用户名: 密码: 验证码:
基于铱配合物有机光电子器件的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于金属铱配合物的重原子效应,使得有机磷光器件能获得100%的理论内量子效率。所以自1998年首个磷光电致发光器件问世以来,铱配合物的磷光器件一直是人们研究的热点。由于磷光材料有长的激子扩散长度,近年来也用来提高光伏器件的性能。本文以金属铱配合物为核心材料,对有机光电子器件(有机电致发光器件以及光伏器件)的器件物理进行了一系列研究。
     以Ir(ppy)_3为发光材料的高效率绿色磷光器件。利用CPB:Ir(ppy)_3为发射层,把原本只有一个复合区的发射层在劈裂层Bphen的作用下,变成了两个复合区。通过调节Bphen的厚度和位置,调节两个复合区的载流子分布以及激子分布。这种结构一方面增加载流子形成激子的几率,另一方面减少载流子-激子的猝灭。同时,超薄Bphen层还对空穴的传输起到一定阻挡作用,平衡了载流子注入,提高了器件的性能。
     研究了以短三重态寿命的磷光材料IrPi为发光材料的绿光器件。采用了多复合发射区的结构制作了高效率OLED器件,器件最高外量子效率达到了18.6%,同时器件的三重态-三重态猝灭也得到控制。
     研究了几个新型的红色、橙色磷光材料:Ir(stybt)2acac、Ir(stybt)2ba、Ir(Meo-stybt)_2acac、Ir(MeO-stybt)_2ba、IrC_6的光物理性能以及电致发光性质。并把这些材料应用到有机光伏器件当中,深入研究了其在光伏器件里面的物理机制。由于掺杂剂的加入,对增加了器件在可见光部分的光吸收,Ir(stybt)2acac吸收的能量能够比较好地传递给C_(60);同时在CuPc/C_(60): Ir(stybt)_2acac结构里,形成了两个光电池系统,载流子能进行更好的分解。这个器件的最大短路电流达到9.46 mA/cm~2,能量转化效率达到2.46%。
A great deal of progresses have been made on obtaining high electroluminescence performances due to useing of both the singlet and triplet excitons, and a maximum internal efficiency of 100% in phosphorescence devices could be harvested. Since 1998, when the first phosphorescence device had been made, organic metal complexes have drawn much attention in organic electronics. In this work, organic optoelectronic devices, including organic light-emitting diodes (OLEDs) and organic photovoltaic (OPV) devices based on Ir-complex were prepared to investigate their device physics and improve their performances.
     We demonstrated a considerable increase in current efficiency of fac-tris(2-phenylpyridine) iridium doped phosphorescent organic green-light emitting diode in which a thin 4,7 dipheny-1,10-phenanthroline (Bphen) layer acts as a cleaving layer. A maximum current efficiency of 53 cd/A was obtained, which was higher for 2.3 folds than that of the device without it. The efficiency improvement attributed to a higher exciton formation probability in the recombination zone and better balance of the carrier injection.
     We made a high-efficiency electrophosphorescent device doped with bis(2-phenyl-benzoimidazole) iridium (III) acetylacetonate with a triplet lifetime in the range of nanoseconds. The doped mixed host was sandwiched by two doped single-host layers. Multi-recombination zones were formed in the emission layer. Such a structure could increase the proportion of recombined carriers to injected carriers and extend the recombination zone. As a result, a maximum external quantum efficiency of 18.6% was attained due to the presence of multi-recombination zones.
     We demonstrated a enhanced power conversion efficiency (PCE) of a OPV by doping 4 wt % IrC_6 phosphor into C60 accepter layer in CuPc/C60 OPV diode, here IrC_6 is iridium(III) bis(3-(2-benzothiazolyl)-7-(diethylamino)-2H-1-benzopyran-2-onato-N’,C4) (acetyl acetonate). The increase in PCE by doping IrC_6 was attributed to energy and/or electron transfers from IrC_6 to C60 species, presence of a IrC_6/ C60 sub-PV cell, as well the rising absorption of IrC_6 in the cell at 400-500 nm waveband. The Increase in PV response mainly came from the enhanced photocurrent density of the PV cell.
