用户名: 密码: 验证码:
POSS基聚合物纳米杂化材料的制备表征及性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多面体低聚倍半硅氧烷(Polyhedral Oligomeric Silsesquioxane,简称POSS)是一种具有笼状结构的有机/无机杂化分子。与蒙脱土,二氧化硅等传统的纳米填料不同,POSS具有规整的笼状结构、纳米尺度以及与聚合物良好的相容性,POSS能与聚合物形成真正意义上的分子级复合,提高了聚合物的热稳定性,机械强度,阻燃性,抗氧化,抗老化等性能。开发新型的POSS基聚合物纳米杂化材料具有非常重要的学术意义和实际应用价值。
     论文首先合成了一系列不同官能团的POSS单体:八乙烯基倍半硅氧烷(OvPOSS),八胺基倍半硅氧烷(OapPOSS),八巯基倍半硅氧烷(OmpPOSS),八苯基倍半硅氧烷(OPS),环氧基倍半硅氧烷(epoxy-POSS),苯磺酰氯基倍半硅氧烷(SC-POSS),单乙烯基倍半硅氧烷(monovinyl-POSS),单巯基倍半硅氧烷(monothiol-POSS)。并用红外光谱(FTIR),核磁共振(NMR),元素分析等对POSS的结构进行了表征。随后以这些POSS为基础,制备POSS基聚合物纳米杂化材料。将POSS引入环氧树脂中,制备了四种不同的环氧树脂/POSS纳米杂化材料;以POSS为核合成了星形聚合物;用紫外光聚合制备了高度交联的POSS多孔材料。最后以POSS为基本结构单元,用模板法制备了定向排列的POSS纳米线和纳米管阵列,用电纺法制备了具有超疏水性能的PMMA/POSS纳米纤维。
     论文取得了以下创新性研究结果:
     (1)以OmpPOSS为环氧树脂的固化剂,制备了高透明、高折射率的环氧树脂/OmpPOSS纳米杂化材料。OmpPOSS完全以分子级均匀的分布在环氧树脂基体里。用紫外-可见光对光学性能进行了研究,可见光透过率逾80%,320nm以下的紫外光不能透过,环氧树脂/OmpPOSS杂化材料的折射率高达1.581。用差示扫描量热仪(DSC)研究了固化动力学,用热重分析(TGA)对环氧树脂进行了热分析,OmpPOSS固化的环氧树脂具有较高的热稳定性。
     (2)用双酚A型环氧树脂(DGEBA)与二氨基二苯甲烷(DDM)和SC-POSS原位聚合制备了环氧树脂/SC-POSS纳米杂化材料,用DSC对固化行为进行了研究,SC-POSS的加入,能使环氧树脂的固化温度显著降低,活化能下降,固化速率明显提高。SC-POSS对环氧树脂的固化具有促进作用。少量POSS的加入能够提高环氧树脂的玻璃化温度T_g。
     (3)制备了环氧树脂/OvPOSS和环氧树脂/epoxy-POSS纳米杂化材料。OvPOSS与环氧树脂之间没有化学作用,OvPOSS以微晶的形式混在环氧树脂基体里,在EP/OvPOSS纳米杂化材料中出现了明显的相分离。而epoxy-POSS以化学键连在环氧树脂主链上,EP/epoxy-POSS纳米杂化材料没有出现大面积的相分离。研究了POSS对杂化材料机械性能的影响,环氧树脂/epoxy-POSS纳米杂化材料的弯曲模量和弯曲强度都得到了增强。
     (4)以SC-POSS为核引发剂,以氧化亚铜为催化剂,以2,2联吡啶为配体,通过ATRP合成了一系列POSS为核的PMMA/POSS和PS/POSS的星形聚合物。用GPC对聚合物进行了表征,显示分子量大小随着单体与引发剂的比例的增加而增加。并且分子量分布较窄。
     (5)用紫外光引发聚合制备高度交联的POSS共聚物。以OvPOSS和OmpPOSS为单体,在紫外光作用下反应,反应过程用UV-VIS实时监控,反应在几分钟内即可完成。用红外和核磁硅谱研究表明,POSS单体之间几乎完全反应,反应转化率高达96.3%。使用SEM观察干燥后共聚物的形貌,冷冻干燥得到了多孔结构的POSS共聚物材料。
     (6)以POSS为基本构造单元,以多孔氧化铝为模板,制备了大面积的、定向排列、自由挺立的POSS纳米线阵列和POSS纳米管阵列。比较了两种干燥方法得到的纳米线的形态。真空热干燥法得到的POSS纳米线有团聚塌陷现象,而用冷冻干燥得到了自由挺立的POSS纳米线阵列。POSS起始分解温度为354度,在900度下仍然有52.3%的残余量,红外显示煅烧残余物主要为二氧化硅。使用溶液浸润法还成功制备了定向排列的POSS纳米管阵列。
     (7)以MMA和POSS单体为原料,用自由基聚合的方法合成了一系列PMMA/POSS杂化共聚物,共聚物中POSS的含量从0%到75%。对PMMA/POSS聚合物电纺制得了不同形态的纳米纤维膜。POSS的加入降低了共聚物的表面能,纳米纤维表面的接触角都随着POSS含量的增加而增加。POSS含量50wt%以上的共聚物纤维具有明显的超疏水性能
     (8)增加聚合物的分子量可以制得没有珠状颗粒(bead-free)的均匀纤维,以高分子量PMMA/50%POSS的共聚物为研究对象在不同浓度下电纺制得了“bead-free”的纳米线纤维,并且纤维表面出现了定向排列的纳米线结构。该纤维的表面结构与自然界的水蜘蛛的腿的结构相似,并且也具有超疏水性能,以PMMA/POSS共聚物纤维为腿部材料,仿制了能自由挺立在水面上的人造水蜘蛛。
Polyhedral Oligomeric Silsesquioxane(POSS) was a cage-like Organic/Inorganic hybrid molecular.Unlike clay and silica,POSS has a well-defined and nanoscale structure,it is also compatible with polymers.POSS can composite with polymer at molecular level.POSS modified polymers have enhanced properties. It is very significant to prepare novel polymer/POSS nanohybrids.
     Firstly,a series of POSS were synthesized,such as OvPOSS,OapPOSS, OmpPOSS,OPS,epoxy-POSS,SC-POSS,monovinyl-POSS and monothiol-POSS. The structures of POSS were characterized by Fourier Transform Infrared(FTIR), Nuclear Magnetic Resonance(NMR) and element analysis.Then,POSS were used to prepare polymer/POSS nanocomposites.Four kinds of epoxy resin/POSS nanohybrid materials were prepared.PMMA/POSS and PS/POSS star-polymers were synthesized by atom transfer radical polymerization(ATRP) using POSS as a core.A highly-crosslinked three-dimensional(3D) POSS copolymer was prepared from OvPOSS and OmpPOSS via photo-induced thiol-ene Click reaction.Finally, One-dimentional POSS materials were prepared.Free-standing nanowire and nanotube arrays were fabricated via AAO template using POSS as building blocks. PMMA/POSS nanofibers were prepared by electrospinning.
