用户名: 密码: 验证码:
铜(Ⅰ)配合物磷光材料的发光与光电特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机发光二极管(OLED)在现代显示技术领域中因其不可比拟的优势而受到人们的广泛关注;同时,有机光伏(OPV)器件因成本低、工艺简单、易于制成大面积器件等诸多优点而成为一个研究热点,以期为太阳能、光学传感器和探测器等方面的利用开辟新的道路。本论文以铜(I)配合物磷光材料在OLED及OPV领域的应用为工作出发点,具体工作如下:
     1、利用水热合成技术合成四种四氮杂苯并菲衍生物,即PyPhen、Dicnq、DPPz和BDPz。结果表明,由该方法所获得的产物产率高、纯度好。
     2、以三苯基膦(PPh3)和二(2-二苯基膦基)苯基醚(DPEphos)为第一配体,上述四种四氮杂苯并菲衍生物及4,7-二苯基-1,10-邻菲罗啉(Bath)为第二配体,合成了十个未见报道的铜(I)配合物磷光材料。
     3、采用真空镀膜工艺,利用[Cu(DPEphos)(Dicnq)]BF_4 (CuDD)为发光材料,制备出颜色可调的、高效的有机电致磷光器件。当掺杂浓度为6 %时,器件具有最大的发光效率,达11.3 cd/A;当掺杂浓度为10%时,器件最大亮度为2 322 cd m~(-2)。
     4、采用真空镀膜工艺,利用了CuDD:CBP掺杂层中的来自于铜(I)配合物的黄光组分以及NPB层的蓝光组分,并且在两发光层中间夹入Bu-PBD充当调节颜色组分,开发出了白光器件。结果表明,当器件的发光层2 wt.%CuDD:CBP的厚度为10 nm、Bu-PBD为2 nm时,可获得有效的白光发射,10 V电压时色坐标为(0.33,0.36),最大亮度为2466 cd/m2,电流效率和功率效率分别为6.76 cd/A and 3.85 lm/W。
Extensive attention has been paid for organic electroluminescence (OEL) for its unique advantages in the field of modern display technique. At the mean time, organic photovoltaic (OPV) devices become a research hotspot because the devices can be made with low cost, simple for techniques, and easy for large scale, it is anticipated to develop a new way for the application of solar energy or photo-detector.
     The purpose of this thesis is to develop the application of phosphorescent Cu(I) complex materials in OLED and OPV fields.
     1. Some derivatives of tetraazatriphenylene (PyPhen、Dicnq、DPPz and BDPz) can be synthesized readily by utilizing hydrothermal synthetic method. Comparing with traditional technique, the technique presents effective and simple processes, much high yields of products with higher purity can be harvested.
     2. Ten Cu(I) complexes were synthesized by using PPh3, DPEphos as the first ligands and four derivatives of tetraazatriphenylene, Bath as the second-ligands.
     3. Tuning color electrophosphorescent device based on [Cu(DPEphos)(Dicnq)]BF_4 was fabricated by the evaporating process in vacuum. A peak efficiency of 11.3 cd A-1 at a 16.2 cd m-2 and at a 0.14 mA cm-2 and a maximum luminance of 2322 cd m-2 at 12 V bias were achieved, respectively.
     4. Efficient white organic light-emitting diodes based on [Cu(DPEphos)- (Dicnq)]BF_4, in which the white emission composed of yellow emission from
引文
[1] A. Bernanose, M. Comte, P. Vouaux. Sur un nouveau mode d’émission lumineuse chez certains composés organiques. J. Chim. Phys.,1953,50:64-68
    [2] M. Pope, H. Kallman, P. Magnante. Electroluminescence in organic crystals. J. Chem. Phys., 1963, 38: 2042-2043
    [3] C. W. Tang, S. A. Vanslyke. Organic electroluminescent diodes. Appl. Phys. Lett. 1987, 51: 913-915
    [4] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, et al. Light-emitting diodes based on conjugated polymers, Nature, 1990, 347: 539-541
    [5] 陳怡甄、葉樹棠、彭鏡縣、黃淑娟、沈永清著,抗靜電/導電性材料最新發展趨勢及商機探討,中華民國九十四年十一月
    [6] Z. Y. Xie, L. S. Hung and S. T. Lee, High-efficiency red electroluminescence from a narrow recombination zone confined by an organic double heterostructure [J]. Appl. Phys. Lett., 2001, 79(7):1048-1050
    [7] M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Highly efficient phosphorescent emission from organic electroluminescent devices, Nature, 1998, 395: 151-154
    [8] 李文连著,有机发光材料、器件及其平板显示—一种新型光电子技术,科学出版社,2002年
    [9] M. A. Baldo, D. F. O'Brien, M. E. Thompson, S. R. Forrest, Excitonic singlet-triplet ratio in a semicoducting organic thin film, Phys. Rev. B,1999, 60: 14422-14428
    [10] 李文连著,有机/无机光电功能材料及其应用,科学出版社,2005 年
    [11] Y. Cao, I. D. Parker, G. Yu, C. Zhang, J. Heeger, Improved quantum efficiency for electroluminescence in semiconducting polymers, Nature,1999, 397: 414-417
    [12] M. Wohlgenannt, K. Tandon, S. Mazumdar, S. Ramasesha, Z. V. Vardeny, Formation cross-sections of singlet and triplet excitons in π-conjugated polymers, Nature, 2001, 409: 494-497
    [13] M. A, Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, S. R. Forrest, Very high-efficiency green organic light-emitting devices based on electrophosphorescence, Appl. Phys. Lett. 1999, 75: 4-6
