用户名: 密码: 验证码:
苯—水—乙醇体系相行为和W/O型乳液交联剂交联机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对油-水分散体系的相关性能进行了研究,共分两部分:一是苯-水-乙醇三元体系相行为研究;二是W/O型乳液交联剂交联机理研究。一、苯-水-乙醇三元体系相行为研究
     通常,微乳液是指在表面活性剂存在下或与助表面活性剂同时存在下,互不相溶的油和水形成的热力学稳定、各向同性且透明的分散体系,其中表面活性剂曾被认为是不可缺少的组份。然而,由正己烷-异丙醇-水形成的W/O型微乳液,证明在适宜条件下,表面活性剂并非是微乳液的必要成份。这种没有传统表面活性剂存在下形成的微乳液称为“无表面活性剂微乳液”(Surfactant-Free Microemulsion,简称SFME)。至目前为止,报道的SFME均为W/O型,研究的体系也很有限,对SFME的认识还很肤浅,有必要对其进行系统研究,以加深对微乳液的科学认识,并为其更广泛的应用提供基础依据。
     本文选取苯-乙醇-水为模型体系,进行了相行为研究。采用目视滴定法绘制了三元相图,表明存在一个单相(Single-Phase)区和一个两相(Two-phase)区;采用电导率法确定了单相区的亚相区,发现除文献报道过的W/O型微乳液区和水-乙醇氢键聚集体区和常规三元溶液区外,还存在O/W型和双连续(BC)型微乳液区;采用冷冻蚀刻电镜(FF-TEM)证实了O/W型和双连续(BC)型SFME和水-乙醇氢键聚集体区的存在。研究结果表明,SFME具有与常规微乳液同样的类型;与有表面活性剂的油-水分散体系一样,无表面活性剂时也可能存在丰富的相行为。
     二、W/O型乳液交联剂交联机理研究
     我国是世界上注水开发油田比例较高的国家之一,水驱开发储量占总储量的60%以上。由于我国大多数油田多为陆相沉积,储层非均质性严重,水驱波及效率低的现象普遍存在,采用聚合物(部分水解聚丙烯酰胺,PHPA)交联凝胶深部调剖技术以提高原油采收率已成为主导措施之一。常规交联剂如有机铬、有机锆和有机铝等因交联速率快、凝胶稳定性差等常引起近井地带堵塞、有效期短等问题,新型延缓交联剂成为交联聚合物深部调剖领域的研究热点。
     中国石油化工股份有限公司胜利油田采油工艺研究院研制成功了“W/O型乳液交联剂”,具有交联时间长、凝胶稳定性高等特点,能够有效运移到地层深部,达到深部调剖的目的。然而,对交联机理的认识不清楚,委托我们进行了系统研究。
     首先,对交联剂样品进行了表征,证实是W/O型乳状液,其水相为交联剂溶液;随后,对W/O型乳液交联剂在水中的形态变化进行了研究,发现形成W/O/W型多重乳状液,内水相为交联剂溶液,中间相为油相,外水相为水(或PHPA溶液);在对W/O/W型多重乳状液稳定性研究的基础上,提出了交联机理。W/O型乳液交联剂在PHPA溶液中先形成W/O/W型多重乳状液;液滴间随时间将逐渐发生聚集、融合、油膜破裂等过程而缓慢释放交联剂,因而具有延缓交联作用。
This article studied the related properties of oil-water dispersions, divided into two parts:first, the phase behavior of ternary system benzene-water-ethanol; second, the cross-linking mechanism of W/O emulsion cross-linking agent.
     1. Phase behavior of ternary system benzene-water-ethanol
     Generally, a microemulsion consists of oil, water, surfactant and sometimes cosurfactant, and it is believed that the surfactant is the important component in stabilizing these systems. However, Smith et al. reported an oil-continuous (or W/O) microemulsion composed of hexane,2-propanol and water, and this ternary system was considered as surfactant-free (or detergentless) microemulsion (denoted as SFME) because no traditional surfactant involved in the system. Subsequently, the SFMEs have attracted much attention, their many physical properties were measured, and it was found that the phase behavior of the systems were similar to those observed with surfactant-based microemulsion systems. So far, all SFMEs reported in literatures are water-in-oil (W/O) systems, and the understanding for SFMEs is very shallow. It is necessary to conduct systematic research to enhance scientific understanding of microemulsion and provide the basis for a wide range of applications.