     This thesis achieved some results as follow:
     (1) OmpPOSS was used as a curing agent for epoxy resin.Well-defined organic-inorganic Epoxy resins/OmpPOSS nanocomposites were prepared via in-situ copolymerization of diglycidyl ether of bisphenol A(DGEBA) and OmpPOSS.FTIR and NMR were used to characterize the structures before and after curing,which show OmpPOSS reacted with DGEBA completely. EP/OmpPOSS nanocomposite exhibited a featureless morphology and no discernable phase separation was observed,which indicate that OmpPOSS was dispersed at the molecular level in EP matrix.EP/OmpPOSS nanocomposites have well optical properties,it is colorless and highly transparent,and the UV light under 320nm can not transmit.OmpPOSS curing resin also has high refractive index(1.581).The curing behaviors of epoxy resin/OmpPOSS were researched by DSC.The thermal stability of the result hybrids was characterized by TGA,the decomposition temperature(Td) of the hybrid was 375℃.
     (2) EP/SC-POSS hybrids were prepared via the polymerization of DGEBA, 4,4'-Diaminodiphenyl- methane(DDM) and SC-POSS.TEM indicated that SC-POSS was dispersed at the molecular level in EP matrix.DSC results showed the curing temperature of the EP/SC-POSS hybrids were much lower than the control EP.The apparent activation energy of hybrid was slightly lower than the control EP.The reaction rate increased when adding the SC-POSS into EP matrix, indicating the promotion effect of POSS cages in EP matrix.
     (3) EP/OvPOSS and EP/epoxy-POSS hybrids were prepared via the polymerization of DGEBA and 1,5-Diamino-2-methylpentane(Dytek A) in the presence of OvPOSS and epoxy-POSS.The inorganic-organic hybrids containing 1wt%, 2wt%and 3wt%of POSS were obtained.The morphologies of the resulting hybrids were quite dependent on the types of comer organic groups in the POSS monomers.The fine phase-separated structures were obtained in the EP/OvPOSS hybrids,in which the spherical POSS-rich particles(about 0.5μm in diameter) were uniformly dispersed in the continuous epoxy matrix.But the homogeneous morphology was obtained by SEM for EP/epoxy-POSS.EP/POSS hybrids displayed the enchanced initial thermal decomposition temperatures due to the nanodispersion of POSS moieties.The flexural modulus of both EP/OvPOSS and EP/epoxy-POSS hybrids were much higher than the control epoxy resins. Contrasting to the lower flexural strengths of EP/OvPOSS hybrids,the flexural strengths of EP/epoxy-POSS nanocomposites were higher than that of neat epoxy resins.
     (4) An efficient and versatile method was developed for the synthesis of nano-hybrid star polymers via atom transfer radical polymerization(ATRP) using POSS as a core.SC-POSS was successfully used as an initiator to synthesize star polymers via the "core-first" approach.PMMA/ POSS and PS/POSS nano-hybrid star polymers with controlled molecular weights and relatively narrow molecular distribution were prepared.These hybrid star polymers were further characterized using FTIR,NMR and GPC.
     (5) A new reaction route was reported to synthesize a highly-crosslinked three-dimensional(3D) POSS copolymer from OvPOSS and OmpPOSS,based on a photo-induced thiol-ene Click reaction.The reaction took place very fast,just in a few minute of UV irradiation.The structure of the resultant polymer was confirmed by solid ~(29)Si NMR analyses and FTIR.The rate of conversion calculated based on the ~(29)Si NMR spectra is as high as 96.3%.The SEM observations indicated that freeze-dried POSS polymer was highly porous. Thermal Gravimetric Analysis(TGA) indicated the POSS polymers have excellent thermal properties.
     (6) Free-standing organic-inorganic hybrid nanowire and nanotube arrays were fabricated via AAO template using POSS as building blocks.Two kinds of POSS, OmpPOSS and epoxy-POSS,were used in this report.The nanowires and nanotubes were prepared by in-situ polymerization and solvent-wetting method respectively.FTIR indicates that OmpPOSS and epoxy-POSS were completely reacted in the AAO pores.POSS were uniformly dispersed in the hybrid nanowires and nanotubes.The free-standing nanowire arrays were formed via freeze-drying removal of the environmental liquid.POSS nanowires and nanotubes show high glass translation temperature(Tg) and thermal stability.The POSS hybrid nanowires and nonotubes might find applications in catalysis, nanodevices,chemical/biological separation and sensors.
     (7) Inorganic-Organic hybrid nanofibers of methyl methacrylate(MMA) and POSS copolymers were prepared by electrospinning technology using THF/DMF as the solution.A series of PMMA/POSS random copolymers with POSS content of 0, 20,50 and 75wt%were investigated.The wettability of the fiber mats can be controlled by changing the amount of POSS in the copolymers.Water contact angles of both casting films and electrospun nanofiber mats increased by increasing the POSS content of the copolymers.
     (8) When increase the molecular of PMMA/POSS copolymer,we got the "Bead-free" fibers.The fibres showed a stride's leg-like morphology with highly ordered POSS arrangement on the surface,and wire like bundle structure was found within the fibres.The PMMA/POSS mats show superhydrophobic properties.We use this fibres to make an artifical water stride.The artifical water stride,which is much heavier than natural ones,can free-stand on water surface.
引文
[1]C.R.Kagan,D.B.Mitzi,C.D.Dimitrakopoulos,Organic-Inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science, 1999, 286, 945-947.
    [2] K. Yamamoto, Y. Sakata, Y. Nohara, Y. Takahashi, T. Tatsumi, Organic-inorganic hybrid zeolites containing organic frameworks. Science, 2003, 300, 470-472.
    [3] A. k. Cheetham, C. N. R. Rao, Materials science: there's room in the middle. Science, 2007, 318, 58-59.
    [4] P. J. hagrman, D. Hagrman, J. Zubieta, Organic-inorganic hybrid materials: from simple coordination polymers to organodiamine-template molybdenum oxides. Angewandte Chemie International Edition, 1999, 38, 2638-2684.
    [5] F. Hoffmann, M. Cornelius, J. Morell, M. Froba, Silica-based mesoporous organic-inorganic hybrid materials. Angewandte Chemie International Edition, 2006,45,3216-3251.
    [6] M. G.Voronkov, V. I. Lavrent'yev, Polyhedral Oligosilsesquioxanes and Their Homo Derivatives. Topics in Current Chemistry, 1982, 102, 199-236.
    [7] J. J. Schwab, J. D. Lichtenhan, Polyhedral oligomeric silsesquioxane(POSS)-based polymers. Applied Organometallic Chemistry, 1998, 12,707-713.
    [8] T. S. Haddad, R. Stapleton, H. G.Mather, P. T. Lichtenhan, S. Phillips, Polym Prepr, 1999, 40, (1), 496-506.
    [9] G.Li, L. Wang, H. Ni, C. U. P. Jr., Polyhedral Oligomeric Silsesquioxane (POSS) polymers and copolymers: a review. Journal of Inorganic and Organometallic Polymers, 2001, 11,(3), 123-153.
    [10] S. H. Phillips, T. S. Haddad, S. J. Tomczak, Developments in nanoscience: polyhedral oligomeric silsesquioxane(POSS)-Polymers. Current Opinion in Colloid and Interface Science, 2004, 8, 21-29.
    [11] R. Y. Kannan, H. J. Salacinski, P. E. Butler, A. M. Seifalian, Polyhedral oligomeric silsesquioxane nanocomposites: the next generation for biomedical applications. Accounts of Chemical Research, 2005, 38, 879-884.
    [12] J. Wu, P. T. Mather, POSS polymers: physical properties and biomaterials applications. Polymer Reviews, 2009,49, 25-63.