    [14] M. A. Baldo, M. E. Thompson, S. R. Forrest, Phosphorescent materials for application to organic light emitting devices, Pure Appl. Chem. 1999, 71: 2095-2106
    [15] M. E. Thompson, E. Burrows, S. R. Forrest, Electrophosphorescence in Organic Light Emitting Diodes, Cur. Opinion Solid State Mater. Sci. 1999, 4: 369
    [16] 张小伟, 杨楚罗, 秦金贵. 金属有机电致磷光材料研究进展, 2005, 25(8): 873-880
    [17] C. Adachi, M. A. Baldo, S. R. Forrest, S. Lamansky, M. E. Thompson, R. C. Kwong, High-efficiency red electrophosphorescence devices, Appl. Phys. Lett. 2001, 78: 1622-1624
    [18] S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, H.-E. Lee, C. Adachi, P. E. Burrows, S. R. Forrest, M. E. Thompson, Highly Phosphorescent Bis-Cyclometalated Iridium Complexes: Synthesis, Photophysical Characteri- zation, and Use in Organic Light Emitting Diodes, J. Am. Chem. Soc. 2001, 123: 4304-4312
    [19] S. Z. Tokito, T. S. Iijima, T. Tsuzuki, F. Sato, High-efficiency white phosphore- scent organic light-emitting devices with greenish-blue and red-emitting layers, Appl. Phys. Lett. 2003, 83: 2459-2461
    [20] X. Gong, J. C. Ostrowski, G. C. Bazan, D. Moses, A. J. Heeger, Redelectrophosphorescence from polymer doped with iridium complex, Appl. Phys. Lett. 2002, 81: 3711-3713
    [21] Y. J. Su, H. L. Huang, C. L. Li, C. H. Chien ,Y. T. Tao, P. T. Chou. S. Patta, R.-S. Liu. Red Electrophosphorescent Devices Based on Iridium Isoquinoline Complex: Remarkable External Quantum Efficiency Over a Wide Range of Current, Adv. Mater. 2003, 15: 884-888
    [22] A. Tsuboyama, H. Iwawaki, M. Furugori, T. Mukaide, J. Kamatani, S. Igawa, T. Moriyama, S. Miura, T. Takiguchi, S. Okada, M. Hoshino, K. Ueno, Homol- eptic Cyclometalated Iridium Complexes with Highly Efficient Red Phosphor- escence and Application to Organic Light-Emitting Diode, J. Am. Chem. Soc. 2003,125: 12971-12979
    [23] J.-P. Duan, P.-P. Sun, C.-H. Cheng, New Iridium Complexes as Highly Efficient Orange-Red Emitters in Organic Light-Emitting Diodes, Adv. Mater. 2003, 15: 224-228
    [24] C.-Y. Chang, S.-N. Hsieh, T.-C. Wen, T.-F. Guo, C.-H. Cheng, High efficiency red electrophosphorescent polymer light-emitting diode, Chem. Phys. Lett. 2006, 418: 50–53
    [25] Y.-H. Song, S.–J. Yeh, C.–T. Chen, Y. Chi, C.–S. Liu, J.–K. Yu, Y.–H. Hu, P.–T. Chou, S.-M. Peng, G.-H. Lee, Bright and Efficient, Non-Doped, Phosphorescent Organic Red-Light-Emitting Diodes, Adv. Funct. Mater. 2004,14: 1221-1226
    [26] W.-S. Huang, J. T. Lin, C.-H. Chien, Y.-T. Tao, S.-S. Sun, Y.-S. Wen,Highly Phosphorescent Bis-Cyclometalated Iridium Complexes Containing Benzoimi- dazole-Based Ligands, Chem. Mater. 2004, 16: 2480-2488
    [27] D.-U. Kim, S.-H. Paik, S.-H. Kim, Y.-H. Tak et al. Development of novel red phosphorescent iridium complex with phenyl-isoquinoline ligand fororganic electroluminescent device, Current Applied Physics, 2005, xxx-xxx
    [28] B. E. Namdas, T. D. Anthopoulos, Ifor D. W. Samuel, M. J. Frampton, S.-C. Lo, P. L. Burnb, Simple color tuning of phosphorescent dendrimer light emitting diodes, Appl. Phys. Lett. 2005, 86: 161104-(1-3)
    [29] K. R.J. Thomas, M. Velusamy, J. T. Lin, C.-H. Chien, Y.-T. Tao, Y. S. Wen, Y.-H. Hu, P.-T. Chou, Efficient Red-Emitting Cyclometalated Iridium(Ⅲ) Complexes Containing Lepidine-Based Ligands, Inorg. Chem. 2005, 44: 5677-5685
    [30] F.-M. Hwang, H.-Y. Chen, P.-S. Chen, C.-S. Liu, Y. Chi, C.-F. Shu, F.-I. Wu, P.-T. Chou, S.-M. Peng, G.-H. Lee, Iridium(III) Complexes with Orthometalated Quinoxaline Ligands: Subtle Tuning of Emission to the Saturated Red Color, Inorg. Chem. 2005, 44: 1344-1353
    [31] H.-C. Li, P.-T. Chou, Y.-H. Hu, Y.-M. Cheng, R.-S. Liu, Synthesis, Characterization, and Photophysical Properties of Iridium Complexes with an 8-Phenylquinoline Framework. The First Six-Membered Chelated Iridium Complexes for Electroluminance, Organometallics, 2005, 24: 1329-1335
    [32] D. K. Rayabarapu, B. M. J. S. Paulose, J.-P. Duan, C.-H. Cheng, New Iridium Complexes with cyclometalated Alkenylquinoline Ligands as Highly Efficient Saturated Red-Light Emitters for Organic Light-Emitting Diodes, Adv. Mater. 2005, 17: 349-353
