2297-2311.
    141. Miltz J, Gruenbaum G. Evaluation of cushion properties of plastic foams compressive measurements [J],Polym Eng Sci.,1981; 21:1010-1014.
    142. Evans A G, Hutchinsom J W, Ashby M F. Multifunctionality of cellular metal systems [J], Prog Mater Sci,1999; 43:171-221.
    143. Hans-Peter Degischer,Brigitte Kriszt.Handbook of Cellular Metals[M],左孝青,北京:化工工业出版社,2005,156.
    144. Gerasimov A V. Protection of an explosion chamber against fracture by a detonation wave [J], Combust Explo Shock,1997; 33:111-116.
    145.王海福,冯顺山.多孔材料中冲击波衰减特性的实验研究[J],北京理工大学学报,1997;17(1):41-44.
    146. Thiele W. Aluminum used as an impact energy absorbing materials [J], Metals and Materials,1972; (8):349-352.
    147. Maiti S K, Gibson L J, Ashby M F. Deformation and energy absorption diagrams for cellular solids [J], Acta Metall,1984; 32:1963-1975.
    148.胡时胜,刘剑飞,王正道,宋博.低密度多孔介质的缓冲和减振[J],振动与冲击,1999;(18)2:39-42.
    149. Ashby M F, Evans A G, Fleck N A, Gibson L J, Hutchinson J W, Wadley H N G. Metal foams:a design guide [M], London:Butterworth press,2000:154.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700