    [13] D. Gnanasekaran, K. Madhavan, B. S. R. Reddy, Developments of polyhedral oligomeric silsesquioxanes(POSS), POSS nanocomposites and their application: A review. Journal of Scientific & industrial research, 2009, 68, 437-464.
    
    [14] D. W. Scott, Journal of the American Chemical Society, 1946, 68, 356.
    
    [15] M. M. Sprung, F. 0. Guenther, The Partial Hydrolysis of Methyltriethoxysilane. Journal of the American Chemical Society, 1955, 77, 3990-3996.
    [16] A. J. Barry, W. H. Daudt, J. J. Domicone, Crystalline Organosilsesquioxanes. Journal of the American Chemical Society, 1955, 77,4248-4252.
    [17] R. Mllller, F. KBhne, S. Sliwinski, J. Prakt. Chem., 1959, 9, 71-74.
    [18] F. John, J. Brown, The Polycondensation of Phenylsilanetriol. Journal of the American Chemical Society, 1965, 87, 4317-4324.
    [19] F. John, J. Brown, The Polycondensation of Cyclohexylsilanetriol. Journal of the American Chemical Society, 1965, 87, 4313-4317.
    [20] C.L.Frye, W.T.Collins, Journal of the American Chemical Society, 1970, 92, 5586.
    
    [21] P. A. Agaskar, Inorg. Chem., 1991,30, 2707-2708.
    [22] P. A. Agaskar, V. W. Day, W. G.Klemperer, Journal of the American Chemical Society, 1987,109, 5554.
    
    [23] P. A. Agaskar, Journal of the American Chemical Society, 1989, 111,6858.
    [24] P. A. Agaskar, W. G.Klemperer, Inorganica Chimica Acta, 1995, 229, 355-364.
    [25] F. J. Feher, D. A. Newman, J. F. Walzer, Silsesquioxanes as models for silica surfaces. Journal of the American Chemical Society, 1989, 111, 1741-1748.
    [26] F. J. Feher, K. J. Weller, Polyhedral Aluminosilsesquioxanes as Models for Alumniosilicates: Unique synthesis of anionic Al/ Si/ O frameworks. Organometallics, 1990, 9, 2638-2640.
    [27] F. J. Feher, T. A. Budzichowski, R. L. Blanski, K. J. Weller, J. W. Ziller, Facile syntheses of new incompletely condensed polyhedral oligosilsesquioxanes: [(c-C5H9)7Si7O9(OH)3], [(c-C7H13)7Si7O9(OH)3], and [(c-C7H13)6Si6O7(OH)4]. Organometallics, 1991, 10, 2526-2528.
    [28] F. J. Feher, J. F. Walzer, Synthesis and characterization of vanadium-containing silsesquioxanes. Inorg. Chem., 1991, 30, 1689-1694.
    [29] F. J. Feher, K. Rahimian, T. A, Budzichowski, J. W. Ziller, Thallium-Stabilized Silsesquioxides: Versatile Reagents for the Synthesis of Metallasilsesquioxanes, Including High-Valent Molybdenum-Containing Silsesquioxanes. Organometallics, 1995,14, 3920-3926.
    [30] F. J. Feher, S. H. Phillips, J. W. Ziller, Facile and Remarkably Selective Substitution Reactions Involving Framework Silicon Atoms in Silsesquioxane Frameworks. Journal of the American Chemical Society, 1997, 119, 3397-3398.
    [31] F. J. Feher, D. Soulivong, A. G. Eklund, K. D. Wyndham, Cross-metathesis of alkenes with vinyl-substituted silsesquioxanes and spherosilicates: a new method for synthesizing highly-functionalized Si/O frameworks. Chemical communications, 1997, 1185-1186.
    [32] F. J. Feher, K. D. Wyndham, Amine and ester-substituted silsesquioxanes: synthesis, characterization and use as a core for starburst dendrimers. Chemical communications, 1998, 323-324.
    [33] F. J. Feher, F. Nguyen, D. Soulivong, J. W. Ziller, A new route to incompletely condensed silsesquioxanes: acid-mediated cleavage and rearrangement of (c-C6H11)6Si6O9 to C2-[(c-C6H11)6Si6O8X2]. Chemical communications, 1999, 1705-1706.
    [34] F. J. Feher, R. Terroba, J. W. Ziller, A new route to incompletely-condensed silsesquioxanes: base-mediated cleavage of polyhedral oligosilsesquioxanes. Chemical communications, 1999, 2309-2310.
    [35] C. Zhang, T. J. Bunning, R. M. Laine, Synthesis and Characterization of Liquid Crystalline Silsesquioxanes. Chem. Mater., 2001, 13, 3653-3662.
    [36] R. O. R. Costa, W. L. Vasconcelos, R. Tamaki, R. M. Laine, Organic/Inorganic Nanocomposite Star Polymers via Atom Transfer Radical Polymerization of Methyl Methacrylate Using Octafunctional Silsesquioxane Cores. Macromolecules, 2001, 34, 5398-5407.
    [37] J. Choi, J. Harcup, A. F. Yee, Q. Zhu, R. M. Laine, Organic/Inorganic Hybrid Composites from Cubic Silsesquioxanes. Journal of the American Chemical Society, 2001,123, 11420-11430.
    [38] J. Choi, A. F. Yee, R. M. Laine, Organic/Inorganic Hybrid Composites from Cubic Silsesquioxanes. Epoxy Resins of Octa(dimethylsiloxyethylcyclohexylepoxide) Silsesquioxane. Macromolecules, 2003, 36, 5666-5682.
    [39] J. Choi, R. Tamaki, S. G.Kim, R. M. Laine, Organic/Inorganic Imide Nanocomposites from Aminophenylsilsesquioxanes. Chem. Mater., 2003, 15, 3365-3375.
    [40] J. Choi, S. G. Kim, R. M. Laine, Organic/Inorganic Hybrid Epoxy Nanocomposites from Aminophenylsilsesquioxanes. Macromolecules, 2004, 37, 99-109.
    [41] J. Choi, A. F. Yee, R. M. Laine, Toughening of Cubic Silsesquioxane Epoxy Nanocomposites Using Core-Shell Rubber Particles: A Three-Component Hybrid System. Macromolecules, 2004,37, 3267-3276.
    [42] C. Zhang, R. M. Lain, Silsesquioxanes as synthestic platforms II epoxy-functionalized inorganic-organic hybrid species. Journal of organo metalic chemistry, 1996, 521, 199-201.
    [43] R. Tamaki, Y. Tanaka, M. Z. Asuncion, J. Choi, R. M. Laine, Octa(aminophenyl)silsesquioxane as a Nanoconstruction Site. Journal of the American Chemical Society, 2001,123, 12416-12417.
    [44] J. D. Lichtenhan, Y. A. Otonari, M. J. Cam, Linear Hybrid Polymer Building Blocks: Methacrylate-Functionalized Polyhedral Oligomeric Silsesquioxane Monomers and Polymers. Macromolecules, 1995,28, 8435-8437.
    [45] T. S. Haddad, J. D. Lichtenhan, Hybrid Organic-Inorganic Thermoplastics: Styryl-Based Polyhedral Oligomeric Silsesquioxane Polymers. Macromolecules, 1996, 29, 7302-7304.
    [46] C. Marcolli, G.Calzaferri, Review Monosubstituted Octasilasesquioxanes. Applied Organometallic Chemistry, 1999, 13, 213-226.