引文
[1]陈金鑫,黄孝文. OLED有机电致发光材料与器件[M].北京:清华大学出版社. 2007. 1-2.
    [2]李文连.有机发光材料、器件及其平板显示——一种新型光电子技术[M].北京:科学出版社. 200.32.
    [3]黄春辉,李富友,黄维.有机电致发光材料与器件导论[M].上海:复旦大学出版社. 2005.4.
    [4] Pope M, Kallmann H P, Magnante P. Electroluminescence in organic crystals[J]. J Chem Phys, 1963, 38(8): 2042.
    [5] Vincett P S, Barlow W A, Hann R A, et al. Electral conduction and low voltage blue electroluminescence in vacuum-deposited organic films[J]. Thin Solid Films, 1982,44(2): 172.
    [6] Tang C W, Vanslyke S A. Organic electroluminescent devices[J]. Appl Phys Lett, 1987, 51(12): 913.
    [7] Burroughes J H, Bradley D D C, Brown A R, et al. Light emitting diodes based on conjugated polymers[J]. Nature, 1990, 347(6293): 539.
    [8] Gustafsson G, Cao Y, Treacy G M, et al. Flexible light-emitting diodes made from soluble conducting polymer[J]. Nature, 1992, 357(6378): 477.
    [9]Cao Y, Treacy G M, Smith P, et al. Soltion-cast films of polyaniline-optical-quality transparent electrodes[J]. Appl Phys Lett, 1992, 60(22): 2711.
    [10] Baldo M A, O’Brien D F, You Y, et al. Highly efficient phosphorescent emission from organic electroluminescent devices[J]. Nature, 1998, 395(6698): 151.
    [11]Hosokawa C, Eida M, Matsuura M, et al. Organic multi-color electroluminescence display with fine pixels[J]. Synth Met, 1997, 91(1-3): 3.
    [12] Kobayashi H, Kanbe S, Seki S, et al. A novel RGB multicolor light-emitting polymer display[J]. Synth Met, 2000, 111: 125.
    [13] Chapin D M, Fuller C S, Pearson G L. A new silicon p-n junction photocell for converting solar radiation into electrical power[J]. J Appl Phys 1954, 25(5): 676.
    [14] Kearns D, Calvin M. Photovoltaic effect and photoconductivity in laminated organic systems[J]. J Chem Phys 1958, 29(4): 950.
    [15] Ghosh A K, Feng T. Merocynanine organic solar cells[J]. J Appl Phys 1978, 49(12): 5982.
    [16] Tang C W. Two-layer organic photovoltaic cell[J]. Appl Phys Lett, 1986, 48(2): 183.
    [17] Hiramoto M, Fujiwara H, Yokoyama M. Three-layered organic solar-cell with a photoactive interlayer of codeposion pigments[J]. Appl Phys Lett, 1991, 58(10): 1062.
    [18] Yu G, Heeger A J. Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions[J]. J Appl Phys, 1995, 78(7): 4510.
    [19] Peumans P, Forrest S R. Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells[J]. Appl Phys Lett, 2001, 79(1): 126.
    [20] Xue J G, Uchida S, Rand B P, et al. Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular hetrojunctions[J]. Appl Phys Lett, 2004, 85(23): 5757.
    [21] Kim J Y, Lee K, Coates N E, et al. Efficient tandem polymer solar cells fabricated by all-solution processing[J]. Science, 2007, 317(5835): 222.
    [22]黄伟圣.含benzoimidazole配位基的铱金属高效能磷光材料[D]:[硕士学位论文].台湾:台湾国立中央大学,2004年11.
    [23] Turro N J. Modern Molecular Photochemitry, University science books, Mill Valley, California, USA, 18(1991).
    [24] Baldo M A, O’Brien D F, Thompson M E, et al. Excitonic singlet-triplet ratios in a semiconducting organic thin film[J]. Phys Rev B, 1999, 60(20): 14422.
