用户名: 密码: 验证码:
过渡金属催化叠氮与炔的环化反应及其在有机合成中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
叠氮化合物是一类很重要的有机合成中间体,可以和很多有机化合物反应生成含氮的化合物,尤其近年来叠氮化合物与炔反应的文献报道最多,应用也相当广泛。本论文主要研究过渡金属催化的叠氮化合物与炔的环化反应及其在有机合成中的应用,主要包括以下内容:
     第一章对近几年来叠氮与炔的环化反应及其应用给出了综述。主要总结了传统的Huigen反应,Cu(1)催化的及其它金属参与的Huigen反应合成各种取代三唑,磺酰叠氮与炔参与的多组分反应合成一系列含氮有机化合物,分子内叠氮与炔的环化反应合成杂环。在这些反应中应用最多的就是Cu(1)催化的叠氮与炔的环加成反应(简称CuAAC),就其应用作了简单的总结。
     第二章中首先简单介绍了近年来手性氨基醇在硼烷参与的前手性酮不对称还原反应的研究。利用分子间CuAAC反应,设计了1,2,3-三唑功能化的C3对称手性氨基醇配体,应用在硼烷参与的前手性酮不对称还原中。研究表明,该类型的催化剂具有良好的催化活性,最重要的是该催化剂很容易从反应体系中沉淀出来,经过简单的洗涤,干燥即可循环使用,该催化剂可重复循环使用四次,催化活性没有明显的降低。
     第三章中利用银催化分子内有机叠氮与炔的环化反应合成1,3-二取代的异喹啉或单取代的异喹啉。首先对异喹啉的研究进展作了总结。然后我们对反应的条件进行了筛选和优化,并对该反应的底物进行了的扩展.讨论芳环取代基上电子效应对反应的影响,并提出了一个合理的反应机理。结果表明,该反应在催化量AgSbF6和2 equivTFA的作用下,在DCE中80℃可合成取代的异喹啉。反应条件温和,操作简单,产率良好。
Azide is a kind of very important organic intermediate. It can react with organic compounds to afford many nitrogen-containing compounds. The azide-alkyne cyclization reaction have been received much attention in recent years and widely found application in many fields. In this paper, we are interested in the transition metal-catalyzed azide and alkyne cyclization reaction and its application in organic synthesis, which including the following:
     In the first chapter, we have reviewed the recent studies about the azide-alkyne cyclization reaction and its application. We have summarized the Huigen reaction, such as the traditional Huisgen reaction, Cu(1)-catalyzed Huisgen reaction, and other metals-catalyzed Huisgen reaction to synthsize a variety of subsitituted triazoles. We have also summarized sulfonyl azide and alkyne-involved multi-component reactions, and intramolecular azide-alkyne cyclization reactions. In these reactions, Cu (1)-catalyzed azide and alkyne cycloaddition reactions (CuAAC) have been widely used in many fields, and we also have given a brief summary on its application.
     In Chapter II, First, we have reviewd the studies on the the chiral amino alcohols, which had been used in the borane-mediated reduction of prochiral ketones. We have synthesized 1,2,3-triazole-functionalized, C3-symmetric chiral amino alcohol catalysts via CuAAC reaction. Those catalysts have been used in the borane-mediated reduction of prochiral ketones. The results showed that the catalysts had good catalytic activity, and it could easily precipitate out from the reaction mixture and be reused after a simple washing and drying. The catalyst can be reused four times, without obvious decrease of catalytic activity.
     In Chapter III, we have developed the Ag-catalyzed intramolecular organic azide and alkyne cyclization to synthesize of 1,3-disubstituted isoquinolines or non-substituted isoquinolines. Firstly, we have reviewed the recent stuides on isoquinoline synthesis. Sencondly, the reaction conditions were optimized, and the scope of this reaction was investigated. Thirdly, we have also discussed the electronoc effect of substituents on the aromatic ring and proposed a resonable reaction mechanism. The results showed that the substituted isoquinoline could be synthesized in catalytic amount AgSbF6(20%) and 2 equiv TFA in the DCE at 80℃. The reaction afforded good to excellent yields under mild and simple conditions.
引文
[1]Ueber die Einwirkung von Diazobenzolimid auf Acetylendicarbonsaure-methylestr. Michael, A. J. Prakt. Chem.1893,48,94-95.
    [2]Huisgen, R., In 1,3-Dipolar Cycloaddition Chemistry (ed. Padwa A). New York: Wiley. vol.1:1984.1-176.
    [3]Louerat, F.; Bougrin, K.; Loupy, A.; Ochoa de Retana, A.M.; Pagalday, J.; Palacios, F. Heterocycles.1998,48 161-164.
    [4]Torn(?)e, C. W., Christensen, C., Meldal, M., Peptidotriazoles on Solid Phase: [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides. J. Org. Chem.,2002,67,3057-3064.
    [5]Rostovtsev, V. V., Green, L. G., Fokin, V. V., Sharpless, K. B., A Stepwise Huisgen Cycloaddition Process:Copper(I)-Catalyzed Regioselective Ligation of Azides and Terminal Alkynes Angew. Chem., Int. Ed.,2002,41,2596-2599.