    [47] A. Romo-Uribe, P. T. Mather, T. S. haddad, J. D. Lichtenhan, Viscoelastic and Morphological Behavior of Hybrid Styryl-Based Polyhedral Oligomeric Silsesquioxane (POSS) Copolymers. Journal of Polymer Science: Part B: Polymer Physics, 1998, 36, 1857-1872.
    [48] T. S. Haddad, B. D. Viers, S. H. Phillips, Polyhedral Oligomeric Silsesquioxane (POSS)-Styrene Macromers. Journal of Inorganic and Organometallic Polymers, 2002, 11, 115-164.
    [49] P. T. Mather, H. G.Jeon, A. Romo-Uribe, Mechanical Relaxation and Microstructure of Poly(norbornyl-POSS) Copolymers. Macromolecules, 1999, 32, 1194-1203.
    [50] H. G.Jeon, P. T. Mather, T. S. Haddad, Shape memory and nanostructure in poly(norbornyl-POSS) copolymers. Polymer International, 2000,49, 453-457.
    [51] R. K. Bharadwaja, R. J. Berryb, B. L. Farmer, Molecular dynamics simulation study of norbornene-POSS polymers. Polymer, 2000, 41, 7209-7221.
    [52] A. Tsuchida, C. Bolln, F. G.Sernetz, H. Frey, R. Mulhaupt, Ethene and Propene Copolymers Containing Silsesquioxane Side Groups. Macromolecules, 1997, 30, 2818-2824.
    [53] B. X. Fu, A. Lee, T. S. Haddad, Styrene-Butadiene-Styrene Triblock Copolymers Modified with Polyhedral Oligomeric Silsesquioxanes. Macromolecules, 2004, 37, 5211-5218.
    [54] D. B. Drazkowski, A. Lee, T. S. Haddad, D. J. Cookson, Chemical Substituent Effects on Morphological Transitions in Styrene-Butadiene-Styrene Triblock Copolymer Grafted with Polyhedral Oligomeric Silsesquioxanes. Macromolecules, 2006, 39, 1854-1863.
    [55] D. B. Drazkowski, A. Lee, T. S. Haddad, Morphology and Phase Transitions in Styrene-Butadiene-Styrene Triblock Copolymer Grafted with Isobutyl-Substituted Polyhedral Oligomeric Silsesquioxanes. Macromolecules, 2007, 40, 2798-2805.
    [56] Y. Ni, S. Zheng, K. Nie, Morphology and thermal properties of inorganic-organic hybrids involving epoxy resin and polyhedral oligomeric silsesquioxanes. Polymer, 2004,45, 5557-5568.
    [57] H. Liu, W. Zhang, S. Zheng, Montmorillonite intercalated by ammonium of octaaminopropyl polyhedral oligomeric silsesquioxane and its nanocomposites with epoxy resin. Polymer, 2004,46, 157-165.
    [58] H. Liu, S. Zheng, K. Nie, Morphology and Thermomechanical Properties of Organic-Inorganic Hybrid Composites Involving Epoxy Resin and an Incompletely Condensed Polyhedral Oligomeric Silsesquioxane. Macromolecules, 2005, 38, 5088-5097.
    [59] Y. Ni, S. Zheng, Epoxy Resin Containing Octamaleimidophenyl Polyhedral Oligomeric Silsesquioxane. Macromolecular Chemistry and Physics, 2005, 206,2075-2083.
    [60] Y. Ni, S. Zheng, Epoxy Resin Containing Polyphenylsilsesquioxane: Preparation, Morphology, and Thermomechanical Properties. Journal of Polymer Science: Part A: Polymer Chemistry, 2006,44, 1093-1105.
    [61] A. Strachota, P. Whelana, J. Kriza, J. Brusa, M. Urbanovaa, M. Sloufa, L. Matejkaa, Formation of nanostructured epoxy networks containing polyhedral oligomeric silsesquioxane (POSS) blocks Polymer, 2007,48, 3041-3058.
    [62] L. Matejka, A. Strachota, J. Plestil, P. Whelan, M. Steinhart, M. Slaof, Macromolecules, 2004, 37, 9449.
    [63] A. Strachota, I. Kroitilova, J. Kovarova, L. Matejka, Macromolecules, 2004, 37, 9457.
    [64] R. Tamaki, J. Choi, R. M. Laine, A Polyimide Nanocomposite from Octa(aminophenyl)silsesquioxane. Chem. Mater., 2003,15, 793-797.
    [65] Y.-J. Lee, J.-M. Huang, S.-W. Kuo, J.-S. Lu, F.-C. Chang, Polyimide and polyhedral oligomeric silsesquioxane nanocomposites for low-dielectric applications Polymer, 2004,46, 173-181.
    [66] J. Huang, Y. Xiao, K. Y. Mya, X. Liu, C. He, J. Dai, Y. P. Siow, Thermomechanical properties of polyimide-epoxy nanocomposites from cubic silsesquioxane epoxides. Journal of Materials Chemistry, 2004, 14, 2858-2863.
    [67] J. Huang, C. He, Y. Xiao, K. Y. Mya, J. Dai, Y. P. Siow, Polyimide/POSS nanocomposites: interfacial interaction, thermal properties and mechanical properties Polymer, 2003,44, 4491-4499.
    [68] Q. Chen, R. Xu, J. Zhang, D. Yu, Polyhedral oligomeric silsesquioxane (POSS) nanoscale reinforcement of thermosetting resin from benzoxazine and bisoxazoline. Macromolecular Rapid Communications, 2005, 26, 1878-1882.
    [69] Q. Chen, R. Xu, D. Yu, Preparaton of nanocomposites of thermosetting resin from benzoxazine and bisoxaline with montmorillonite. Journal of Applied Polymer Science, 2006, 100, 4741-4747.
    [70] T. Cassagneau, F. Caruso, Oligosilsesquioxanes as Versatile Building Blocks for the Preparation of Self-Assembled Thin Films. Journal of the American Chemical Society, 2002,124, 8172-8180.
    [71] G.Wu, Z. Su, Polyhedral Oligomeric Silsesquioxane Nanocomposite Thin Films via Layer-by-layer Electrostatic Self-Assembly. Chem. Mater, 2006, 18, 3726-3732.
    [72] G.Schmid, R. Pugin, J.-O. Malm, J.-O. Bovin, Silsesquioxanes as Ligands for Gold Clusters. European Journal of Inorganic Chemistry, 1998, 813-817.
    [73] T. Sawitowski, S. Franzka, N. Beyer, M. Levering, G.Schmid, Nanostructured Surfaces. Advanced Functional Materials, 2001, 11, 169-173.
    [74] K. Naka, H. Itoh, Y. Chujo, Self-Organization of Spherical Aggregates of Palladium Nanoparticles with a Cubic Silsesquioxane. Nano letters, 2002, 2, 1183-1186.
    [75] J. B. Carroll, B. L. Frankamp, V. M. Rotello, Self-assembly of gold nanoparticles through tandem hydrogen bonding and polyoligosilsequioxane (POSS)-POSS recognition processes. Chemical communications, 2002, 17, 1892-1893.
    [76] E. Jeoung, J. B. Carroll, V. M. Rotello, Surface modification via 'lock and key' specific self-assembly of polyhedral oligomeric silsequioxane (POSS) derivatives to modified gold surfaces. Chemical communications, 2002, 14, 1510-1511.
