用户名: 密码: 验证码:
处理酸性含砷废水的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着冶金、化工等产业的日益发展,以及含砷制品市场的日益扩大,人们对砷污染严重性认识的加深,使得砷污染引发的各种问题受到世人的普遍关注。特别是矿山的酸性含砷废水如果不经处理而直接排放将对水体和土壤造成严重污染,并最终通过食物链或地面水、地下水进入人体而危害人类健康。因此,对酸性含砷废水的有效治理刻不容缓,研究、开发高效经济的含砷废水处理技术,具有重大的社会、经济和环境意义。
     本论文对氧化-混凝-吸附法进行了探索。研究结果表明:该新方法解决了传统化学法的砷去除率不高的问题,废水经处理后各项指标均达到新的国标《地表水环境质量标准》(GB3838-2002)中规定I、II、III类水体中砷含量不得超过0.05mg/L的要求。
     在氧化-混凝-吸附实验中,先做单一混凝实验,确定最佳混凝工艺条件,然后固定混凝条件做氧化实验,确定最佳氧化工艺,最后对经氧化-混凝处理后的实验用水采用活性炭吸附实验。实验得出最佳工艺条件:pH=8,FeCl3·6H2O=65.0mg/L;次氯酸钠=5.0mg有效氯/L;MA-Φ1.5型号的活性炭=2.0g/L,吸附30min,最后砷去除率可达99.18%。废水经氧化-混凝-吸附全流程处理后出水砷能达到排放标准的要求,在对实际矿山废水的处理也能达标排放。
     氧化-混凝-吸附法主要是根据含砷废水的污染特性及污染物质的存在形式,利用化学药剂的氧化作用、吸附作用以及吸附剂的物理吸附作用、化学吸附作用等机制达到除砷的目的。
With the development of metallurgy and chemical industry and Arsenic products market increasing day by day, People know the seriousness of arsenic pollution. The world's play attention to the various problems which caused by the arsenic pollution. Especially the acidic mining waste of arsenic direct emissions if not handle, water and soil will cause serious pollution. And finally, food or water by groundwater enter human body and harm to human health. Therefore, It has the significant social, economic and environmental significance that the effective acidic arsenic wastewater treatment, research and development of efficient foreign economic arsenic wastewater treatment technology.
     This paper explored one kind of processing technology, the oxidation–coalgulation– adsorption method. Research results show: This new technology solved the problem which the traditional chemical method of arsenic removal rate was not high and all indexes reached new GB "water environment quality standards" (GB3838-2002) requirement the water of I, II, III regulations such as water shall not exceed 0.05 mg /L after wastewater treatment.
     In the oxidation of adsorption experiments, did single coagulation experiment to determine the optimal coagulation process and conditions firstly, then did oxidation experiments to determine the optimal oxidation, oxidation process which fixed coagulation conditions, Finally, adopted adsorption experiments to the oxidation of coagulation treatment-experimental water. The best technological conditions: pH=8, FeCl3·6H2O=65.0mg/L; NaClO=5.0mg chlorine-antiseptic/L; MA-Φ1.5 models of activated carbon =2.0g/L, adsorption 30min, Arsenic removal rate can reach 99.18%. The pollution index reaches wastewater discharge standards after wastewater treatment by oxidation-whole process coagulation-after water absorption, actual mining wastewater treatment aslo can discharge standards.
     Oxidation-coagulation-adsorption process was mainly based on the characteristics of wastewater containing arsenic pollution of pollutants and forms, using of chemical oxidation, adsorption and flocculation mechanism and absorbent adsorption effect of physical and chemical adsorption mechanism to remove the arsenic.
