用户名: 密码: 验证码:
滇西北兰坪盆地白秧坪多金属矿床成矿流体研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白秧坪多金属矿床位于滇西兰坪中—新生代沉积盆地中北部,是著名三江成矿带内新近发现的重要矿床之一。自发现以来备受关注、不断被认知,虽然已取得大量优秀的研究成果,但是对矿床成因类型、成矿机制存在较大分歧。因此,对矿床认识亟待提高。由于矿物包裹体是成矿流体的保真样品,也是厘定矿床成因类型的重要标志,本文首先运用碳酸盐矿物染色法研究主要成矿阶段矿物共生组合,然后利用冷热台和激光拉曼分析技术开展流体包裹体研究,结合同位素、微量和稀土元素研究结果,试图对矿床成因特点提供约束。
     碳酸盐矿物染色法岩相学和矿相学研究表明白秧坪多金属矿床主成矿阶段共生矿物组合为闪锌矿+方铅矿+白云石+石英+含Ag矿物+含Cu矿物,方解石主要为成矿期晚阶段产物。流体包裹体显微测温以及激光拉曼探针分析显示,成矿流体为H2O-NaCl-CaCl2流体体系,盐度w(NaCleq)峰值范围为22.00wt%~25.00wt%,成矿温度多数集中在110.0℃~180.0℃之间,密度大于1.00g/cm3。该矿床属于低温、高盐度、中等密度热液铅锌多金属矿床。矿床成矿压力介于28.02MPa~70.64MPa之间,成矿深度范围在1.04km~2.62km,形成深度较浅。
     H、C、O、S、Pb同位素研究表明,成矿流体主要来源于古大气降水补给的盆地热卤水;碳来源于盆地流体溶解海相沉积碳酸盐岩;硫来源于盆地沉积地层膏盐硫;Pb等金属元素来源于上地壳岩石。微量和稀土元素地球化学研究也显示,成矿物质来源于盆地沉积地层,围岩为矿床形成提供了所需的金属组分。成矿流体始终处于相对还原环境,金属离子和还原硫可能共存于同一流体系统,由于物理化学条件的改变发生沉淀而形成矿床。结合矿床产出背景、矿床地质、控矿构造等因素,白秧坪多金属矿床成矿流体具有密西西比河谷型(MVT)成矿流体特点,矿床可能归属于MVT矿床。
Baiyangping poly-metallic deposit, located in the central,slightly north of the Lanping Mesozoic-Cenozoic sedimentary basins, is one of important deposits in the famous Sanjiang metallogenic belt. It has received much concerned and been studied deeply since it was discovered, however, considerable differences still exist between genetic type and ore-forming mechanism. Therefore, the understanding of the deposit is in urgent need to be improved. As the inclusions in the minerals are the representative samples of ore-forming fluid, as well as the signal of determining the genetic type. In this paper, the method of staining of carbonate minerals was used to determine the associate mineral assemblages, and then microthermometry and Laser Raman spectroscopy were used to conduct the study of fluid inclusions. Finally, combining these with the study of isotope, trace elements and REE, the genetic characteristics of the deposit were tried to be restricted.
     Based on the petrology and mineragraphy study by the method of staining of carbonate minerals, associate mineral assemblages in the main ore-forming stage of Baiyangping poly-metallic deposit are sphalerite-galena-dolomite-quartz, as well as Ag-bearing minerals and Cu-bearing minerals, and calcite is mainly a product of mineralization in late stage. According to the analysis of the microthermometry and Laser Raman spectroscopy, the system of the ore-forming fluids is H2O-NaCl-CaCl2, peak value of salinity w(NaCleq)is in the range of 22.00wt%~25.00wt%, ore-forming temperature concentrated between 110.0℃~180.0℃, and its density over 1.00g/cm3. Therefore, Baiyangping is a low-temperature, high-salinity, and low-density Pb-Zn poly-metallic deposit. The ore-forming pressure and depth are between 28.02MPa~70.64MPa and 1.04km~2.62km,respectively.