    [77] J. B. Carroll, B. L. Frankamp, S. Srivastava, V. M. Rotello, Electrostatic self-assembly of structured gold nanoparticle/polyhedral oligomeric silsesquioxane (POSS) nanocomposites. Journal of Materials Chemistry, 2004, 14, 690-694.
    [78] X. Wang, K. Naka, M. Zhu, H. Itoh, Y. Chujo, Microporous Nanocomposites of Pd and Au Nanoparticles via Hierarchical Self-Assembly. Langmuir, 2005, 21, 12395-12398.
    [79] C. Zhang, F. Babonneau, C. Bonhomme, R. M. Laine, C. L. Soles, H. A. Hristov, A. F. Yee, Highly Porous Polyhedral Silsesquioxane Polymers. Synthesis and Characterization. Journal of the American Chemical Society, 1998,120,8380-8391.
    [80] J. J. Morrison, C. J. Love, B. W. Manson, I. J. Shannon, R. E. Morris, Synthesis of functionalised porous network silsesquioxane polymers. Journal of Materials Chemistry, 2002,12, 3208-3212.
    [81] R. E. Morris, Modular materials from zeolite-like building blocks. Journal of Materials Chemistry, 2005,15, 931-938.
    [82] L. Zhang, H. C. L. Abbenhuis, Q. Yang, Yi-MengWang, Pieter C. M. M. Magusin, B. Mezari, R. A. v. Santen, C. Li, Mesoporous Organic-Inorganic Hybrid Materials Built Using Polyhedral Oligomeric Silsesquioxane Blocks. Angewandte Chemie International Edition, 2007,46, 5003-5006.
    [83] X. Song, H. Geng, Q. Li, Synthesis and characterization of ferrocenyl Substituted styryl octasilsesquioxane. Chinese Chemical Letters, 2006, 17, 427-430.
    [84] X. Song, H. Geng, Q. Li, The synthesis and characterization of polystyrene/magnetic polyhedral oligomeric silsesquioxane (POSS) nanocomposites. Polymer, 2006, 47, 3049-3056.
    [85] A. Costela, I. Garcia-Moreno, L. Cerdan, V. Martin, O. Garcia, R. Sastre, Dye-Doped POSS Solutions: Random Nanomaterials for Laser Emission. Advanced Materials, 2009, 21, 4163-4166.
    [86] R. Sastre, V. Mart(?)'n, L. Garrido, J. L. Chiara, B. Trastoy, O. Garc(?)'a, A. Costela, I. Garc(?)'a-Moreno, Dye-Doped Polyhedral Oligomeric Silsesquioxane (POSS)-Modified Polymeric Matrices for Highly Efficient and Photostable Solid-State Lasers. Advanced Functional Materials, 2009, 19, 3307-3316.
    [87] C. M. Hessel, M. A. Summers, A. Meldrum, M. Malac, J. G.C. Veinot, Direct Patterning, Conformal Coating, and Erbium Doping of Luminescent nc-Si/SiO2 Thin Films from Solution Processable Hydrogen Silsesquioxane. Advanced Materials, 2007, 19, 3513-3516.
    [88] K. Pu, K. Li, B. Liu, Cationic Oligofluorene-Substituted Polyhedral Oligomeric Silsesquioxane as Light-Harvesting Unimolecular Nanoparticle for Fluorescence Amplification in Cellular Imaging. Advanced Materials, 2009, 21, 1-4.
    [89] W. J. Lin, W. C. Chen, W. C. Wu, Y. H. Niu, A. K. Y. Jen, Synthesis and Characterization of Luminescent Polyfluorenes Incorporating Side-Chain-Tethered Polyhedral Oligomeric Silsesquioxane Units. macromolecules, 2004, 37, 2335-2341.
    [90] C. H. Chou, S. L. Hsu, K. Dinakaran, M. Y. Chiu, K. H. Wei, Synthesis and Characterization of Luminescent Polyfluorenes Incorporating Side-Chain-Tethered Polyhedral Oligomeric Silsesquioxane Units. Macromolecules, 2005, 38, 745-751.
    [91] S. T. Iacono, A. Vij, W. Grabow, D. W. Smith, J. M. Mabry, Facile synthesis of hydrophobic fluoroalkyl functionalized silsesquioxane nanostructures. Chemical communications, 2007, 4992-4994.
    [92] J. M. Mabry, A. Vij, S. T. Iacono, B. D. Viers, Fluorinated Polyhedral Oligomeric Silsesquioxanes (F-POSS). Angewandte Chemie International Edition, 2008, 47, 4137-4140.
    [93] A. Tuteja, W. Choi, M. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley, R. E. Cohen, Designing Superoleophobic Surfaces. Science, 2007, 318, 1618-1622.
    [94] A. Tuteja, W. Choi, J. M. Mabry, G.H. McKinley, R. E. Cohen, Robust omniphobic surfaces. PNAS, 2008, 105, 18200-18205.
    [95] W. Choi, A. Tuteja, S. Chhatre, J. M. Mabry, R. E. Cohen, G.H. McKinley, Fabrics with Tunable Oleophobicity. Advanced Materials, 2009, 21, 2190-2195.
    [96] S. T. Iacono, S. M. Budy, J. M. Mabry, J. Dennis W. Smith, Synthesis, Characterization, and Surface Morphology of Pendant Polyhedral Oligomeric Silsesquioxane Perfluorocyclobutyl Aryl Ether Copolymers. Macromolecules, 2007,40,9517-9522.
    [97] T. L. Kaneshiro, Z.-R. Lu, Targeted intracellular codelivery of chemotherapeutics and nucleic acid with a well-defined dendrimer-based nanoglobular carrier. Biomaterials, 2009, 30, 5660-5666.
    [98] L. Cui, D. Chen, L. Zhu, Conformation Transformation Determined by Different Self-Assembled Phases in a DNA Complex with Cationic Polyhedral Oligomeric Silsesquioxane Lipid. ACS Nano, 2008, 2, 921-927.
    [99] C. K. Kim, B. S. Kim, F. A. Sheikh, U. S. Lee, M. S. Khil, H. Y. Kim, Amphiphilic Poly(vinyl alcohol) Hybrids and Electrospun Nanofibers Incorporating Polyhedral Oligosilsesquioxane. Macromolecules, 2007, 40, 4823-4828.
    [100] Y. Kim, F. Zhao, M. Mitsuishi, A. Watanabe, T. Miyashita, Photoinduced High-Quality Ultrathin SiO2 Film from Hybrid Nanosheet at Room Temperature. Journal of the American Chemical Society, 2008, 130, 11848-11849.
    [101] T. Hirai, M. Leolukman, C. C. Liu, E. Han, Y. J. Kim, Y. Ishida, T. Hayakawa, M.-a. Kakimoto, P. F. Nealey, P. Gopalan, One-Step Direct-Patterning Template Utilizing Self-Assembly of POSS-Containing Block Copolymers. Advanced Materials, 2009, 21, 4334-4338.
    [1]P.A.AGASKAR,New synthetic route to the hydridospherosiloxanes Oh-H8Si8O12 and D5h-H10Si10O15.Inorg Chem,1991,30,2707-2708.
    [2]F.J.Feher,K.D.Wyndham,Amine and ester-substituted silsesquioxanes:synthesis,characterization and use as a core for starburst dendrimers.Chem.Commun.,1998,323-324.