    [25] Tao Y T, Balasubramaniam E, Danel A, Tomasik P. Dipyrazolopyridine derivatives as bright blue electroluminescent materials, Appl Phys Lett, 2000, 77: 933.
    [26] Wang J F, Kawabe Y, Shelaheen S E, Morell M M, Jabbour G E, Lee P A, et al.. Exciplex Electroluminescence from Organic Bilayer Devices Composed of Triphenyldiamine and Quinoxaline Derivatives[J]. Adv Mater, 1998, 10: 230.
    [27]Cao Y, Parker I D, Xu G, et al. Improved quantum efficiency for electroluminescence in semiconducting polymers[J]. Nature, 1999, 397(6718): 414.
    [28] Shoustikov A A , You Y, Thompson M E, Electroluminescence Color Tuning by Dye Doping in Organic Light-Emitting Diodes, IEEE Journal of Selected Topics in Quantum Electronics.1998 4: 3.
    [29] Turro N J, Modern Molecular Photochemistry, University science books, Mill Valley, California, USA,18(1991)
    [30] Murata H, Merritt C D, Kafafi Z H, Emission mechanism in rubrene-doped molecular organic light-emitting diodes: Direct carrier recombination at luminescent centers. IEEE Journal of Selected Topics in Quantum Electronics, 1998 4(1): 119.
    [31] Baldo M A, Forrest S R, Transient analysis of organic electro- phosphorescence: I.Transient analysis of triplet energy transfer[J]. Phys Rev B 2000, 62: 10958.
    [32] http://inventors.about.com/library/inventors/blkarlbraun.htm
    [33] Round H J, Electrial World 49 (1907): 309.
    [34] Kalinowski J. in Organic Electroluminescent Materials and Devices, edited by S. Miyata and H. S. Nalwa, (Gordon & Breach, Amsterdam, 1997), Chao. 1.
    [35] Das S. A. Chowdhury, S.Roy, and A. J. Pal, Aol. (a)178, 811 (2000)
    [36] Scott J R, Brock P J, Salem J R, Ramos S, Malliaras G G, Carter S A and Bozano L. Synth Met, 2000, 289: 111.
    [37] Wang D and Shen J. A theoretical model for carrier transport in disordered organic materials[J]. Synth Met, 2000, 349: 111.
    [38] Gutmann F and Lawrence E. Lyons in organic semiconductors,(John Wiley & Sons, Inc., New York, 1967), Chap. 7.
    [39] V. Savvateev in Electrophysical and Electrooptical Properties of conjugated Polymer-Based Devices, (Hebrew University of Jerusalem, 1999) Chap. 1.
    [40] Jiang X, Wong F L, Fung M K, et al. Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices[J]. Appl Phys Lett, 2003, 83(9): 1875.
    [41] Kim H, Horwitz J S, Kim W H, et al. Anode material based on Zr-doped ZnO thin films for organic light-emitting diodes[J]. Appl Phys Lett, 2003, 83(18): 3809.
    [42] So S K, Choi W K, Cheng C H, et al. Surface preparation and characterization of indium tin oxide substrates for organic electroluminescent devices[J]. Appl Phys A, 1999, 68(4): 447.
    [43] Van Slyke S A, Chen C H, Tang C W. Organic electroluminescent devices with improved stability[J]. Appl Phys Lett, 1996, 69(15): 2160.
    [44] Shirota Y, Kuwabara Y, Inada H. Multilayered organic electroluminescent device using a novel starburst molecule, 4,4’,4’’-tris(3-methylphenyl phenylamino)triphenylamine, as a hole transport material[J]. Appl Phys Lett, 1994, 65(7): 807.
    [45] Elschner A, Bruder F, Heuer H W, et al. PEDOT/PSS for efficient hole-injection in hybrid organic light-emitting diodes[J]. Synth Met, 2000, 111: 139.
    [46] Deng Z B, Ding X M, Lee S T, et al. Enhanced brightness and efficiency in organic electroluminescent devices using SiO2 buffer layers[J]. Appl Phys Lett, 1999, 74(15): 2227.