    [33] C.-H. Yang, C.-H. Chen, I.-W. Sun, Bathochromic effect of trifluoromethyl- substituted 2-naphthalen-1-yl-pyridine ligands in color tuning of iridium complexes, Polyhedron, 2006, xxx-xxx
    [34] D. R. McMillin, K. M. McNett, Photoprocesses of Copper Complexes That Bind to DNA, Chem. Rev., 1998, 98: 1201-1219
    [35] P. C. Ford, E. Cariati, J. Bourassa, Photoluminescence Properties of Multinuclear Copper(I) Compounds, Chem. Rev., 1999, 99: 3625-3647
    [36] V. W.-W. Yam, K. K.-W. Lo, Luminescent polynuclear d10 metal complexes, Chem. Soc. Rev., 1999, 28: 323-334
    [37] D. V. Scaltrito, D. W. Thompson, J. A. O’Callaghan, G. J. Meyer, MLCT excited states of cuprous bis-phenanthroline coordination compounds, Coord. Chem. Rev., 2000, 208: 243-266
    [38] N. Armaroli, Photoactive mono- and polynuclear Cu(I)-phenanthrolines, A viable alternative to Ru(II)-polypyridines?, Chem. Soc. Rev., 2001, 30: 113-124
    [39] R. A. Rader, D. R. McMillin, M. T. Buchner, T. G. Atthews, D. J. Casadonte, R. K. Lengel, S. B. Whittaker, L. M. Darmon, F. E. Lytle, Photostudies of 2,2'-bipyridine bis(triphenylphosphine)copper(1+), 1,10-phenanthroline bis(triphenylphosphine) copper(1+), and 2,9-dimethyl-1,10-phenanthroline bis(triphenylphosphine) copper(1+) in solution and in rigid, low temperature glasses. Simultaneous multiple emissions from intraligand and charge-transfer states, J. Am. Chem. Soc., 1981, 103: 5906-5912
    [40] P. A. Breddels, P. A. M. Berdowski, G. Blasse, J. Chem. Soc., Faraday Trans. 2, 1982, 78: 595.
    [41] D. G. Cuttell, S.-M. Kuang, P. E. Fanwick, D. R. McMillin, R. A. Walton, Simple Cu(I) complexes with unprecedented excited-state lifetimes, J. Am. Chem. Soc. 2002, 124: 6-7
    [42] S.-M. Kuang, D. G. Cuttell, D. R. McMillin, P. E. Fanwick, R. A. Walton, Synthesis and structural characterization of Cu(I) and Ni(II) complexes that contain the bis[2-(diphenylphosphino)phenyl]ether ligand. Novel emission properties for the Cu(I) species, Inorg. Chem. 2002, 41: 3313-3322
    [43] Y.-G. Ma, C.-M. Che, H.-Y. Chao, X.-M Zhou, W.-H. Chan, J. C. Shen, High Luminescence Gold(I) and Copper(I) Complexes with a Triplet Excited State for Use in Light-Emitting Diodes, Adv. Mater. 1999, 11: 852-857
    [44] Q.-S. Zhang, Q.-G. Zhou, Y.-X. Cheng, L.-X. Wang, D.-G. Ma, X.-B. Jing, and F.-S. Wang, Highly Efficient Green Phosphorescent Organic Light-Emitting Diodes Based on CuI Complexes, Adv. Mater. 2004, 16: 432-436
    [45] W.-L. Jia, T. McCormick, Y. Tao, J.-P. Lu, and S. N. Wang, New Phosphorescent Polynuclear Cu(I) Compounds Based on Linear and Star-Shaped 2-(2'-Pyridyl)benzimidazolyl Derivatives: Syntheses, Structures, Luminescence, and Electroluminescence, Inorg. Chem. 2005, 44: 5706-5712
    [1] Erkkila, K. E.; Odom, D. T.; Barton, J. K. Recognition and Reaction of Metallointercalators with DNA , Chem. Rev. 1999, 99: 2777-2795
    [2] Sun, P. P.; Duan, J. P.; Shih, H. T.; Cheng, C. H. Europium complex as a highly efficient red emitter in electroluminescent devices, Appl. Phys. Lett. 2002, 81: 792-794
    [3] Sun, P. P.; Duan, J. P.; Lih, J. J.; Cheng, C. H. Synthesis of New Europium Complexes and Their Application in Electroluminescent Devices, Adv. Funct. Mater. 2003, 13: 683-691
    [4] Nyquist, E. B.; Joullié, M. M. Synthesis and Properties of Fluorine- Containing Heteorocyclic Cmpounds. V. Trifluoromethyl-1,8- and 1,10-Phenanthrolines. J. Heterocyc. Chem. 1967, 4: 539-545
    [5] Dickeson, J. E.; Summers, L. A. Derivatives of 1,10-Phenanthroline -5,6-quinone, Aust. J. Chem. 1970, 23: 1023-1027
    [6] Rothkopf, H. W.; W?hrle, D.; Müller, R.; Koβmehl, G. Di- und Te-tracyaninpyrazine, Chem. Ber. 1975, 108: 875-886
    [7] Van der Tol, E. B.; Van Ramesdonk, H. J.; Verhoeven, J. W.; Steemers, F. J.; Kerver, E. G.; Verboom, W.; Reinhoudt, D. N. Tetraazatriphenylenes as Extremely Efficient Antenna Chromophores for Luminescent Lanthanide Ions, Chem. Eur. J. 1998, 4: 2315-2323
    [8] Garas, A. M. S.; Vagg, R. S. Synthesis of Some Novel Derivatives of 1,10-Phenanthroline, J. Heterocyc. Chem. 2000, 37: 151-158