引文
[1] 2008全国环境统计公报.国家环境保护总局,2009
    [2]刘燕.阳宗海水体砷污染事件带给我们的启示.给水排水动态,2008,(6):3~4
    [3]李艺.有色多金属矿山砷污染对生态环境的影响及其治理分析.地球与环境,2008,36(3):256~260
    [4]肖细元,陈同斌,廖晓勇,等.中国主要含砷矿产资源的区域分布与砷污染问题.地理研究,2008,27(1):201~212
    [5]刘建国,卢学实,曾虹燕.水体系中砷污染及除砷方法探讨.湖南环境生物职业技术学院学报,2002,8(2):119~122
    [6]冯克亮.水质砷污染及除砷新技术.海洋环境科学,1994,13(1):78~81
    [7]王薇,徐炎华.水体中砷污染和治理概况.微量元素与健康研究,2005,22(5):59~61
    [8]曹会兰.砷对人体的危害与防治.化学世界,2003,(10):559~560
    [9] Kala S V,Neely M W,Kala G,Prater C I,Atwood D W,Rice J S,Lieberman M W.J.Biol.Chem, 2000,275:33404~33408
    [10]张晓红,陈敏.砷的污染毒性及对人体健康的影响.甘肃环境研究与监测,1999(12):215~217
    [11]陈保卫,那仁满都拉,吕美玲.砷的代谢机制、毒性和生物监测.化学进展,2009,21(2/3):474~481
    [12]吕新之.砷的环境化学.枣庄师专学报,1998,(3):40~42
    [13] Hoemer G.Remove of arsenic experiences of commercial plants.DV GW 2Sch riftenr,Wasser,1993,82:189
    [14] Watt C,Le X C.Biogeochemistry of Environmentally Important Trace Elements (Eds.Cao Y,Braids O C).Washinton DC:American Chemical Society,2003
    [15]叶瑛,季珊珊,邬黛黛,等.几种吸附剂吸附亚砷酸根离子过程中pH值的动态变化.高校地质学报,2006,12(2):228~233
    [16] THOMAS S Y,CHOONGA T G,CHUAHA Y,etal.Arsenie toxieity,health hazards and removal teehniques from water:an overview.Desalination,2007,217:139~166
    [17]邱立萍.砷污染危害及其治理技术.新疆环境保护,1999,21(3):15~19
    [18] Rosehart,R and J. Lee.Effective Methods of Arsenic Removal from Gold Mine wastes. Can.Min. J. 1972: 53~57
    [19]许万文,张文涛.德兴铜矿酸性矿山废水污染分析.德兴铜矿酸性矿山废水污染分析.2004.3
    [20]冯丽娟.矿山中砷的环境污染特征.环境大视野,2008(3):112
    [21]王凤艳,徐秀梅.矿山采选工程尾矿库选矿废水的水质特征分析.监测分析,2001(3):57~58
    [22]付登科.浅谈含砷废水的治理技术.江西能源,2006(4):75~76
    [23]孟样和,胡国飞.重金属废水处理.第一版.北京:化学工业出版社,2000.226~227
    [24]易德莲,等.用聚合硫酸铁处理硫酸生产中含砷废水的实验研究.硫酸工业,1996,(2):42
    [25] Jingtai Han,Fyfe william S.Arsenic removal from water by iron-sulphide minerals.Chinese Science Bulleti,2000,45(15):1430~1434
    [26] Nikolaidis Nikolaos P,Dobbs Gregory M,Laekovic Jeffrey A.Arsenic removal by zero-valent iron:field, laboratory and modeling studies.Water Researeh.2003.37(6):1417~1424
    [27] BOTHE J V,BROWN P W.Arsenic immobilization by calcium arsenate formation.Environ Sci Technol,1999,33(21):3806~3811
    [28]朱义年,张华,梁延鹏,等.砷酸钙化合物的溶解度及其稳定性随pH值的变化.环境科学学报,2002,25(12):1652~1660
    [29] ROBINS R G.The solubility of metal arsenies.Metallurgical Transactions B,1981(12) B:103~109
    [30] NISHIMURA T,TOZAWA K.Removal from waste water by addition of calcium hydroxide andstabilization of arsenic-bearing precipitates by calcination //OLIVER A J.Impurity Control and Dispsal,Canadian Institute of Mining.Montreal.Canada:Metallurgy and Petroleum,1985:3/l~3/17