    [47] Hung L S, Zheng L R, Mason M G. Anode modification in organic light-emitting diodes by low-frequency plasma polymerization of CHF3[J]. Appl Phys Lett, 2001, 78(5): 673.
    [48] C Ganzorig, Fujihira M. Improved drive voltages of organic electroluminescent devices with an efficient p-type aromatic diamine hole-injection layer[J]. Appl Phys Lett, 2000, 77(25): 4211.
    [49] Romero D B, Schaer M, Zuppiroli L, et al. Effects of doping in polymer light-emitting diodes[J]. Appl Phys Lett, 1995, 67(12): 1659.
    [50] Blochwitz J, Pfeiffer M, Fritz T, et al. Low voltage organic light emitting diodes featuring doped phthalocyanine as hole transport material[J]. Appl Phys Lett, 1998, 73(6): 729.
    [51] Credo G M, Winn D L , Buratto S K. Near-Field Scanning Optical Microscopy of Temperature- and Thickness-Dependent Morphology and Fluorescence in Alq3 Films[J]. Chem Mater, 2001,13: 1258.
    [52] Wang L D, Lei G T, Qiu Y. Bright white organic light-emitting diodes based on two blue emitters with similar molecular structures[J]. Appl Phys Lett, 2005, 97: 114503.
    [53] Shi J, Tang C W. Anthracene derivatives for stable blue-emitting organic electroluminescence devices[J]. Appl Phys Lett, 2002, 80(17): 3201.
    [54] Hosokawa C, Higashi H, Nakamura H, et al. Highly efficient blue electroluminescence from a distyrylarylene emitting layer with a new dopant[J]. Appl Phys Lett, 1995, 67(26): 3853.
    [55] Adachi C, Kwong R C, Djurovich P, et al. Endothermic energy transfer: A mechanism for generating very efficient high-energy phosphorescent emission in organic materials[J]. Appl Phys Lett, 2001, 79(13): 2082.
    [56] Holmes R J, D’Andrade B W, Forrest S R, et al. Efficient deep-blue organic electrophosphorescence by guest charge trapping[J]. Appl Phys Lett, 2003, 83(18): 3818.
    [57] Yeh S J, Wu M F, Chen C T, et al. New dopant and host materials for blue-light-emitting phosphorescent oranic electroluminescent devices[J]. Adv Mater, 2005, 17(3): 285.
    [58] Holmes R J, Forrest S R, Tung Y J, et al. Blue organic electrophosphorescence using exothermic host-guest energy transfer[J]. Appl Phys Lett, 2003, 82(15): 2422.
    [59] Tokito S, Iijima T, Suzuri Y, et al. Confinement of triplet energy on phosphorescent molecules for highly-efficient organic blue-light-emitting devices[J]. Appl Phys Lett, 2003, 83(3): 569.
    [60] Ren X, Li J, Holmes R J, et al. and M. E. Thompson, Ultrahigh energy gap hosts in deep blue organic electrophosphorescent devices[J]. Chem Mater, 2004, 16(23): 4743.
    [61] Lei G T, Wang L D, Duan L, et al. Highly efficient blue electrophosphorescent devices with a novel host materials[J]. Synth Met, 2004, 144: 249.
    [62] Lin H W, Su H C, Ke T H, et al. Highly efficient organic blue electrophosphorescent devices based on 3,6-bis(triphenylsilyl)carbazole as the host materials[J]. Adv Mater, 2006, 18(9): 1216.
    [63] Tasi M H, Hong Y H, Chang C H, et al. 3-(9-carbazolyl) carbazoles and 3,6-di(9-carbazolyl)carbazoles as effective host materials for efficient blue organic electrophosphorescence[J]. Adv Mater, 2007, 19(6): 862.
    [64] Whang D R, You Y, Kim S H, et al. A highly efficient wide-band-gap host materials for blue electrohorescent light-emitting devices[J]. Appl Phys Lett, 2007, 91(23): 233501.
    [65] Shi J M, Tang C W. Doped organic electroluminescent devices with improved stability[J]. Appl Phys Lett, 1997, 70(13): 1665.