    [3]F.J.Feher,K.D.Wyndham,D.Soulivong,F.Nguyen,Syntheses of highly functionalized cube-octameric polyhedral oligosilsesquioxanes(R8Si8012).J.Chem.Soc.,Dalton Trans.,1999,1491-1497.
    [4]Brown J F,gogt L H,P.P.I.,Preparation and characterization of the Lower Equilibrated phenylsilsesquioxanes.Journal of the American Chemical Society,1964,86,1120-1125.
    [5]V.M.G,L.Y.V.I,Polyhedral oligosilsesquioxanes and their homo derivatives.Topics in Curr Chem,1982,102,199-236.
    [6]R.Tamaki,Y.Tanaka,M.Z.Asuncion,J.Choi,R.M.Laine,Octa(aminophenyl)silsesquioxane as a Nanoconstruction Site.Journal of the American Chemical Society,2001,123,12416-12417.
    [1]王德中,环氧树脂的生产与应用.化学工业出版社:2001.
    [2]J.E.White,H.C.Silvis,M.S.Winkler,T.W.Glass,D.E.Kirkpatrick,Poly(hydroxyaminoethers):A New Family of Epoxy-Based Thermoplastics.Advance Materials,2000,12,1791-1800.
    [3]M.Srividhya,M.S.Lakshmi,B.S.R.Reddy,Chemistry of siloxane amide as a new curing agent for epoxy resins:material characterization and properties.Macromolecular Chemistry and Physics,2005,206,2501-2511.
    [4]K.S.A.,B.T.,A.M.,D.Z.,Development and characterization of silicone/phosphorus modified epoxy materials and their application as anticorrosion and antifouling coating.Prog.Org.Coat,2006,55,207-217.
    [5]B.M.B.,I.M.F.,Very low conductivity threshold in bulk isotropic single-walled carbon nanotube-epoxy composites.Advance Materials,2005,17,1186-1191.
    [6]Q.L.,B.I.Lee,High-dielectric-constant silver-epoxy composites as embeded dielectrics.Advance Materials,2005,17,1777-1781.
    [7]J.Choi,J.Harcup,A.F.Yee,Q.Y.Zhu,R.M.Laine,J Am Chem Soc 2001,123,11420.
    [8]J.Choi,A.F.Yee,R.M.Laine,Macromolecules,2003,36,5666.
    [9]J.Choi,S.G.Kim,R.M.Laine,Macromolecules,2004,37,99.
    [10]J.Choi,A.F.Yee,R.M.Laine,Macromolecules,2004,37,3267.
    [11]L.Matejka,A.Strachota,J.Plestil,P.Whelan,M.Steinhart,M.Slaof, Macromolecules, 2004, 37, 9449.
    [12] A. Strachota, I. Kroitilova, J. Kovarova, L. Matejka, Macromolecules, 2004, 37, 9457.
    [13] E. K. Lin, C. R. Snyder, F. I. Mopsik, W. E. Wallace, W. L. Wu, C. X. Zhang, R. M. Laine, Organic-Inorganic Hybrid Materials MRS Vol. , 1998, 519, 15.
    [14] S. A. Pellice, D. P. Fasce, R. J. J. Williams, J Polym Sci, Part B: Polym Phys 2003,41,1451.
    [15] G.Z. Li, L. C. Wang, H. Toghiani, T. L. Daulton, K. Koyama, C. U. Pittman, Macromolecules, 2001, 34, 8686.
    [16] Y. Nie, S. Zheng, K. Nie, Morphology and thermal properties of inorganic-organic hybrids involving epoxy resin and polyhedral oligomeric silsesquioxanes. Polymer, 2004, 45, (16), 5557.
    [17] H. Liu, S. Zheng, K. Nie, Morphology and thermomechanical properties of organic-inorganic hybrid composites involving epoxy resin and an incompletely condensed polyhedral oligomeric silsesquioxane. Macromolecules, 2005, 38, (12), 5088.
    [18] Z. Cui, C. Lu, B. Yang, J. Shen, X. Su, H. Yang, The research on syntheses and properties of novel epoxy/polymercaptan curing optical resins with high refractive indices. Polymer, 2001,42, 10095.
    [19] C. Lu, Z. Cui, B. Yang, X. Su, C. Huo, J. Shen, Polymerization mechanisms and curing kinetics of novel polymercaptan curing system containing epoxy/nitrogen. Journal of Applied Polymer Science, 2002, 86, 589.
    [1]J.H.Lee,J.M.Goldberg,L.J.Fetters,L.A.Archer,Macromolecules,2006,(39),6677-6685.
    [2]N.Hadjichristidis,S.Pispas,M.Pitsikalis,H.Iatrou,C.Viahos,Asymmetric star polymers." Synthesis and properties.In Branched Polymers L Springer:Heidelberg:1999;Vol.142,p 71-127.
    [3]M.H.Stenzel-Rosenbaum,T.P.Davis,A.G.Fane,V.Chen,Angew.Chem.,Int.Ed.,2001,40,3428-3432.
    [4]M.Morton,Anionic Polymerization." Principles and Practices.New York,1983;p 226.
    [5]R.P.Quirk,Y.H.Tsai,Macromolecules,1998,31,8016.
    [6]E.Clouter,J.L.Fillaut,D.Astruc,Y.Gnanou,Macromolecules 1998,31,6748.
    [7]J.S.Wang,K.Matyjaszewski,J.Am.Chem.Soc.,1995,117,5614.
    [8]K.Matyjaszewski,T.E.Patten,J.Xia,J.Am.Chem.Soc.,1997,119,674.
    [9]T.Grimaud,K.Matyjaszewski,Macromolecules,1997,30,2216.
    [10]K.A.Davis,H.J.Paik,K.Matyjaszewski,Macromolecules,1999,32,1767.
    [11]K.Matyjaszewski,S.M.Jo,H.J.Paik,S.G.Gaynor,Macromolecules,1997,30,6398.
    [12]T.E.Patten,K.Matyjaszewski,Adv.Mater.,1998,10,901.
    [13]J.S.Wang,D.Greszta,K.Matyjaszewski,Polym.Mater.Sci.Eng.,1995,73,416.
    [14]V.Percec,B.Barboiu,H.J.Kim,Arenesulfonyl halides:Auniversal class of functional initiators for metal-catalyzed living radical polymerization of styrene.J.Am.Chem.Soc.,1998,120,305-316.
    [15]V.Percec,B.Barboiu,T.K.Bera,M.v.d.Sluis,R.B.Grubbs,J.M.J.Frechet.,Designing functional aromatic multisulfonyl chloride initiators for complex organic synthesis by living radical polymerization.Journal of polymer science:Part A:Polymer Chemistry,2000,38,4776-4791.
    [16]D.R.Robello,A.Andre,T.A.McCovick,A.Kraus,T.H.Mourey,Synthesis and Characterization of Star Polymers Made from Simple,Multifunctional Initiators.Macromolecules 2002,35,9334-9344,2002,35,9334-9344.
    [17]M.G.Voronkov,V.I.Lavrent'yev,Polyhedral Oligosilsesquioxanes and Their Homo Derivatives. Topics in Current Chemistry, 1982,102,199-236.
    [18] S. H. Phillips, T. S. Haddad, S. J. Tomczak, Developments in nanoscience: polyhedral oligomeric silsesquioxane(POSS)-Polymers. Current Opinion in Colloid and Interface Science, 2004, 8, 21-29.