     The study H, C, O, S and Pb isotope shows that ore-forming fluid was hot basin brine originated from palaeo-precipitate water, C from marine sedimentary carbonate melt by basin fluids, S from gypsum-salt in basin sedimentary strata, and Pb and other metal elements are mainly derived from the supracrust rocks.Ore-forming fluid is always in relatively reducing environment, and metal ions together with reducing sulfur start precipitation to form deposits under the changes of the physical and chemical conditions, even though they coexist stably in the same fluid system privately. The factors of geologic background, ore-forming sources and ore-controlling structure lead to the conclusion that Baiyangping poly-metallic deposit has the characteristics of Mississippi Valley type.
引文
Barnes HL. Geochemistry of hydrothermal ore deposits. 3rd ed. New York: John Wiley & Sons, 1997, 972.
    Basuki NI, Spooner ETC. A review of fluid inclusion temperatures and salinities in Mississippi Burke EAJ. Raman microspectrometry of fluid inclusions. Lithos, 2001, 55: 139-158.
    Chi GX, Ni P. Equations for calculation of NaCl/(NaCl+CaCl2) ratios and salinities from hydrohalite-melting and ice-melting temperatures in the H2O-NaCl- CaCl2 system. Acta Petrologica Sinica, 2007, 23(1): 33-37.
    Dickson, JAD. A modified staining technique for carbonates in thin sections. Nature, 1965, 205: 587.
    Haskin LA, Haskin MA, Frey FA, et al. Relative and absolute terrestrial abundances of the rare earths. In: Ahrens L H. Origin and Distribution of the Elements. Oxford: Pergamon, 1968, 889-911.
    Hoefs J. Stable isotope geochemistry. Berlin: Spring Verlag. 4th ed., 1997, 65-168.
    Li N. Depositional controls and genesis of the Jinding sandstone-hosted Zn-Pb deposit, Yunnan Province, Southwest China [Ph. D. Thesis]. Austin: The University of Texas, 1998.
    Misra KC. 2000. Understanding mineral deposits. London: Kluwer Academic Publishers, 845.
    Ohmoto H. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Economic Geology, 1972, 67: 551-578.
    Roedder E. Fluid inclusions. Reviews in Mineralogy, 1984, 12: 250-354.
    Roedder E. Fluid-inclusion evidence on the genesis of ores in sedimentary and volcanic rocks. In: Wolf K H ed. H and Book of Strata-bound and S tratiform Ore Deposits. Amsterdam: Elsevier Scientific Publishing Company, 1976, 76-110.
    Rye RO, Ohmoto H. Sulfur and carbon isotope and ore genesis. Economic Geology, 1974, 69: 902-909.
    Sangster DF. Mississippi Valley-tape and Sedex lead-zinc deposits-a comparative examination. Institution of Mining and Metallurgy Transactions, Section B, Applied Earth Sciences, 1990, 99: 21-42.
    Taylor SR, Mclennan SM. The Continental Crust: its Composition and Evolution. Oxford: Blackwell Scientific Publications, 1985, 1-372.
    Vaasjoki M, Gulson BL. Carbonate-hosted base metal deposits: Lead isotope data bearing on their genesis and exploration. Economic Geology, 1986, 81: 156-172.
    Valley-type Zn-Pb deposits: Identifying thresholds for metal transport. Exploration and Mining Geology, 2004, 11(1-4): 1-17.
    Veizer J, Hoefs J. The nature of18O/16O and13C/12C secular trends in sedimentary carbonate rocks. Geochimica et Cosmochimica Acta, 1976, 40: 1387-1395.
    Wang EQ, Burchfiel BC. Interpretation of Cenozoic tectonics in the right-lateral accommodation zone between the Ailao Shan shear zone and the eastern Himalayan syntaxis. International Geological Review, 1997, 39: 191-219.
    Xue CJ, Chen YC, Wang DH, et al. Geology and isotopic composition of helium, neon, xenon and metallogenic age of the Jinding and Baiyangping ore deposits, northwest Yunnan, China. Science in China(Ser.D), 2003, 46(8): 789-800.