    [66] Chen C H, Tang C W. Efficient green organic light-emitting diodes with stericly hindered coumarin dopants[J]. Appl Phys Lett, 2001, 79(22): 3711.
    [67] Adachi C, Baldo M A, Forrest S R, et al. High-efficiency organic electrophosphorescent devices with tris(2-phenylpyridine)iridium doped into electron-transporting materials[J]. Appl Phys Lett, 2000, 77(6): 904.
    [68] Hamada Y, Kanno H, Tsujioka T, et al. Red organic light-emitting diodes using an emitting assist dopant[J]. Appl Phys Lett, 1999, 75(12): 1682.
    [69] Baldo M A, O’Brien D F, You Y, et al. Highly efficient phosphorescent emission from organic electroluminescent devices[J]. Nature, 1998, 395(6698): 151.
    [70] Adachi C, Baldo M A, Forrest S R, et al. High-efficiency red electrophosphorescence devices[J]. Appl Phys Lett, 2001, 78(11): 1622.
    [71] Su Y J, Huang H L, Li C L, et al. Highly efficient red electrophosphorescent devices based on iridium isoquinoline complexes: remarkable external quantum efficiency over a wide range of current[J]. Adv Mater, 2003, 15(11): 884.
    [72] Duan J P, Sun P P, Chen C H. New iridium complexes as highly efficient orange-red emitters in organic light-emitting diodes[J]. Adv Mater, 2003, 15(3): 224.
    [73] Wakimoto T, Fukuda Y, Nagayama K, et al. Organic EL cells using alkaline metal compounds as electron injection materials[J]. IEEE Trans Electron Devices, 1997, 44(8): 1245.
    [74] Hung L S, Tang C W, Mason M G. Enhanced electron injection in organic electroluminescent devices using an LiF/Al electrode[J]. Appl Phys Lett, 1997, 70(2): 152.
    [75] Brown T M, Friend R H, Millard I S, et al. Electronic line-up in light-emitting diodes with alkali-halide/metal cathodes[J]. J Appl Phys, 2003, 93(10): 6159.
    [76] Shelaheen S E, Jabbour G E, Morell M M, et al. Bright blue organic light-emitting diode with improved color purity using a LiF/Al cathode[J]. J Appl Phys, 1998, 84(4): 2324.
    [77] Mori T, Fujikawa H, Tokito S, et al. Electronic structure of 8-Hydroxyquinoline aluminum/LiF/Al interface for organic electroluminescent device studied by ultraviolet photoelectron spectroscopy[J]. Appl Phys Lett, 1998, 73(19): 2763-2765.
    [78] Mason M G, Tang C W, Hung L S, et al. Interfacial chemistry of Alq3 and LiF with reactive metals[J]. J Appl Phys, 2001 , 89(5): 2756.
    [79] J Kido, Matsumoto T. Bright organic electroluminescent devices having a metal-doped electron-injecting layer[J]. Appl Phys Lett, 1998, 73(20): 2866.
    [80] Fujikawa H, Mori T, Noda K, et al. Organic electroluminescent devices using alkaline-earth fluorides as an electron injection layer [J]. J Lumin, 2000, 87: 1177.
    [81] Stossel M, Staudigel J, Steuber F, et al. Impact of the cathode metal work function on the performance of vacuum-deposited organic light emitting-devices [J]. Appl Phys A, 1999, 68(4): 387.
    [82] Stossel M, Staudigel J, Steuber F, et al. Electron injection and transport in 8-hydroxyquinoline aluminum [J]. Synth Met, 2000, 111: 19.
    [84] Braun D, Heeger A J, Kroemer H. Improved efficiency in semiconducting polymer light emitting diodes[J]. J Electron Mater, 1991, 20(11): 945.
    [85] Cao Y, Park K T, Hsieh B R. X-ray photoemission investigations of the interface formation of Ca and poly(p-phenylene vinylene) [J]. J Chem Phys, 1992, 97(9): 6991.
    [86] Haskal E L, Curioni A, Seidler P F, et al. Lithium–aluminum contacts for organic light-emitting devices[J]. Appl Phys Lett, 1997, 71(9): 1151.