    [9] Zhang, X.-M. Hydro(solvo)thermal in situ ligand syntheses, Coord. Chem. Rev. 2005, 249: 1201-1219
    [10] Kotsuki, H.; Mehta, B. K.; Yanagisawa, K. Novel Synthesis of Fully-Substituted Pyridine Derivatives via Self-Condensation of CyclicKetones in Aqueous Ammonium Chloride under Hydrothermal Conditions, Syn. Lett. 2001, 1323-1325
    [11] Mehta, B. K.; Yanagisawa, K.; Shiro, M.; Kotsuki, H. Unprecedented Hydrothermal Reaction of O-Phenylaniline and Related Derivatives with Cyclic Ketones. A Novel Approach to the Construction of Phenanthridine and Quinoline Ring SystemsOrg. Lett. 2003, 5: 1605-1608
    [12] Zou, X. H.; Ye, B. H.; Li, H.; Liu, J. G.; Xiong, Y.; Ji, L. N. Mono-and bi- nuclear Ruthenium(II) Complexes Containing a new Asymmetric Ligand 3-(pyrazin-2-yl)-as-triazino[5,6-f]1,10-phenanthroline: Synthesis, Charact- rization and DNA-binding properties, J. Chem. Soc. Dalton Trans. 1999, 1423-1428
    [13] Ambroise, A.; Maiya, B. G. Ruthenium(II) Complexes of 6,7-Dicyanodi- pyrido quinoxaline: Synthesis, Luminescence Studies, and DNA Interaction, Inorg. Chem. 2000, 39: 4264-4272
    [14] Yamada, M.; Tanaka, Y.; Yoshimoto, Y.; Kuroda, S.; Shimao, Synthesis and properties of dia-. mino-substituted dipyrio[3,2-a. :. 2’,3’-clphenazine, I. Bull. Chem. Soc. Jpn. 1992, 65: 1006-1011
    [15] Thirtle, J. R. The Chemistry of Heterocyclic Compounds, Coll. Vol. 12, Interscience Publishers, New York (USA), 1958, chapter
    [1] H. F. Wittmann, R. H. Friend, M. S. Khan, and J. Lewis, Optical spectroscopy of platinum and palladium containing poly-ynes, J. Chem. Phys. 1994, 101, 2693-2698
    [2] J. Kido, H. Haromatchi, K. Hongawa, K. Nagai, and K. Okuyama, Bright red light-emitting organic electroluminescent devices having a europium complex as an emitter, Appl. Phys. Lett. 1994, 65: 2124-2126
    [3] Y. Ma, H. Y. Zhang, J. C. Shen, and C. Che, Electroluminescence from triplet metal-ligand charge-transfer excited state of transition metal complexes, Synth. Met. 1998, 94: 245-248
    [4] M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, Highly efficient phosphorescent emission from organic electroluminescent devices, Nature, 1998, 395: 151-154
    [5] M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, and S. R. Forrest, Very high-efficiency green organic light-emitting devices based on electrophosphorescence, Appl. Phys. Lett. 1999, 75: 4-6
    [6] J. S. Wilson, A. S. Dhout, A. J. A. B. Seeley, M. S. Khan, Spin-dependent exciton formation in π-conjugated compounds, Nature 2001, 413: 828-831
    [7] G. j. Kubas, Tetrakis(acetonitrile)copper(I) hexafluorophosphate, Inorg. Synth., 1979, 19: 90-92
    [8] S.-M. Kuang, D. G. Cuttell, D. R. McMillin, P. E. Fanwick, R. A. Walton, Synthesis and structural characterization of Cu(I) and Ni(II) complexes that contain the bis[2-(diphenylphophino)phenyl]ether ligand. Novel emission properties for the Cu(I) species. Inorg. Chem, 2002, 41: 3313-3322
    [9] N. Armroli, L. De Cola, V. Balzami, J. P. Sauvage, C. D. DietichBuchecker, J. M. kern, Absorption and luminescence properties of 1,10-phenanthroline 2,9-diphenyl-1,10-phenanthroline-2,9-dianisyl-1,10- phenanthroline and their protonated forms in dichloromethane solution, J. Chem. Soc. Faraday Trans., 1992, 88: 553-557
    [10] C. C. Phifer and D. R. McMillin, The basis of aryl substituent effects on charge-transfer absorption intensities, Inorg. Chem.,1986,25: 1329-1333
    [11] A. K. Ichinaga, J. R. Kirchhoff, D. R. McMillin, C. O. Dietrich-Buchecker, P. A. Marnot and J. -P. Sauvage, Charge-transfer absorption and emission of Cu(NN)2+ systems, Inorg. Chem., 1987, 26: 4290-4292
    [12] R. M. Everly and D. R. McMillin, Reinvestigation of the absorbing and emitting charge-transfer excited states of [Cu(NN)2]+ systems, J. Phys. Chem., 1991, 95: 9071-9075
    [13] C. T. Cunningham, K. L. H. Cunningham, J. F. Michalec and D. R.McMillin, Cooperative Substituent Effects on the Excited States of Copper Phenanthrolines, Inorg. Chem., 1999, 38: 4388-4392