    Xue CJ, Wang DH, Chen YC, et al. Helium argon, and xenon isotopic compositions of ore-forming fluids in Jinding-Baiyangping polymetallic deposits, Yunnan, Southwest China. Acta Geologica Sinica, 2000, 74(3): 521-528.
    Xue CJ, Zeng R, Liu SW, Chi GX, et al. Geologic, fluid inclusion and isotopic characteristics of the Jinding Zn-Pb deposit, western Yunnan, South China: A review. Ore Geology Reviews, 2007, 31: 337-359.
    Zheng YF, Hoefs J. Carbon and oxygen isotopic covaiations in hydrothermal calcites. Mineralium Deposita, 1993, 28:79-89.
    Zheng YF. Carbon-oxygen isotopic covaiations in hydrothermal calcite during degassing of CO2: A quantitative evaluation and application to the Kushikino gold mining area in Japan. Mineralium Deposita, 1990, 25:246-250.
    毕献武,胡瑞忠.哀牢山金矿带成矿流体稀土元素地球化学.地质论评, 1998, 44(3): 264-269.
    陈广浩,尹汉辉,楚颖,等.兰坪思茅盆地第三纪矿床有机质特征及其地质意义.矿床地质, 1996, 15(4): 374-380.
    陈骏,王鹤年.成矿流体作用过程的REE示踪研究.南京大学学报(自然科学版,流体地质专辑), 1997, 33(3): 28-35.
    陈开旭,何龙清,魏君奇,等.云南白秧坪矿化集中区矿石矿物特征及银、钴赋存状态的初步研究.矿物学报, 2004, 24(1): 61-67.
    陈开旭,何龙清,杨振强,等.云南兰坪三山-白秧坪铜银多金属成矿富集区的碳氧同位素地球化学.华南地质与矿产, 2000, 4: 1-8.
    陈开旭,姚书振,何龙清,等.云南兰坪白秧坪银多金属矿集区成矿流体研究.地质科技情报, 2004, 23(2): 45-50.
    陈衍景.造山型矿床、成矿模式及找矿潜力.中国地质, 2006, 33: 1181-1196.
    池国祥,赖健清.流体包裹体在矿床学中的应用.矿床地质, 2009, 28(6): 850-855.
    池国祥,卢焕章.流体包裹体组合对测温数据有效性的制约及数据表达方法.岩石学报, 2008, 24(9): 1945-1953.
    董方浏,莫宣学,侯增谦,等.云南兰坪盆地喜马拉雅期碱性岩40Ar/39Ar年龄及地质意义.岩石矿物学杂志, 2005, 24(2): 103-109.
    范世家,王安建,刘汉斌,等.论兰坪盆地白秧坪铜(钴)矿床成因的氦氩同位素证据.地质论评, 2006, 52(5): 628-635.
    付修根,林丽,庞艳春,等.云南金顶铅锌矿床中的有机质特征及成矿作用探讨.成都理工大学学报(自然科学版), 2006, 33(6): 621-630.
    高永宝,薛春纪,曾荣.滇西北兰坪金顶铅锌矿床有机物质地球化学.地球化学, 2008, 37(3): 223-232.
    龚文君,谭凯旋,李小明,等.兰坪白秧坪铜银多金属矿床流体地球化学特征及成矿机制探讨.大地构造与成矿学, 2000, 24(4): 175-181.
    韩吟文,马振东,张宏飞,等.地球化学.北京:地质出版社, 2003.
    何明勤,刘家军,李朝阳,等.兰坪盆地铅锌铜大型矿集区的流体成矿作用机制——以白秧坪铜钴多金属地区为例.北京:地质出版社, 2004.
    何明勤,刘家军,李朝阳,等.云南兰坪白秧坪铜钴多金属矿集区矿石中石英的40Ar-39Ar年龄.地质科学, 2006, 41(4): 688-693.
    侯增谦,宋玉财,李政,等.青藏高原碰撞造山带Pb-Zn-Ag-Cu矿床新类型:成矿基本特征与构造控矿模型.矿床地质, 2008, 27(2): 123-143.
    胡明安.地质热事件—有机质—金属成矿作用的联系.地质科技情报, 1997, 16(2): 67-71.