     The ternary system composed of benzene, water, and ethanol was selected as a model system to study the phase behavior. Ternary phase diagram was constructed by visual titration, finding that there were a single-phase region and a two-phase region in ternary phase diagram. The electrical conductivity measurement was employed to investigate the sub-phase regions of the single-phase region, and a water-in-benzene (W/O) microemulsion, a bicontinuous (BC) microemulsion, a benzene-in-water (O/W) microemulsion, a water-ethanol hydrogen bond aggregates and a conventional ternary solution microregions were identified, which was confirmed by freeze-fracture transmission electron microscopy (FF-TEM) observations. The sizes of the microemulsion droplets are in the range of 20-50 nm. The results show that SFME may have the same type as conventional microemulsion, and the oil-water-short chain alcohol systems without surfactants may have a rich phase behavior.
     2. The cross-linking mechanism of W/O emulsion cross-linking agent
     The cross-linking mechanism of a emulsion cross-linking agent for PHPA solution, developed by Shengli Oilfield, China, was investigated. First, the cross-linking agent sample was characterized, proving to be the W/O emulsion with crosslinking agent aqueous solution as water phase; then, the phase changes of the W/O emulsion in water were studied, and it was found that a W/O/W multiple emulsion was formed, the inner water phase was crosslinking agent aqueous solution, the intermediate oil phase was a mineral oil and the external phase was water (or PHPA solution). Based on these results, a cross-linking mechanism was proposed. Aggregation, fusion and film rupture will gradually occur amonge the droplets of the multiple emulsion, and the cross-linking agents were slowly released, which could delay the crosslinking process.
引文
[1]Smith G. D., Donelan C. E., Barden R. E., Oil-continuous microemulsion composed of hexane water and 2-propanol. J. Colloid Interface Sci,1977,60: 488-496.
    [2]Borys N. F., Holt S. L., Barden R. E., Detergentless water/oil microemulsion Ⅲ Effect of KOH on phase diagram and effect of solvent composition on base hydrolysis esters. J. Colloid Interface Sci.,1979,71:526-532.
    [3]Zoumpanioti M., Karali M., Xenakis A., Stamatis H., Lipase biocatalytic processes in surfactant free microemulsion-like ternary systems and related organogels, Enzyme and Microbial Technology,2006,39:531-539.
    [4]Puig J. E., Hemker D. L., Gupta A., Davis H. T., Scriven L. E., Interfacial tensions and phase behavior of alcohol-hydrocarbon-water-sodium chloride systems. J. Phys. Chem.,1987,91:1137-1143.
    [5]T.P. Hoar, J.H. Schulman, Transparent water-in-oil dispersions:the oleopathic hydro-micelle. Nature,1943,152:102-103.
    [6]J.H. Schulman, W. Stoeckenius, L.M. Prince, Mechanism of influence of formation and structure of microemulsions by electron microscopy, J. Phys. Chem.,1959,63:1677-1680.
    [7]I. Danielsson, B. Lindman, The definition of a microemulsion. Colloids and Surfaces,1981,3:391-392.
    [8]H.Watarai, Microemulsions in separation sciences., J Chromatogr.A,1997,780: 93-102.
    [9]Kon-no K, Ueno Y, Ishii Y, Kitahara A. Nippon Kagaku Zasshi,1971,92:381.
    [10]Shah D O, Bansal V K, Chan K, Hsieh W C, Improved oil recovery by surfactant and polymer flooding. Shah D O, Schechter R S, ed. New York:Academic Press, 1977.
    [11]Friberg S., Lapczynska I., Gillberg G, Microemulsions containing nonionic surfactants-The importance of the pit value. J. Colloid Interface Sci,1976, 56(69),19-32.
    [12]Scriven L.E., Equilibrium bicontinuous structure, Nature,1976,(263) 123-125.
    [13]Winsor, P. A. Trans. Faraday Soc.1948,44,376.
    [14]Kahlweit M, Strey R, Phase Behavior of Ternary Systems of the Type H2O-Oil-Nonionic Amphiphile (Microemulsions), Angew Chem Int. ed, Engl, 1985,24:654-668.
    [15]Bruce A. Kelser, Davld Varie, Roland E. Barden, and Smlth L. Holt, Detergentless Water/Oil Microemulsions Composed of Hexane, Water, and 2-Propanol.2. Nuclear Magnetic Resonance Studies, Effect of Added NaCl1 Phys. Chem.,1979,83:1276-1280.
    [16]Yuri L. Khmelnitsky, Arie van Hoek, Cees Veeger, Detergentless Microemulsions as Media for Enzymatic Reactions. Spectroscopic and Ultracentrifugation studies, J. Phys. Chem.,1989,93,872-878
    [17]Pring L, M., A theory of aqueous emulsions I. Negative interfacial tension at the oil/water interface, J. Colloid Interface Sci,1967,23,165-173.
    [18]Pring L, M., Microemulsions versus micelles, J. Colloid Interface Sci, 1975,52,182-188.
    [19]李字乡,唐孝芬,刘双成,我国油田化学堵水调剖剂开发和应用现状[J],油田化学,1995,12(1):106-110.