    [31] ViraraghavanT,Subramanian K S,Aruldoss J A.Arsenic in drinking water problems and Solutions.Water Science and Technology,1999,40(2):69~76
    [32] Rosehart,R.and J.Lee.Effective Methods of Arsenic Removal from Gold Mine Wastes.Can.Min.J,1972.53~57
    [33]林玉琴,甘知行,周淑媛.氢氧化铁一纸浆复合吸附剂处理饮用水中砷的实验室研究.水文地质工程地质,1991,18(5):46~47
    [34]庄明龙,柴立元,闵小波,等.含砷废水处理研究进展.工业水处理,2004,24(7):13~17
    [35]邹图德.浅谈含砷废水的危害和治理.新余高专学报,2000,5(2):43~44
    [36]余青原,王琳,张宝伟.浅析水中砷的去除.山西建筑,2007,33(1):182~184
    [37]黄继国,张永祥,吕斯濠.重金属废水处理技术综述世界地质,1999,18(4):83~86
    [38] Nakazawa HiroshlSato Hayato,Hasebe Shigeru.Shigen to Sozai l998,105(3):239~244
    [39]郭永文.离子浮选法处理含重金属离子废水的研究.东北工学院学报,18~23
    [40] A.M.Гольман.离子浮选的基本原理及其在水冶中的应用.49~54
    [41] A N Claraka,D J Wilson.From Flotation.Theory and Application.,NewYork.1983
    [42]许孝元.气浮法处理酸性含砷废水的试验研究.环境科学与技术,1991(4):9~11
    [43]闵世俊.含砷工业废水处理现状与进展.广东微量元素科学,2008,15(8):1~6
    [44]彭海清,谭章荣,孟长再.电凝聚技术在水处理中的应用.化工技术经济,2002,2:30~33
    [45]杨力.砷污染及含砷废水治理.有色金属加工,1999,(4):27~29
    [46]杨佼庸.水溶液中砷的状态和含砷废水处理.有色金属(冶炼部分),1981,(3):11~14
    [47] Chwirka JD,Tompson BM,stomp M JM.Removing arsenic from ground water.J Amer Water Works Association,2000,92(3):79~88
    [48] Chen H w.Arsenic treatment consideration.J Amer Water Works Assoeiation,1999,91(3):74~85
    [49] suzuki T M,Bomani J O,Matsunaga H,etal.Removal of As(Ⅲ) and As(V) by a porous spherical resin 1oaded with monoclinic hydrous zirconium oxide.Chemistry Lettesr,1997:1119
    [50] Vagliasindi F G A,Benjamin M.Arsenic removal in fresh and NOM-preloaded ion exchange packed bed adsorption reactors.Water science and Technology,1998,38(6):337~343
    [51] Min J H,Hering J G.Arsenate sorption by Fe (Ⅲ)-doped alginate gels.Water Research,1998,32(5): 1544~1552
    [52]孙家寿.高分子蛰合剂在废水中的应用.环境科学动态,1989,10:17~l9
    [53] ZhuXiaoping,Jyo Akinori.Removal of Arsenic(V) byZirconium(IV)-Loaded Phosphoric Acid Chelating Resin.Separation Science & Technology,2001,36(14):3175~3188
    [54]刘瑞霞,王亚雄.新型离子交换纤维去除水中砷酸根离子的研究.环境科学,2002,23(5):88~91
    [55]胡天觉,曾光明,陈维平,等.选择性分子离子交换树脂处理含砷废水.湖南大学学报,1998,25(6):75~80
    [56]梁慧锋,刘占牛.除砷技术研究现状.邢台学院学报,2005,20(2):96~98
    [57]陈敬军,蒋柏泉,王伟.除砷技术现状与进展.江西化工,2004,(2):1~4
    [58]孙忠,侯晓勇.改型沸石在饮水净化中的应用研究.非金属矿,2002,25(2):49~51
    [59]扬胜科,王文科,李翔.改性海泡石处理含砷饮用水研究.化工矿物与加工,2000,(10):13~16
    [60] Gi11es Greg,Mathis Jenn.Using Advanced Adsorptiove Media for Arsenic Treatment.Water Engineering & Management,2002,149(4):33~37
    [61]陈红,方士.用MnO2氧化废水中As(Ⅲ)为As(V)的特性.高校化学工程学报,2000,14(l):48~52
    [62] LIM S F,PAUL CHEN J.Synthesis of an innovative calcium-alginate magnetic sorbent for removal ofmultiple contaminants.Applied Surface Science,2007,253:5772~5775