    [14] M. T. Miller, P. K. Gantzel and T. B. Karpishin, Effects of Sterics and Electronic Delocalization on the Photophysical, Structural, and Electrochemical Properties of 2,9-Disubstituted 1,10-Phenanthroline Copper(I) Complexes, Inorg. Chem., 1999, 38: 3414-3422
    [15] M. T. Miller and T. B. Karpishin, Phenylethynyl Substituent Effects on the Photophysics and Electrochemistry of [Cu(dpp)2]+ (dpp = 2,9-Diphenyl-1,10- phenanthroline), Inorg. Chem., 1999, 38: 5246-5249
    [16] C. Lee, W. Yang, R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B, 1998, 37: 785-789
    [17] A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 1993, 98: 5648-565
    [1] C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, Nearly 100% internal phosphorescence efficiency in an organic light-emitting device, J. Appl. Phys. 2001, 90: 5048-5051
    [2] K. Kalyanasundaram, Photophysics, photochemistry and solar energy conversion with tris(bipyridyl)ruthenium(II) and its analogues, Coord. Chem. Rev. 1982, 46: 159-244
    [3] K.-F.Chin, K.-K. Cheung, H.-K. Yip, T. C. W. Mak, C. M. Che, Luminescent nitridometal complexes. Photophysical and photochemical properties of the 3[(d xy )1(d*)1] excited state of nitridoosmium(VI) complexes with polypyridine ligands, J. Chem. Soc., Dalton Trans., 1995, 4: 657-663
    [4] H. Rudmann, S. Shimada, M. F. Rubner, Solid-State Light-Emitting Devices Based on the Tris-Chelated Ruthenium(II) Complex. 4. High-Efficiency Light-Emitting DevicesBased on Derivatives of the Tris(2,2'-bipyridyl) Ruthenium(II) Complex, J. Am. Chem. Soc. 2002, 124: 4918-4921
    [5] L. T.-S.-Hee, A. K.-D. Mesmaeker, Spectroelectrochemical and flash photochemical reduction of 1,4,5,8-tetraazaphenanthrene and 1,4,5,8,9,12-hexaaza-triphenylene mono- and bi-metallic ruthenium(II) complexes, J. Chem. Soc., Dalton Trans., 1994, 24: 3651-3658
    [6] K. Kalyanasundaram and M. Gr?tzel, Applications of functionalized transition metal complexes in photonic and optoelectronic devices, Coord. Chem. Rev. 1998, 177: 347-414
    [7] S. Bernhard, X. Gao, G. G. Malliaras, H. D. Abruna, Efficient electrolumi- nescent devices based on a chelated osmium(II) complexes, Adv. Mater. 2002, 14: 433-436
    [8] M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Highly efficient phosphorescent emission from organic electroluminescent devices, Nature (London) 1998, 395: 151-154
    [9] D.F. O'Brien, M.A. Baldo, M.E. Thompson, S.R. Forrest, Improved energy transfer in electrophosphorescent devices, Appl. Phys. Lett. 1999,74: 442-444
    [10] R. C. Kwong, S. Sibley, T. Dubovoy, M. Baldo, S. R. Forrest, M. E. Thompson, Efficient, Saturated Red Organic Light Emitting Devices Based on Phosphorescent Platinum(II) Porphyrins, Chem. Mater., 1999, 11: 3709-3713
    [11] W. Lu, B.-X. Mi, M. C. W. Chan, Z. Hui, N. Zhu, S.-T. Lee, C.-M. Che, [(C^N^N)Pt(C≡C)nR] (HC^N^N = 6-aryl-2,2’-bipyridine, n = 1–4, R = aryl, SiMe3) as a new class of light-emitting materials and their applications in electrophosphorescent devices, Chem. Commun., 2002, 206-207
    [12] M. Cocchi, V. Fattori, D. Virgili, C. Sabatini, P. Di Marco, M. Maestri, J. Kalinowski, Highly efficient organic electrophosphorescent light-emitting diodes with a reduced quantum efficiency roll off at large current densities, Appl. Phys. Lett., 2004, 84: 1052-1054
    [13] M. Cocchi, D. Virgili, C. Sabatini, V. Fattori, P. Di Marco, M. Maestri, J. Kalinowski, Highly efficient organic electroluminescent devices based on cyclometallated platinum complexes as new phosphorescent emitters, Synthetic Metals, 2004, 147: 253-256
    [14] C.-M. Che, S.-C. Chan, H.-F. Xiang, M. C. W. Chan, Y. Liu, Y. Wang, Tetradentate Schiff base platinum(II) complexes as new class of phosphorescent materials for high-efficiency and white-light electroluminescent devices, Chem. Commun., 2004, 1484–1485
    [15] H.-F. Xiang, S.-C. Chan, K. K.-Y. Wu, C.-M. Che, P. T. Laib, High-efficiency red electrophosphorescence based on neutral bis(pyrrole)-diimine platinum(II) complex, Chem. Commun., 2005, 1408-1410
    [16] J. Kavitha, S.-Y. Chang, Y. Chi, J.-K. Yu, Y.-H. Hu, P.-T. Chou, S.-M. Peng,G.-H. Lee, Y.-T. Tao, C.-H. Chien, A. J. Carty, In search of high-performance platinum(II) phosphorescent materials for the fabrication of red electro- phosphorescent devices, Adv. Funct. Mater., 2005, 15: 223-229