    [87] Baldo M A, O’Brien D F, You Y, et al. Highly efficient phosphorescent emission from organic electroluminescent devices[J]. Nature, 1998, 395(6698): 151.
    [88]Masamichi Ikai,Shizuo Tokito,Youichi Sakamoto and Toshiyasu Suzuki. Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer[J]. Appl Phys Lett, 2001, 79: 156.
    [89] Fong H H, Choy Wallace C H, Hui K N and Liang Y J. Organic light-emitting diodes based on a cohost electron transporting composite[J]. Appl Phys Lett, 2006, 88: 113510.
    [90] Yu G, Zhang C, Heeger A J. Dual-function semiconducting polymer devices: light-emitting and photodetecting diodes[J]. Appl Phys Lett, 1994, 64(12): 1540.
    [91] Yu G, Cao J, Hummelen J C, et al. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions[J]. Science, 1995, 270(5243): 1789.
    [92] Granstrom M, Petritsch K, Arias A C, et al. Laminated fabrication of polymeric photovoltaic diodes[J]. Nature, 1998, 395(6699): 257.
    [93] Peumans P, Uchida S, Forrest S R. Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films[J]. Nature, 2003, 425(6954): 158.
    [94] Peumans P, Yakimov A, Forrest S R. Small molecular weight organic thin-film photodectectors and solor cells[J]. J Appl Phys, 2003, 93(7): 3693.
    [95] Liu Y, Summers M A, Edder C, et al. Using resonance energy transfer to improve exciton harvesting in organic-inorganic hybrid photovoltaic cells[J]. Adv Mater, 2005, 17(24): 2960.
    [96] Lloyd M T, Lim Y F, Malliaras G G. Two-step exciton dissociation in poly(3-hexylthiophene) fullerene heterojunctions[J]. Appl Phys Lett, 2008, 92(14): 143308.
    [97] Yu G, Cao J, Hummelen J C, et al. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions[J]. Science, 1995, 270(5243): 1789.
    [98] Peumans P, Uchida S, Forrest S R. Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films[J]. Nature, 2003, 425(6954): 158.
    [99] Camaioni N, Ridolfi G, Casalbore-Miceli G, et al. The effect of a mild thermal treatment on the performance of poly(3-alkylthiophene)/Fullerene solar cells[J]. Adv Mater, 2002, 14(23): 1735.
    [100] Yoo S, Domercq B, Kippelen B. Efficient thin-film organic solar cells based on pentacene/C60 heterojunctions[J]. Appl Phys Lett, 2004, 85(22): 5227.
    [101] Peumans P, Bulovic V, Forrest S R. Efficient, high-bandwidth organic multilayer photodetectors[J]. Appl Phys Lett, 2000, 76(26): 3855.
    [102] Peumans P, Uchida S, Forrest S R. Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films[J]. Nature, 2003, 425(6954): 158.
    [103] Li G, Yao Y, Yang H, et al.“Solvent Annealing”Effect in polymer solar cells based on poly(3-alkylthiophene) and Methanofullerenes[J]. Adv Funct Mater, 2007, 17(10): 1636.
    [104] Baldo M A, Lamansky S, Burrows P E, Thompson M E, and Forrest S R. Very high-efficiency green organic light-emitting devices based on electrophosphorescence[J]. Appl Phys Lett, 1999, 75: 4.
    [105] Kanai H, Ichinosawa S, and Sato Y. Effect of aromatic diamines as a cathode interface layer[J]. Synth Met, 1997, 91: 195.
    [106] Chin B D, Suh M C. Carrier trapping and efficient recombination of electrophosphorescent device with stepwise doping profile[J]. Appl Phys Lett, 2005, 86: 133505.
    [107] Zhou X., Qin D S, Pfeiffer M, Blochwitz J, Werner A, Crechsel J, Maennig B, Leo K, Bold M, Erk P, and Hartmann H. High-efficiency electrophosphorescent organic light-emitting diodes with double light-emitting layers[J]. Appl Phys Lett, 2002, 81: 4070 .