    [63] Soner Altundogan H,etal Arsenic adsorption from aqueous solutions by activated red mud.Waste management,2002,22:357~363
    [64]肖亚兵,钱沙华,黄进泉,等.纳米二氧化钛对砷(Ⅲ)砷(Ⅴ)吸附性能的研究[J].分析科学学报,2003,19(2):172~174
    [65] Wemer E.Halter,Hans-RudolfPfeifer.Arsenic(Ⅴ) adsorption on toα-Al2O3 between 25 and 70℃.Applied Geochemistry,2001,16:793~802
    [66] Raichur A.M and V. Panvekar. RemvoalofAs(Ⅴ) by adsorption on to mixed rare earth oxides.Separation Science and Technology,2002,37(5):1095~1108
    [67]欧阳通.稀土材料氢氧化铈吸附水中亚砷酸与砷酸阴离子的特性效果.环境科学,2004,25(6):43~47
    [68] Edwin ET,Sherril DC,John F.Removing anions from water.United State Patent,Patent Number VS005456840A,1996
    [69] DELIYANNI E A,BAKOYANNAKIS D N,ZOUBOULIAS A I,etal.Akaganeite-typeβ-FeO(OH) nanocrystals:preparation and characterization.Micropor Mesopor :Mat,2000,42:49~57
    [70] RAJAKOVIC L V.The sorption of arsenic onto activated carbon impregnated with metallic silver and copper.Sep Sci Technol,1992,27:1423~1433
    [71]徐海岩,颜望明.细菌抗砷特性研究进展.微生物学通报,1995,22(4):228~231
    [72] Suhendrayatna,Akira Ohki,Takayoshi Kuroiwa,etal Arsenic compounds in the fresh water green microalga Chlorella vulgarism after exposure to arsenate.Applied Organmetallic Chemistry,1999,13:127~133
    [73] Weeger William,Didier Lievremont,Magalie Perret,etal Oxidation of arsenic to arsenate by a bacterium isolated from an aquatic environment.BioMetals,1999,12(2):141~149
    [74] Ioannis A.Katsoyiannis,Anastasios I.Zouboulis.Application of biological processes for the removal of arsenic from groundwater.Water Research,2004,38:17~26
    [75] Kasan H C.The role of waste activated sludge and bacteria in metal-ion removal from solution.General reviews in Environmental Science and Technology,1993,23(1):79~117
    [76]许晓路,申秀英.半连续活性污泥对污水中五价砷的去除.环境科学与技术,1995,(3):31~34
    [77]阮宜纶,林荣忱,张建国.地热水对环境影响及污染防治(二).中国给水排水,1994,10(6):12~14
    [78]赵荒.铁盐处理含砷废水简述.甘肃环境研究与监测,1994,7(4):23~25
    [79]李晓波,吴水波,顾平.铁盐和铝盐混凝微滤工艺除As(V)的比较研究,2007,28(10):2198~2102
    [80]袁达源,苏宝华,邵少金.石灰-硫酸亚铁法处理含砷废水的研究.广东化工,2004,(6):47~49
    [81]郭翠梨,张凤仙,杨新宇.石灰-聚合硫酸铁法处理含砷废水的实验研究.工业水处理,2000,20(9):27~29
    [82]管玉江,陈毓琛.石灰-聚铁法处理硫酸厂废水的研究.化工环保,1999,19:328~334
    [83]陶有胜.电化学法添加铁和化学氧化法相结合治理含砷废水.国外环境科学技术,1997(1)39~40
    [84]朱秋华.沉淀-絮凝法处理低砷矿坑水的研究.化学工程与装备,2009,(6):155~157
    [85]中南矿冶学院分析化学教室等.化学分析手册.第一版.北京:科学出版社,1987,565~566
    [86]黄梓博,林洁玲.次氯酸钠预氧化与氯化铁混凝相结合除砷效果的研究.净水技术,2007,26(2):25~27
    [87]陈云嫩,柴立元.砷在地下水环境中的迁移转化.有色金属,2008,60(1):109~112

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700