    [20]张焘,苏龙,刘建东,何利,董志同,凝胶深部调剖技术研究与发展趋势,2009,28(1)26-27
    [21]叶波,熊炜,徐进,罗懿,深层调剖用延迟交联体系研究,钻采工艺,2005,3(28)104-106。
    [22]熊春明,唐孝芬,国内外堵水调剖技术最新进展及发展趋势,2007,34(1)83-88。
    [1]T. Sottmann, R. Strey, Soft colloids V-Fundamentals in interface and colloid science, Elsevier,2005.
    [2]C. P. Mehnert, R. A. Cook, N. C. Dispenziere, M. Afeworki, Supported ionic liquid catalysis-A new concept for homogeneous hydroformylation catalysis J. Am. Chem. Soc.2002,124 (44) 12932-12933.
    [3]Y. A. Gao, Z. H. Li, J. M. Du, B. X. Han, G. Z. Li, W. G. Hou, D. Shen, L. Q. Zheng, G. Y. Zhang, The Effect of Water on the Microstructure of 1-Butyl-3-methylimidazolium Tetrafluoroborate/TX-100/Benzene Ionic Liquid Microemulsion Chem.-Eur. J.2005,115875-5880.
    [4]D. Seth, A. Chakraborty, P. Setua, N. Sarkar, Interaction of Ionic Liquid with Water in Ternary Microemulsions (Triton X-100/Water/1-Butyl-3-methylimidazolium Hexafluorophosphate) Probed by Solvent and Rotational Relaxation of Coumarin 153 and Coumarin 151 Langmuir 2006,22 (18) 7768-7775.
    [5]Y. He, Z. Li, P. Simone, T. P. Lodge, Self-Assembly of Block Copolymer Micelles in an Ionic Liquid J. Am. Chem. Soc.2006,128 (8) 2745-2750.
    [6]C. Patrascu, F. Gauffre, F. Nallet,, Micelles in Ionic Liquids:Aggregation Behavior of Alkyl Poly(ethyleneglycol)-ethers in 1-Butyl-3-methyl-imidazolium Type Ionic Liquids Chem. Phys. Chem.2006,7 (1)99-101.
    [7]K.Kamogawa, M.Matsumoto, T.Kobayashi, T.Sakai, H,Sakai, M. Abe, Dispersion and Stabilizing Effect of n-Hexadecane on Tetralin and Benzene Metastable Droplets in Surfactant-Free Conditions Langmuir 1999,15 (6) 1913-1917.
    [8]T.Sakai, K.Kamogawa, F.Harusawa, N.Momozawa, H,Sakai, Direct Observation of Flocculation/Coalescence of Metastable Oil Droplets in Surfactant-free O/W Emulsion by Freeze Fracture Electron Microscopy Langmuir 2001,17 (2) 255-259.
    [9]K.Kamogawa, H. Akatsuka, M.Matsumoto, S,Yokoyama, T,Sakai, H,Sakai, M.Abe, Surfactant-free O/W Emulsion Formation of Oleic Acid and Its Esters with Ultrasonic Dispersion Colloids Surf A:Physicochemical and Engineering Aspects 2001,18041-53.
    [10]T.Sakai, K.Kamogawa, K.Nishiyama, H.Sakai, M.Abe, Molecular Diffusion of Oil/Water Emulsions in Surfactant-Free Conditions Langmuir 2002,18 (6) 1985-1990.
    [11]T.Sakai, Y.Takeda, F.Mafune, M.Abe, T.Kondow. Dye transfer between surfactant-free nanodroplets dispersed in water J.Phys.Chem.B 2002,106 (19) 5017-5021.
    [12]K.Kamogawa, K.Kamogawa, G.Okudaira, M.Matsumoto, T,Sakai, H,Sakai, M.Abe, Preparation of oleic acid/water emulsions in surfactant-free condition by sequential processing using midsonic-megasonic waves Langmuir 2004,20 (6) 2043-2047.
    [13]George V. Franks, Alex M. Djerdjev, James K. Beattie, Absence of specific cation or anion effects at low salt concentrations on the charge at the Oil/Water interface. Langmuir,2006,21,8670-8674.
    [14]R. M. Pashley, Effect of degassing on the formation and stability of surfactant-free emulsions and fine Teflon dispersions, J. Phys. Chem. B,2003,107, 1714-1720.
    [15]N. Maeda, K. J. Rosenberg, J. N. Israelachvili, R. M. Pashley, Further studies on the effect of degassing on the dispersion and stability of surfactant-free emulsions. Langmuir,2004,20,3129-3137.
    [16]G. R. Burnett, R. Atkin, S. Hicks, J.Eastoe, Surfacntant-free "emulsions" Generated bye Freeze-Thaw. Langmuir 2004,20,5673-5678.