    [17] P. T. Furuta, L. Deng, S. Garon, M. E. Thompson, J. M. J. Fréchet, Platinum-functionalized random copolymers for use in solution-processible, efficient, near-white organic light-emitting diodes, J. Am. Chem. Soc., 2004, 126: 15388-15389
    [18] S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, H.-E. Lee, C. Adachi, P. E. Burrows, S. R. Forrest, M. E. Thompson, Highly phosphorescent bis-cyclometalated iridium complexes: synthesis, photophysical characterization, and use in organic light emitting diodes, J. Am. Chem. Soc. 2001, 123: 4304-4312
    [19] C.-L. Lee, K. B. Lee, and J.-J. Kim, Polymer phosphorescent light-emitting devices doped with tris(2-phenylpyridine) iridium as a triplet emitter, Appl. Phys. Lett. 2000, 77: 2280-2282
    [20] B. W. D’Andrade, J. Brooks, V. Adamovich, M. E. Thompson, and S. R. Forrest, White Light Emission Using Triplet Excimers in Electrophospho- rescent Organic Light-Emitting Devices, Adv. Mater. 2002, 14: 1032-1036
    [21] W. Zhu, Y. Mo, M. Yuan, W. Yang, and Y. Cao, Highly efficient electrophosphorescent devices based on conjugated polymers doped with iridium complexes, Appl. Phys. Lett. 2002, 80: 2045-2047
    [22] C. Jiang, W. Yang, J. Peng, S. Xiao, and Y. Cao, High-Efficiency, Saturated Red-Phosphorescent Polymer Light-Emitting Diodes Based on Conjugated and Non-Conjugated Polymers Doped with an Ir Complex, Adv. Mater. 2004, 16: 537-541
    [23] X. Gong, P. K. Ng, W. K. Chan, Trifunctional light-emitting molecules based on rhenium and ruthenium bipyridine complexes, Adv. Mater. 1998, 10: 1337-1340.
    [24] W. K. Chan, P. K. Ng, X. Gong, S. Hou, Light-emitting multifunctional rhenium (I) and ruthenium (II) 2,2’-bipyridine complexes with bipolar character, Appl. Phys. Lett. 1999, 75: 3920-3922
    [25] Y. Li, Y. Liu, J. Gou, F. Wu, W. Tian, B. Li, Y. Wang, Photoluminescent and electroluminescent properties of phenol-pyridine beryllium and carbonyl polypyridyl Re(I) complexes codeposited films, Synth. Met. 2001, 118: 175-179
    [26] F. Li, M. Zhang, J. Feng, G. Cheng, Z. Wu, Y. Ma, S. Liu, J. Sheng, S. T. Lee, Red electrophosphorescence devices based on rhenium complexes, Appl. Phys. Lett., 2003, 83: 365-367
    [27] S. Kan, X. Liu, F. Shen, J. Zhang, Y. Ma, G. Zhang, Y. Wang, J. Shen, Improved efficiency of single-layer polymer light-emitting devices with poly(vinyl- carbazole) doubly doped with phosphorescent and fluorescent dyes as the emitting layer, Adv. Funct. Mater., 2003, 13: 603-608
    [28] F. Li, G. Cheng, Y. Zhao, J. Feng, S. Liu, M. Zhang, Y. Ma, J. Shen, White- electrophosphorescence devices based on rhenium complexes, Appl. Phys. Lett., 2003, 83: 4716-4718
    [29] K. Wang, L. Huang, L. Gao, L. Jin, C. Huang, Synthesis, crystal structure, and photoelectric properties of Re(CO)3ClL (L = 2-(1-ethylbenzimidazol -2-yl) pyridine), Inorg. Chem. 2002, 41: 3353-3358
    [30] S. Ranjan, S.-Y. Lin, K.-C. Hwang, Y. Chi, W.-L. Ching, C.-S. Liu, Y.-T. Tao, C.-H. Chien, S.-M. Peng, G.-H. Lee, Realizing green phosphorescent light-emitting materials from rhenium(I) pyrazolato diimine complexes, Inorg. Chem. 2003, 42: 1248-1255
    [31] Y.-G. Ma, C.-M. Che, H.-Y. Chao, X. Zhou, W.-H. Chan, and J. Shen, High Luminescence Gold(I) and Copper(I) Complexes with a Triplet Excited State for Use in Light-Emitting Diodes, Adv. Mater. 1999, 11: 852-857
    [32] W.-L. Jia, T. McCormick, Y. Tao, J.-P. Lu, and S. N. Wang, NewPhosphorescent Polynuclear Cu(I) Compounds Based on Linear and Star-Shaped 2-(2'-Pyridyl)benzimidazolyl Derivatives: Syntheses, Structures, Luminescence, and Electroluminescence, Inorg. Chem. 2005, 44: 5706-5712
    [33] Q.-S. Zhang, Q.-G. Zhou, Y.-X. Cheng, L.-X. Wang, D.-G. Ma, X.-B. Jing, and F.-S. Wang, Highly Efficient Green Phosphorescent Organic Light-Emitting Diodes Based on CuI Complexes, Adv. Mater. 2004, 16: 432-436
    [34] V. Bulovic, A. Shoustikov, M. A. Baldo, E. Bose, V. G. Kozlov, M. E. Thompson, and S. R. Forrest, Bright, saturated, red-to-yellow organic light-emitting devices based on polarization-induced spectral shifts, Chem. Phys. Lett. 1998, 287: 455-460