    
    [19] S. C. Chan, S. W. Kuo, F. C. Chang, Macromolecules, 2005, 38, 3099.
    [20] D. Z. Ge, Y. Z. Wang, H. Liu, S. Liu, Macromolecules, 2009,42, 2903.
    [21] R. O. R. Costa, W. L. Vasconcelos, R. Tamaki, R. M. Laine, Organic/Inorganic Nanocomposite Star Polymers via Atom Transfer Radical Polymerization of Methyl Methacrylate Using Octafunctional Silsesquioxane Cores. Macromolecules, 2001, 34, 5398-5407.
    [22] V. Percec, B. Barboiu, M. Van der Sluis, Self-Regulated Phase Transfer of Cu2O/bpy, Cu(0)/bpy, and Cu2O/Cu(0)/bpy Catalyzed "Living" Radical Polymerization Initiated with Sulfonyl Chlorides. Macromolecules, 1998, 31, 4053-4056.
    [23] T. E. Patten, K. Matyjaszewski, Acc Chem Res, 1999, 32, 895-903.
    [1]T.M.Roper,C.A.Guymon,E.S.Jonsson,J.Polym.Sci.,Part A Polym.Chem.,2004,42,6283-6298.
    [2]B.S.Chiou,S.A.Khan,Macromolecules,1997,30,7322-7328.
    [3]T.M.Roper,T.Kwee,T.Y.Lee,Polymer,2004,2004,(45),2921-2929.
    [4]C.Rissing,D.Y.Son,Thiol-Ene Reaction for the Synthesis of Multifunctional Branched Organosilanes.Organometallics,2008,27,(20),5394-5397.
    [5]H.C.E,L.T.Y,R.T,J.Polym.Sci.,Part A Polym.Chem.,2004,42,5301-5338.
    [6]C.J.A,S.L,O.B.C,J.Polym.Sci.,Part A Polym.Chem.,2007,45,5686-5696.
    [7]L.A.Connal,C.R.Kinnane,A.H.Zelikin,F.Caruso,Stabilization and Functionalization of Polymer Multilayers and Capsules via Thiol-Ene Click Chemistry.Chemistry of Materials,2009,21,(4),576-578.
    [8]G.A,V.A,S.H,Macromolecules,2007,40,7928-7933.
    [9]K.L.Killops,L.M.Campos,C.J.Hawker,Robust,Efficient,and Orthogonal Synthesis of Dendrimers via Thiol-ene "Click" Chemistry.Journal of the American Chemical Society,2008,130,(15),5062-5064.
    [10]E.C.Hagberg,M.Malkoch,Y.Ling,C.J.Hawker,K.R.Carter,Effects of Modulus and Surface Chemistry of Thiol-Ene Photopolymers in Nanoimprinting.Nano Letters,2007,7,(2),233-237.
    [11]L.M.Campos,I.Meinel,R.G.Guino,M.Schierhorn,N.Gupta,G.D.Stucky,C.J.Hawker,Highly Versatile and Robust Materials for Soft Imprint Lithography Based on Thiol-ene Click Chemistry.Advanced Materials,2008,20,3728-3733.
    [12]V.S.Khire,Y.Yi,N.A.Clark,C.N.Bowman,Formation and Surface Modification of Nanopatterned Thiol-ene Substrates using Step and Flash Imprint Lithography.Advanced Materials,2008,20,3308-3313.
    [13]J.P,W.D,K.M,E.H,Angew.Chem.,Int.Ed.,2008,47,4421-4424.
    [14]V.S.Khire,A.W.Harant,A.W.Watkins,K.S.Anseth,C.N.Bowman,Macromolecules,2006,39,(5081-5086).
    [15]B.-S.Chiou,R.J.English,S.A.Khan,Rheology and Photo-Cross-Linking of Thiol-Ene Polymers.Macromolecules,1996,29,(16),5368-5374.
    [16]C.E.Hoyle,R.D.Hensel,M.B.Grubb,Polym.Photochem.,1984,4,69.
    [17]C.E.Hoyle,R.D.Hensel,G.M.B,J.Polym.Sci.,Polym.Chem.Ed.,1984, 22, 1865.
    [18] A. F. Jacobine, D. M. Glaser, P. J. Gabek, Journal of Applied Polymer Science, 1992,45,471.
    
    [19] J. G.Kloosterboer, Adv. Polym. Sci., 1988, 84, 1-16.
    [20] B. D. Fairbanks, T. F. Scott, C. J. Kloxin, K. S. Anseth, C. N. Bowman, Thiol-Yne Photopolymerizations: Novel Mechanism, Kinetics, and Step-Growth Formation of Highly Cross-Linked Networks. Macromolecules, 2009,42,(1), 211-217.
    [21] J. Shin, S. Nazarenko, C. E. Hoyle, Enthalpy Relaxation of Photopolymerized Thiol-Ene Networks: Structural Effects. Macromolecules, 2008, 41, (18), 6741-6746.
    [22] C. A, From microporous to mesoporous molecular sieve materials and their use in catalysis. Chemical Reviews, 1997,97, 2373-2419.
    [23] M. E. Davis, Nature, 2002,417, 813.
    [24] M. Eddaoudi, J. Kim, N. Rosi, Science, 2002,295, 469-472.
    [25] N. Rosi, J. Eckert, M. Eddaoudi, Science, 2003, 300, 1127-1129.
    [26] H. Li, M. Eddaoudi, M. O'keeffe, O. M. Yaghi, Design and synthesis of an exceptioanlly stable and highly porous metal-organic framework. Nature, 1999, 402, 276-279.
    [27] R. E. Morris, Modular materials from zeolite-like building blocks. Journal of Materials Chemistry, 2005,15, 931-938.
    [28] C. Zhang, F. Babonneau, C. Bonhomme, R. M. Laine, C. L. Soles, H. A. Hristov, A. F. Yee, Highly Porous Polyhedral Silsesquioxane Polymers. Synthesis and Characterization. Journal of the American Chemical Society, 1998, 120,8380-8391.
    [1] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, One-dimensional nanostructures: synthesis, characterization, and applications. Advanced Materials, 2003,15, 353-389.
    
    [2] C. Xu, H. Wang, P. K. Shen, S. P. Jiang, Highly Ordered Pd Nanowire Arrays as Effective Electrocatalysts for Ethanol Oxidation in Direct Alcohol Fuel Cells. Advanced Materials, 2007, 19, 4256-4259.
    [3] X. Wang, C. S. Ozkan, Multisegment nanowire sensors for the detection of DNA molecules. Nano letters, 2008, 8, 398-404.
    [4] X. Wang, J. Song, J. Liu, Z. L. Wang, Direct-Current Nanogenerator Driven by Ultrasonic Waves. Science, 2007, 316, 102-105.
    [5] J.-P. Lellouche, S. Govindaraji, A. Joseph, J. Jang, K. J. Lee, Polydipyrrole- and polydicarbazole-nanorods as new nanosized supports for DNA hybridization. Chemical Communication, 2005, 4357-4359.
    [6] H. Asoh, K. Mishio, M. Nakao, T. Tamamura, H. Masuda, Conditions for fabrication of ideally ordered anodic porous alumina using pretextured Al. Journal of the Electrochemical Society, 2001,148, (4), B152-B156.
    [7] W. Lee, R. Scholz, U. Gosele, A continuous process for structurally well-defined Al2O3 nanotubes based on pulse anodization of aluminum. Nano letters, 2008, 8, (8), 2155-2160.