    李小明.滇西金满铜矿床成矿年龄测定.现代地质, 2001, 15(4): 405-408.
    李志明,刘家军,胡瑞忠,等.兰坪盆地白秧坪铜钴多金属矿床中钴的成矿地球化学.矿物学报, 2004, 24(2): 197-205.
    李志明,刘家军,秦建中,等.兰坪盆地白秧坪铜钴多金属矿床成矿物质来源研究.地质与勘探, 2005, 41(1): 1-6.
    廖宗廷,陈跃昆.兰坪—思茅盆地原型的性质及演化.同济大学学报(自然科学版), 2005, 33(11): 1527-1530.
    刘斌,段光贤. NaCl-H2O溶液包裹体的密度式和等容式及其应用.矿物学报, 1987, 7(4): 345-352.
    刘家军,何明勤,李志明,等.云南白秧坪银铜多金属矿集区碳氧同位素组成及其意义.矿床地质, 2004, 23(1): 2-10.
    刘家军,李朝阳,张乾,等.滇西金满铜矿床木质结构及其成因意义.中国科学(D辑), 2001, 31(2): 89-95.
    刘建明,刘家军.滇黔桂金三角区微细浸染型金矿床的盆地流体成因模式.矿物学报, 1997, 17(4): 448-456.
    卢焕章,范洪瑞,倪培,等.流体包裹体.北京:科学出版社, 2004.
    卢焕章.成矿流体.北京:北京科学技术出版社, 1997.
    吕伯西,钱祥贵.滇西新生代碱性火山岩、富碱斑岩深源包体岩石学研究.云南地质, 1999, 18(2): 127-143.
    毛景文,赫英,丁悌平.胶东金矿形成期间地幔流体参与成矿过程的碳氧氢同位素证据.矿床地质, 2002, 21(2): 121-127.
    毛世德.白秧坪地区铜银多金属矿田形成的地球化学机理[硕士论文].成都:成都理工大学, 2004.
    钱祥贵,吕伯西.滇西三江地区新生代碱性火山岩岩石学特征及成因.云南地质, 2000, 19(2): 152-170.
    曲一华,袁品泉,帅开业,等.兰坪一思茅盆地钾盐成矿规律及预测.北京:地质出版社, 1998
    阙梅英,程敦模,张立生,等.兰坪-思茅盆地铜矿床.北京:地质出版社, 1998.
    冉崇英,程敦模,张立生,等.滇西滇中地区铜多金属成矿条件及综合成矿预测科研总结报告.昆明:昆明理工学院地质系, 1991.
    桑海清,裘冀,王英兰.石英40Ar-39Ar阶段加热法定年的实验技术改进及意义.矿物岩石地球化学通报, 2001, 20(4): 444-447.
    上官志冠,张促禄.滇西实验场区温泉的稳定同位素地球化学研究.见:现代地壳运动研究. 北京:地震出版社, 1991.
    邵洁连.金矿找矿矿物学.武汉:中国地质大学出版社, 1988.
    邵兆刚,孟宪刚,冯向阳,等.云南白秧坪—华昌山矿带构造特征及其控矿作用.地质力学学报, 2003, 9(3): 246-253.
    邵兆刚,孟宪刚,冯向阳,等.云南白秧坪矿化集中区成矿构造动力学分析.地质学报, 2002, 23(3): 201-206.
    苏祺.云南兰坪白秧坪银多金属矿流体与成矿关系——流体包裹体的研究[硕士论文].北京: 中国地质大学(北京), 2002.
    陶晓风,朱利东,刘登忠,等.滇西兰坪盆地的形成及演化.成都理工大学学报, 2002, 29(5): 521-525.
    田洪亮.兰坪白秧坪铜银多金属矿床地质特征.云南地质, 1997, 16(1): 105-108.
    田洪亮.兰坪三山多金属矿床地质特征.云南地质, 1998, 17(2): 199-206.
    王成善,唐菊兴,顾雪祥,等.喜马拉雅构造-成矿域及其成矿效应初步分析.矿物岩石, 2001, 21(3): 146-152.