    [35] M. A. Baldo, C. Adachi, and S. R. Forrest, Transient analysis of Transient analysis of organic electrophosphorescence. II. triplet-triplet annihilation, Phys. Rev. B, 2000, 62: 10 967-10 977
    [36] J. Kido, K. Hongawa, K, Okuyama, and K. Nagai, White light-emitting organic electroluminescent devices using the poly(N-vinylcarbazole) emitter layer doped with three fluorescent dyes, Appl. Phys. Lett. 1994, 64: 815-817
    [37] J. Kido, M. Kimnra, and K. Nagai, Science 267, 1332 (1995)
    [38] Z. Shen, P. E. Burrows, V. Bulovic, S. R. Forrest, and M. E. Thmpson, Three-Color, Tunable, Organic Light-Emitting Devices, Science 1997, 276, 2009-2011
    [39] K. O. Cheon, and J. Shinar, Bright white small molecular organic light-emitting devices based on a red-emitting guest–host layer and blue-emitting 4,4 -bis(2,2 -diphenylvinyl)-1,1 -biphenyl, Appl. Phys. Lett. 2002, 81: 1738-1740
    [40] M.A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, and S. R.Forrest, Very high-efficiency green organic light-emitting devices based on electrophosphorescence, Appl. Phys. Lett. 1999, 75: 4-6
    [41] B.W. D’Andrade, J. Brooks, M. E. Thompson, and S. R. Forrest, Controlling Exciton Diffusion in Multilayer White Phosphorescent Organic Light Emitting Devices, Adv. Mater. (Weinheim, Ger.) 2002, 14: 147-151
    [42] S. Tokito, T. Lijima, T. Tsuzuki, and F. Sato, High-efficiency white phosphorescent organic light-emitting devices with greenish-blue and red-emitting layers, Appl. Phys. Lett. 2003, 83: 2459-2461
    [43] D. Qin, and Y. Tao, White organic light-emitting diode comprising of blue fluorescence and red phosphorescence, Appl. Phys. Lett. 2005, 86: 113507-113509
    [44] F. Li, G. Cheng, Y. Zhao, J. Feng, S. Y. Liu, S. Qiu, D. Lin, and Y. G. Ma, White organic light-emitting devices using a phosphorescent sensitizer, Appl. Phys. Lett. 2003, 82, 4224-4226
    [45] E. Monroy, F. Omnès, F. Calle, Wide-bandgap semiconductor ultraviolet photodetectors, Semicond. Sci. Technol., 2003, 18: R33-R51
    [46] Y. A. Goldberg, Semiconductor near-ultraviolet photoelectronics, Semicond. Sci. Technol. 1999, 14: R41-R60
    [47] C. W. Tang, Two-layer organic photovoltaic cell, Appl. Phys. Lett. 1986, 48: 183-185
    [48] G. Yu, J. Gao, J. Hummelen, F. Wudl, A. J. Heeger, Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions, Science, 1995, 270:1789-1791
    [49] J. Yamaura, Y. Muraoka, T. Yamauchi, T. Muramatsu, Z. Hiroi, Ultraviolet light selective photodiode based on an organic–inorganic heterostructure, Appl. Phys. Lett. 2003, 83: 2097-2099
    [50] Barry P. Rand, Jiangeng Xue, Soichi Uchida, and Stephen R. Forrest, Mixed donor-acceptor molecular heterojunctions for photovoltaicapplications. I. Material properties, J. Appl. Phys., 2005, 98: 124902-124907
    [51] T. Tsuzuki, Y. Shirota, J. Rostalski, D. Meissner, The effect of fullerene doping on photoelectric conversion using titanyl phthalocyanine and a perylene pigment, Sol. Energy Mater. Sol. Cells, 2000, 61: 1-8
    [52] E. E. Neuteboom, S. C. J. Meskers, P. A. van Hal, J. K. J. van Duren, E. W. Meijer, R. A. J. Janssen, H. Dupin,G. Pourtois, J. Cornil, R. Lazzaroni, J. L. Brédas, D. Beljonn, Alternating Oligo(p-phenylene vinylene)-Perylene Bisimide Copolymers: Synthesis, Photophysics, and Photovoltaic Properties of a New Class of Donor-Acceptor Materials, J. Am. Chem. Soc., 2003, 125: 8625-8638
    [53] L.L. Chen, W.L. Li , H.Z. Wei, B. Chu , B. Li, Organic ultraviolet photovoltaic diodes based on copper phthalocyanine as an electron acceptor, Solar Energy Materials & Solar Cells, 2006, 90: 1788-1796
    [54] Z.H. Wei, W.L. Li, M.T. Li, W.M. Su, Q. Xin, J.H. Niu, Z.Q. Zhang and Z.Z. Hu, White organic electroluminescent device with photovoltaic performances, Appl. Sur. Sci., 2005, 252: 2204-2208
    [55] Y Shao and Yang.Yang, Efficient Organic Heterojunction Photovoltaic Cells Based on Triplet Materials, Adv. Mater., 2005, 17: 2841-2844