    [17]Smith G D., Donelan C. E., Barden R. E., Oil-continuous microemulsion composed of hexane water, and 2-propanol.J. Colloid Interface Sci., 1977,60:488-496.
    [18]Borys N. F., Holt S. L., Barden R. E., Detergentless water/oil microemulsion III Effect of KOH on phase diagram and effect of solvent composition on base hydrolysis esters, J. Colloid Interface Sci,1979,71:526-532.
    [19]M.Zoumpanioti, M.Karali, A.Xenakis, H,Stamatis, Lipase biocatalytic processes in surfactant free microemulsion-like ternary systems and related organogels. Enzyme Microb.Technol.2006,39531-539.
    [20]Puig J. E., Hemker D. L., Gupta A., Davis H. T., Scriven L. E., Interfacial tendions and phase behavior of alcohol-hydrocarbon-water-sodium chloride systems, J. Phys.Chem.,1987,91:1137-1143.
    [21]M. Clausse, J. Peyrelasse, J. Heil, C. Boned, B. Lagourette. Bicontinuous structure zones in microemulsions Nature 1981,293636-638
    [22]B. Lindman, N. Kamenka, T. M. Kathopoulis Translational diffusion and solution structure of microemulsions J. Phys. Chem.1980,84 2485-2490.
    [23]R. A. Mackay, S. A. Myers, L. Bodalbhai, A. Brajter-Toth. Microemulsion structure and its effect on electrochemical reactions Anal. Chem.1990,62 1084-1090.
    [24]C. S. Mo 1.5-Order differential electroanalysis on Triton X-100 microemulsion Langmuir 2002,18(10) 4047-4053.
    [25]Y. A. Gao, N. Li, L. Q. Zheng, X. Y. Zhao, S. H. Zhang, B, X. Han, W. G. Hou, G Z. Li, A cyclic voltammetric technique for the detection of micro-regions of bmimPF6/Tween 20/H2O microemulsions and their performance characterization by UV-Vis spectroscopy Green Chem.2006,8 43-49.
    [26]Y. A. Gao, S. Q. Wang, L. Q. Zheng, S. B. Han, X.Zhang, D. M. Lu, L. Yu, Y. Q. Ji, G. Y. Zhang, Microregion detection of ionic liquid microemulsion J. Colloid Interface. Sci 2006,301612-616.
    [27]M. Clausse, A. Zradba, L. Nicolas-Morgantini, Microemulsion Systems, Marcel Dekker Inc.,1987.
    [28]Smith G. D., Donelan C. E., Barden R. E., Oil-continuous microemulsion composed of hexane water, and 2-propanol.J. Colloid Interface Sci., 1977,60:488-496.
    [29]Winsor, P. A. Trans. Faraday Soc 1948,44,376.
    [30]B.M. Knickerbocker, C.V. Pesheck, L.E. Scriven, and H. T. Davis, J. Phys. Chem.,1979,83,1984.
    [1]熊春明,唐孝芬,国内外堵水调剖技术最新进展及发展趋势,石油勘探与开发,2007,34(1):83-88。
    [2]元谋,尹文军,大面积堵水调剖技术工业化应用研究,石油勘探与开发,2003,30(4),88-90。
    [3]李明远,林梅钦,郑晓宇,吴肇亮,交联聚合物溶液深部调剖矿场试验,油田化学,2000,17(2),144-147。
    [4]熊生春,王业飞,何英,聚合物驱后交联聚合物深部调剖技术室内试验研究,油气地质与采收率,2005,12(6),77-80。
    [5]王业飞,何龙,崔志昆,崔亚,赵福麟,聚合物驱后深部调剖提高采收率的实验研究,油田化学,2005,22(4),349-353。
    [6]赵福麟,王业飞,戴彩丽,任熵,焦翠,聚合物驱后提高采收率技术研究,中国石油大学学报,2006,30(1),86-89
    [7]魏兆胜,王岚岚,吕振山,生物聚合物深部调剖技术室内机矿场应用研究,石油学报,2006,27(3)75-79。
    [8]孙焕泉,王涛,肖建洪,陈辉,新型聚合物微球逐级深部调剖技术,油气地质与采收率,2006,13(4)77-79。
    [9]孔柏岭 孔昭柯 王正欣 海玉芝 昌润珍 丁秀华,聚合物驱全过程调剖技术的矿场应用,石油学报,2008,29(2),262-265
    [10]刘喜林,尉小明,黄有泉,张玉涛,调剖用延缓交联剂MLH-1的研制,油田化学,4,314-316。
    [11]周高宁,李金环,深部调剖高效延缓用有机复合交联剂的研究,天津化工,2007,21(6),48-49
    [12]魏发林,刘玉章,岳湘安,侯吉瑞,唐孝芬,用于延缓交联的多重乳液体系的热稳定性及运移行为,石油学报,2008,29(3),424-426。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700