    王峰,何明友.兰坪白秧坪铜银多金属矿床成矿物质来源的铅和硫同位素示踪.沉积与特提斯地质, 2003a, 22(2): 82-85.
    王峰,何明友.云南白秧坪银多金属矿床微量元素地球化学特征.沉积与特提斯地质, 2003b, 23(4): 103-107.
    魏君奇.云南河西铜多金属矿S, Pb同位素地球化学.华南地质与矿产, 2001, 3: 36-39.
    吴南平,蒋少涌,廖启林,等.云南兰坪-思茅盆地脉状铜矿床铅、硫同位素地球化学与成矿物质来源研究.岩石学报, 2003, 19(4): 799-807.
    徐培苍,李如璧,王永强.地学中的拉曼光谱.西安:陕西科学技术出版社, 1996.
    徐晓春,谢巧勤,陆三明,等.滇西兰坪盆地西缘铜矿床矿物流体包裹体研究.矿物学报, 2005, 25(2): 170-176.
    薛春纪,陈毓川,杨建民,等.滇西北兰坪铅锌银铜矿田含烃富CO2成矿流体及其地质意义.地质学报, 2002c, 76(2): 244-253.
    薛春纪,陈毓川,杨建民,等.滇西兰坪盆地构造体制和成矿背景分析.矿床地质, 2002a, 21(1): 38-43.
    薛春纪,陈毓川,杨建民,等.金顶铅锌矿床地质__地球化学.矿床地质, 2002b, 22(3):270-277.
    薛春纪,高永宝,曾荣,等.滇西北兰坪盆地金顶超大型矿床有机岩相学和地球化学.岩石学报, 2007, 23(11): 2889-2900.
    薛春纪.云南兰坪盆地第三纪成矿系列研究[博士后出站报告].北京:中国地质科学院, 2000.
    薛伟,薛春纪, Chi Guoxiang,等.鄂尔多斯盆地东北缘侏罗系铀矿化与有机质的某些关联. 地质论评, 2009, 55(3): 361-369.
    薛伟,薛春纪,池国祥,等.鄂尔多斯盆地东胜砂岩型铀矿微量和稀土元素地球化学特征. 现代地质, 2010(已接收,待刊).
    杨伟光,喻学惠,李文昌,等.云南白秧坪银多金属矿集区成矿流体特征及成矿机制.现代地质, 2003, 17(1): 27-32.
    尹汉辉,范蔚茗,林舸.云南兰坪-思茅地洼盆地演化的深部因素及幔—壳复合成矿作用.大地构造与成矿学, 1990, 14(2): 113-124.
    张长青,毛景文,余金杰,等.四川甘洛赤普铅锌矿床流体包裹体特征及成矿机制初步探讨.岩石学报, 2007, 23(10): 2541-1552.
    张成江,倪师军,腾彦国.兰坪盆地喜马拉雅期构造—岩浆活动与流体成矿的关系.矿物岩石, 2000, 20(2): 35-39.
    张尔新.兰坪白秧坪铜银多金属矿集区矿床成因.云南地质, 2005, 24(3): 282-289.
    张理刚.铅同位素地质研究现状与展望.地质与勘探, 1992, 28(4): 21-29.
    张理刚.中国东部现代和中生代大气降水包氢氧同位素地球化学.见:国际地质学术交流论文集.北京:地质出版社, 1985.
    赵振华.微量元素地球化学原理.北京:科学出版社, 1997.
    郑永飞,徐宝龙,周根陶.矿物稳定同位素地球化学研究.地学前缘, 2000, 7(2): 299-320.
    郑永飞.稳定同位素体系理论模型及其矿床地球化学应用.矿床地质, 2001, 20(1): 57-70.
    朱大岗,孟宪刚,冯向阳,等.云南白秧坪多金属成矿区构造特征及其控矿作用.地质地球化学, 2002, 30(1): 28-33.
    朱西养,王方亮,王志畅,等.东胜砂岩铀矿微量元素地球化学特征初探.地质地球化学, 2002, 31(2): 39-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700