    [108] Zheng T H and Choy Wallace C H. High-efficiency blue fluorescent organic light emitting devices based on double emission layers[J] J Phys D: Appl Phys, 2008, 41: 055103 .
    [109] He G, Pfeiffer M, Leo K, Hofmann M, Birnstock J, Pudzich R, and Salbeck J, High-efficiency and low-voltage p‐i‐n electrophosphorescent organic light-emitting diodes with double-emission layers[J]. Appl Phys Lett, 2004,85: 3911 .
    [110] Inomata H, Goushi K, Masuko T, Konno T, Imai T, Sasabe H, Brown J J, and Adachi C. High-efficiency organic electrophosphorescent diodes using 1,3,5-triazine electron transport materials[J].Chem Mater, 2004, 16: 1285.
    [111] Adamovich V, Cordero S R, Djurovich P I, Tamayo A, Thompson M E, Andrade B, and Forrest S R. New charge-carrier blocking materials for high efficiency OLEDs[J].Org Electron, 2003, 4: 77.
    [112] Kim S H, Jang J and Lee J Y. High efficiency phosphorescent organic light emitting diodes using triplet quantum well structure[J]. Appl Phys Lett, 2007, 90, 173501.
    [113] Tang C W, VanSlyke S A, and Chen C H. Electroluminescence of doped organic thin films[J]. J Appl Phys 1989, 65: 3610.
    [114] Zhang D Y, Li W L, Chu B and Tsuboi Taiju. Low efficiency roll off at high current densities in Ir-complex based electrophosphorescence diode with exciton diffusing and fluorescence compensating layers[J]. Appl Phys Lett 2007, 91: 183516.
    [115] Okumoto K and Shirota Y. Exciplex formation at the organic solid/solid interface and tuning of the emission color in organic electroluminescent devices[J]. J Lumin, 2000, 87: 1171.
    [116] Chen C H and Meng H F, Recombination distribution and color tuning of multilayer organic light-emitting diode[J]. Appl Phys Lett, 2006, 86: 201102.
    [117] Kang J W and Kim J J. Low roll-off of efficiency at high current density in phosphorescent organic light emitting diodes[J]. Appl Phys Lett, 2007, 90: 223508.
    [118] Chu T Y and Song O K. Hole mobility of N,N′-bis(naphthalen-1-yl)-N,N′-bis(phenyl) benzidine investigated by using space-charge-limited currents[J]. Appl Phys Lett, 2007, 90: 203512.
    [119] Naka S and Onnagawa H. High electron mobility in bathophenanthroline[J]. Appl Phys Lett, 2000, 76: 197.
    [120] Bozano L, Carter S A, Scott J C, and Brock P J. Temperature- and field-dependent electron and hole mobilities in polymer light-emitting diodes[J]. Appl Phys Lett, 1999, 74: 1132.
    [121] Baldo M A, Adachi C, and Forrest S R. Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet-triplet annihilation[J]. Phys Rev B, 2000, 62: 10967.
    [122] Reineke S, Walzer K and Leo K , Triplet-exciton quenching in organic phosphorescent light-emitting diodes with Ir-based emitters[J]. Phys Rev B, 2007, 75: 125328.
    [123] Han L L, Yang D F and Li W L,The reduced triplet-triplet annihilation of electrophosphorescent device doped by an iridium complex with active hydrogen[J]. Appl Phys Lett, 2008, 93: 153303.
    [124] Kalinowski J and Stampor W, Quenching effects in organic electrophosphorescence[J]. Phys Rev B, 2002, 66: 235321.
    [125] Kim S H and Lee J Y, Stable efficiency roll-off in phosphorescent organic light-emitting diodes[J]. Appl Phys Lett, 2008, 92: 023513.
    [126] Yang D F, Li W L and Chu B,High efficiency electrophosphorescence device using a thin cleaving layer in an Ir-complex doped emitter layer[J]. Appl Phys Lett, 2008, 92: 253309.
    [127] Kim S H and Lee J Y, Triplet host engineering for triplet exciton management in phosphorescent organic light-emitting diodes[J]. J Appl Phys, 2008, 103: 054502.