    [8] C. J. Brumlik, C. R. Martin, Template synthesis of metal microtubules. Journal of the American Chemical Society, 1991, 113, 3174-3175.
    [9] W. C. Yoo, J. K. Lee, Field-dependent growth patterns of metals e-lectroplatod in nanoporous alumina membranes. Advanced Materials, 2004, 16,1097-1101.
    [10] J. Jang, J. H. Oh, A facile synthesis of polypyrrole nanotubes using a template-mediated vapor deposition polymerization and the conversion to carbon nanotubes. Chemical Communication, 2004, 882-883.
    
    [11] R. Fan, Y. Wu, D. Li, M. Yue, A. Majumdar, P. Yang, Fabrication of Silica Nanotube Arrays from Vertical Silicon Nanowire Templates. Journal of the American Chemical Society, 2003, 125, 5254-5255.
    [12] G.J. Song, J. J. Li, X. L. She, Research progresses of polymer nanotubes. Polymer Bulletin, 2006, 6, (74), 31-37.
    [13] R. O. Al-Kaysi, T. H. Ghaddar, G.Guirado, Fabrication of one-dimensional organic nanostructures using anodic aluminum oxide templates. Journal of Nanomaterials, 2009, 1-14.
    [14] M. Steinhart, J. H. Wendorff, A. Greiner, R. B. Wehrspohn, K. Nielsch, J. Schilling, J. Choi, U. Go-sele, Polymer Nanotubes by Wetting of Ordered Porous Templates. Science, 2002,296, (1997).
    [15] G. Chem, S. A. Soper, R. L. McCarley, Free-standing, erect ultrahigh-aspect-ratio polymer nanopillar and nanotube ensembles. Langmuir, 2007,23,11777-11781.
    [1]I.Jiang,R.Wang,B.Yang,T.J.Li,D.A.Tryk,A.Fujishima,K.Hashimoto,D.B.Zhu,Pure appl chem,2000,(72-73).
    [2]m.Miwa,A.Nakajima,A.Fujishima,K.Hashimoto,T.Watanabe,Langmuir,2000,16,(5),754.
    [3] L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. zhai, Y. Song, B. Liu, Lei Jiang, D. Zhu, Super-hydrophobic surfaces: from nature to artifical. Advanced Materials, 2002,14,(24), 1857-1860.
    [4] X. Feng, L. Jiang, Design and Creation of Superwetting/Antiwetting Surfaces. Advanced Materials, 2006,18, (23), 3063-3078.
    [5] W. Barthlott, C. Neinhuis, Purity of the Sacred Lotus, or escape from contamination in biological surfaces. Planta, 1997, 202, 1-8.
    [6] J. Genzer, K. Efimenko, Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review. Biofouling, 2006, 22, (5), 339-360.
    [7] X. Gao, L. Jiang, Water-repellent legs of water striders. Nature, 2004, 432, 36-36.
    [8] T. Wagner, C. Neinhius, W. Barthlott, Wettability and contaminability of insect wings as a function of their surface sculptures. Acta Zoologoca, 1996, 77, 213-225.
    [9] A. Tuteja, W. Choi, M. Ma, J. M. Mabry, S. A. Mazzella, G.C. Rutledge, G.H. Mckinley, R. E. Cohen, Designing Superoleophobic Surfaces. Science, 2007, 318,1618-1622.
    [10] L. Gao, T. J. McCarthy, A perfectly hydrophobic surface. Journal of the America Chemical Society 2006, 128, 9052-9053.
    [11] H. Y. Erbil, A. 1. Demirel, Y. Avci, O. Mert, Transformation of a simple plastic into a superhydrophobic surface. Science, 2003,299,1377-1380.
    [12] S. R. Coulson, I. Woodward, J. P. S. Badyal, S. A. Brewer, C. Willis, J. Phys. Chem. 5,2000, 104, 8836.
    [13] W. Chen, Langmuir, 1999,15, 3395.
    [14] T. Nishino, M. Meguro, K. Nakamae, M. Matsushita, Y. Ueda, The lowest surface free energy based on -CF3 alignment. Langmuir, 1999, 15, (13), 4321-4323.
    [15] R. N. Wenzel, Resistance of solid surfaces to wetting by water. Ind. Eng. Chem., 1936, 28, (8), 988-994.
    [16] A. B. D. Cassie, S. Baxter, Wettability of porous surfaces. Transactions of the Faraday Society, 1944,40, 546-551.
    [17] X. Wu, G.shi, Nanotechnology, 2005,16.
    [18] M. Ma, Y. Mao, M. Gupta, K. K. Gleason, G.C. Rutledge, Superhydrophobic Fabrics Produced by Electrospinning and Chemical Vapor Deposition. Macromolecules, 2005, 38, 9742-9748.
    [19] H. Wang, J. Fang, T. Cheng, J. Ding, L. Qu, L. Dai, X. Wang, T. Lin, One-step coating of fluoro-containing silica nanoparticles for universal generation of surface superhydrophobicity. Chemical Communication, 2007.
    [20] J. Shiu, C. Kuo, P. Chen, C. Mou, Chemical materials, 2004,16.
    [21] S. Kulinich, M. Farzaneh, Vacuum, 2005, 79.
    [22] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, One-Dimensional Nanostructure: Synthesis, Characterization, and Applications. Advanced Materials, 2003,15, (5), 353-389.
    [23] J. Hu, T. Odom, C. M. Lieber, Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes. Accounts of Chemical Research, 1999,32, 435-445.
    [24] D. Li, Y. Xia, Electrospinning of Nanofibers: Reinventing the Wheel? Advanced Materials, 2004,16, (14), 1151 -1170.
    [25] W. E. Teo, S. Ramakrishna, A review on electrospinning design and nanofibre assemblies. Nanotechnology, 2006, 17, R89-R106.
    [26] D. Lin, H. Wu, W. Pan, Advanced Materials, 2007, 19, 3968.
    [27] D. Li, Y. Wang, Y. Xia, Nano. Lett., 2003, 3, 1167.
    [28] S. H. Phillips, T. S. Haddad, S. J. Tomczak, Developments in nanoscience: polyhedral oligomeric silsesquioxane(POSS)-Polymers. Current Opinion in Colloid and Interface Science, 2004, 8.
    [29] M. bognitzki, W. Czado, T. Frese, A. Schaper, M. Hellwing, M. Steinhart, A. Greiner, J. H. Wendorff, Advanced Materials, 2001, 13, 70.
    [30] T. Lin, H. Wang, X. Wang, Self-Crimping Bicomponent nanofibers Electrospun From Polyacrylonitrile and Elastomeric Polyurethane. Advanced Materials,2005,17,2699-2703.
    [31]M.Ma,Y.Mao,M.Gupta,K.K.Gleason,G.C.Rutledge,Superhydrophobic Fabrics Produced by Electrospinning and Chemical Vapor Deposition.Macromolecules,2005,38,(23),9742-9748.
    [32]J.P.Youngblood,T.J.Mccarthy,Macromolecules,1999,32,6800.
    [33]T.Douglas,Science,2003,299,1192.
    [34]K.Jeong,J.Kim,L.P.Lee,Science,2006,312,557.
    [35]T.A.Taton,Nature Materials,2003,2,73.
    [36]T.Sun,L.Feng,X.Gao,L.Jiang,Acc.Chem.Res.,2005,38,644.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700