    [56] D. G. Cuttell, S.M. Kuang, P. E. Fanwick, D. R. McMillin, and R. A. Walton, Simple Cu(I) Complexes with Unprecedented Excited-State Lifetimes, J. Am. Chem. Soc., 2002, 124: 6-7
    [57] S. M. Kuang, D. G. Cuttell, D. R. McMillin, P. E. Fanwick, and R. A. Walton, Synthesis and Structural Characterization of Cu(I) and Ni(II) Complexes that Contain the Bis[2-(diphenylphosphino)phenyl]ether Ligand. Novel Emission Properties for the Cu(I) Species, Inorg. Chem., 2002, 41: 3313-3322
    [58] Y.G. Ma, C.M. Che, H.Y. Chao, X. Zhou, W.H. Chan, and J. Shen, HighLuminescence Gold(I) and Copper(I) Complexes with a Triplet Excited State for Use in Light-Emitting Diodes, Adv. Mater., 1999, 11: 852-857
    [59] Q.S. Zhang, Q.G. Zhou, Y. X. Cheng, L.X. Wang, D.G. Ma, X.B. Jing, and F.S. Wang, Highly Efficient Green Phosphorescent Organic Light-Emitting Diodes Based on CuI Complexes, Adv. Mater., 2004, 16: 432-436
    [60] F. S. Wen, W.L. Li, Z. Liu, H.Z. Wei, Effect of electrode modification on organic photovoltaic devices, Materials Chemistry and Physics, 2006, 95: 94-98
    [61] ASTM Standard G159-98, (American Society for Testing and Materials,1998).
    [62] I. G. Hill, J. Schwartz, A. Kahn, Metal-dependent charge transfer and chemical interaction at interfaces between 3,4,9,10-perylenetetra- carboxylic bisimidazole and gold, silver and magnesium, Organic Electronics, 2000, 1: 5-13
    [63] Y. Shirota, Y. Kuwabara, H. Inada, T. Wakimoto, H. Nakada, Y. Yonemoto, S. Kawami, K. Imai, Multilayered organic electroluminescent device using a novel starburst molecule, 4,4’,4’’-tris(3-methylphenyl phenylamino)triphenylamine, as a hole transport material , Appl. Phys. Lett. 1994, 65: 807-809
    [64] I. Tanaka, S.Tokito, Temperature-dependent carrier-transport and light- emission processes in a phosphorescent organic light-emitting device, Appl. Phys. Lett., 2005, 87: 173509-173511
    [1] M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Highly efficient phosphorescent emission from organic electroluminescent devices, Nature (London) 1998, 395: 151-154
    [2] D. F. O’Brien, M. A. Baldo, M. E. Thompson, S. R. Forrest, Improved energy transfer in electrophosphorescent devices, Appl. Phys. Lett. 1999, 74: 442-444
    [3] M. A. Baldo, M. E. Thompson, S. R. Forrest, High-efficiency fluorescent organic ligh-emitting devices using a phosphorescent sensitizer, Nature, 2000, 403: 750-753
    [4] C. Adachi, M. A. Baldo, S. R. Forrest, S. Lamansky, M. E. Thompson, R. C. Kwong, High-efficiency red electrophosphorescence devices, Appl. Phys. Lett. 2001, 78: 1622-1624
    [5] J.-P. Duan, P.-P. Sun, C.-H. Cheng, New iridium complexes as highly efficient orange-red emitters in organic light-emitting diodes, Adv. Mater., 2003, 15: 224-228
    [6] Y.-J. Su, H.-L. Huang, C.-L. Li, C.-H. Chien, Y.-T. Tao, P.-T. Chou, S. Datta, R.-S. Liu, Highly efficient red electrophosphorescent devices based on iridium isoquinoline complexes: remarkable external quantum efficiency over a wide range of current, Adv. Mater., 2003, 15: 884-888
    [7] A. Tsuboyama, H. Iwawaki, M. Furugori, T. Mukaide, J. Kamatani, S. Igawa, T. Moriyama, S. Miura, T. Takiguchi, S. Okada, M. Hoshino, K. Ueno, Homoleptic cyclometalated iridium complexes with highly efficient red phosphorescence and application to organic light-emitting diode, J. Am. Chem. Soc., 2003, 125: 12971-12979
    [8] Y.-H. Song, S.-J. Yeh, C.-T. Chen, Y. Chi, C.-S. Liu, J.-K. Yu, Y.-H. Hu, P.-T. Chou, S.-M. Peng, G.-H. Lee, Bright and efficient, non-doped, phosphorescent organic red-light-emitting diodes, Adv. Funct. Mater., 2004,14: 1221-1226
    [9] C.-H. Yang, C.-C. Tai, I-W. Sun, Synthesis of a high-efficiency red phosphorescent emitter for organic light-emitting diodes, J. Mater. Chem., 2004, 14: 947-950
    [10] C.-L. Li, Y.-J. Su, Y.-T. Tao, P.-T. Chou, C.-H. Chien, C.-C. Cheng, R.-S. Liu, Yellow and Red Electrophosphors based on linkage isomers of phenyliso- quinolinylinyliridium complexes: distinct differences in photophysical and electroluminescence properties, Adv. Funct. Mater., 2005, 15: 378-395

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700