    [128] Lee J H and Wu C I, Mixed host organic light-emitting devices with low driving voltage and long lifetime[J]. Appl Phys Lett, 2005, 86: 103506.
    [129] Ma D G and Hung L S, Improved efficiency by a graded emissive region in organic light-emitting diodes[J]. Appl Phys Lett, 2002, 80: 3641.
    [130] Tanaka D, Sasabe H, Li, Su Y J, Takeda S J, Kido T J. Ultra High Efficiency Green Organic Light-Emitting Devices[J]. Jpn J Appl Phys, 2007, 46: L10.
    [131] Sasabe H, Gonmori E, Chiba T, Li Y J, Tanaka D, Su S J, Takeda T, Pu Y J, Nakayama K, and Kido J. Wide-Energy-Gap Electron-Transport Materials Containing 3,5-Dipyridylphenyl Moieties for an Ultra High Efficiency Blue Organic Light-Emitting Device[J]. Chem Mater, 2008, 20: 5951.
    [132] Lamansky S, Djurovich P, Murphy D, Razzaq F A, Lee H E, Adachi C , Forrest S R, and Thompson M E. Highly Phosphorescent Bis-Cyclometalated Iridium Complexes: Synthesis, Photophysical Characterization, and Use in Organic Light Emitting Diodes[J]. J Am Chem Soc, 2001, 123: 4304.
    [133] Li G, Shrotriya V, Huang J S, Yao Y, Moriarty T, Emery K, Yang Y. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends[J]. Nat Mater, 2005, 4: 864.
    [134] Rand B P, Genoe J, Heremans P, Poortmans J. Solar Cells Utilizing Small Molecular Weight Organic Semiconductors[J]. Prog Photovolt, 2007, 15: 659.
    [135] Peet J, Kim J Y, Coates N E, Ma W L, Moses D, Heeger A J, Bazan G C. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols[J]. Nat Mater, 2007, 6: 497.
    [136] Thompson B C, Fréchet J M J Angew Chem, Int. Ed. 2008, 47: 58.
    [137] Hadipour A, de Boer B, Blom P W M. Organic Tandem and Multi-Junction Solar Cells[J]. Adv Funct Mater, 2008, 18, 169.
    [138] Peumans P, Yakimov A, Forrest S R. Small molecular weight organic thin-film photodetectors and solar cells[J]. J Appl Phys, 2003, 93: 3693.
    [139] Yu G, Gao J, Hummelen J C, Wudl F, and Heeger A J. Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions[J]. Science, 1995, 270: 1789.
    [140] Shao Y and Yang Y. Efficient Organic Heterojunction Photovoltaic Cells Based on Triplet Materials[J]. Adv Mater, 2005, 17, 2841.
    [141] Wade. A. Luhman and R. J. Holmes. Enhanced exciton diffusion in an organic photovoltaic cell by energy transfer using a phosphorescent sensitizer[J]. Appl Phys Lett, 2009, 94: 153304.
    [142] Rand B P, Schols S, Cheyns D, Gommans H, Girotto C, Genoe J, Heremans P and Poortmans J. Organic solar cells with sensitized phosphorescent absorbing layers [J]. Org Electronics, 2009, 10: 1015.
    [143] Chan M Y, Lai S L, Fung M K, Lee C S and Lee S T. Doping-induced efficiency enhancement in organic photovoltaic devices[J]. Appl Phys Lett, 2007, 90: 023504.
    [144] K?hler A, Wittmann H F, Friend R H, Khan M S and Lewis J. Enhanced photocurrent response in photocells made with platinum-poly-yne/ C60 blends by photoinduced electron transfer[J]. Syn Met, 1996, 77: 147.
    [145] Qiao J, Qiu Y, Wang L D, Duan L, Li Y, and Zhang D Q. Pure red electroluminescence from a host material of binuclear gallium complex[J]. Appl Phys Lett, 2002, 81: 4913.
    [146] Peumans P and Forrest S R. Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells[J]. Appl Phys Lett, 2001, 79: 126.
    [147] ASTM Standard, American Society for Testing and Materials 1998, G159.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700