    [6]Fahmi, H., Lovell, T., Hilgraf, R., Rostovtsev, V. V., Noodleman, L., Sharpless, K. B., Fokin, V. V., Copper (I)-Catalyzed Synthesis of Azoles. DFT Study Predicts Unprecedented Reactivity and Intermediates. J. Amm. Chem. Soc.2005,127, 210-216.
    [7]Diez, J., Gamasa, M. P., Gimeno, L., Lastra, E., Aguirre, A., Garcia-Granda, S., Synthesis and characterization of triangulo copper(I) complexes containing mono-and bicapping systems of asymmetric μ3-η1-Acetalide ligands. Organometallics 1993, 12,2213-2220.
    [8]Wu, Y.-M., Deng, J., Li, Y., Chen, Q.-Y., Regiospecific Synthesis of 1,4,5-Trisubstituted-1,2,3-triazole via One-Pot Reaction Promoted by Copper (Ⅰ) Salt. Synthesis,2005,1314-1318.
    [9]Jason E. Hein, J. E.; Tripp, J. C.; Krasnova, L. B.; Sharpless, K. B.; Fokin, V. V. Copper(I)-Catalyzed Cycloaddition of Organic Azides andl-Iodoalkynes. Angew. Chem. Int. Ed.2009,48,8018-8021
    [10]Direct Synthesis of 1,4-Disubstituted-5-alumino-1,2,3-triazoles: Copper-Catalyzed Cycloaddition of Organic Azides and Mixed Aluminum Acetylides Zhou, Y.; Lecourt, T.; Micouin, L Angew. Chem. Int. Ed.2010, (ASAP, DOI: 10.1002/anie.200907016)
    [11]Kamijo, S., Jin, T., Huo, Z.-B., Yamamoto, Y., A One-Pot Procedure for the Regiocontrolled Synthesis of Allyltriazoles via the Pd-Cu Bimetallic Catalyzed Three-Component Coupling Reaction of Nonactivated Terminal Alkynes, Allyl Carbonate, and Trimethylsilyl Azide. J. Org. Chem.2004,69,2386-2393.
    [12]Kamijo, S., Jin, T., Huo, Z., Yamamoto, Y., Synthesis of Triazoles from Nonactivated Terminal Alkynes via the Three-Component Coupling Reaction Using a Pd(0)-Cu(I) Bimetallic Catalyst. J. Am. Chem. Soc.2003,125,7786-7787.
    [13]Gerard, B., Ryan, J., Beeler, A. B., Jr., J. A. P., Synthesis of 1,4,5-trisubstituted-1,2,3-triazoles by copper-catalyzed cycloaddition-coupling of azides and terminal alkynes. Tetrahedron 2006,62,6405-6411.
    [14]Yang, D., Fu, N., Liu, Z., Li, Y., Chen, B., A Convenient Synthesis of 1,4,5-Trisubstituted 1,2,3-Triazoles via 1,3-Dipolar Cycloaddition/Coupling of Alkynes, synlett 2007,278-282.
    [15]Krasinski, A., Fokin, V. V., Sharpless, K. B., Direct Synthesis of 1,5-Disubstituted-4-magnesio-1,2,3-triazoles, Revisited. Org. Lett.2004,6, 1237-1240.
    [16]Zhang, L., Chen, X., Xue, P., Sun, H. H. Y, Williams, I. D., Sharpless, K. B., Fokin, V. V., Jia, G., Ruthenium-Catalyzed Cycloaddition of Alkynes and Organic Azides. J. Am. Chem. Soc.2005,127,15998-15999.
    [17]Rasmussen, L. K., Boren, B. C., Fokin, V. V., Ruthenium-Catalyzed Cycloaddition of Aryl Azides and Alkynes. Org. Lett.2007,9,5337-5339.
    [18]Journal of the Chemical Society, Perkin Transactions 1:Organic and Bio-Organic Chemistry 1987 (1972-1999),413-422.
    [19]Fletcher, J. T., Walz, S. E., Keeney, M. E., Monosubstituted 1,2,3-triazoles from two-step one-pot deprotection/click additions of trimethylsilylacetylene. Tetrahedron Lett.,2008,49,7030-7032.
    [20]Buettelmann, B., Ceccarelli, S. M., Jaeschke, G., Kolczewski, S., Porter, R. H. P., Vieira, E., Vol. PCT Int. Appl. WO,2006074884,2006.
    [21]Jin, T., Kamijo, S., Yamamoto, Y., Copper-Catalyzed Synthesis of N-Unsubstituted 1,2,3-Triazoles from Nonactivated Terminal Alkynes. Eur. J. Org. Chem.2004,3789-3791.
    [22]Wu, L.-Y.; Xie, Y.-X.; Chen, Z.-S.;Niu,Y.-N.; Liang, Y.-M. A Convenient Synthesis of 1-Substituted 1,2,3-Triazoles via CuI/Et3N Catalyzed'Click Chemistry' from Azides and Acetylene Gas. Synlett.2009,1453-1456.
    [23]Kalisiak, J., Sharpless, K. B., Fokin, V. V. Efficient Synthesis of 2-Substituted-1,2,3-triazoles. Org. Lett.2008,10,3171-3174.
    [24]Li, J.; Wang, D.; Zhang, Y.; Li, J.; Chen, B. Facile One-Pot Synthesis of 4,5-Disubstituted 1,2,3-(NH)-Triazoles through Sonogashira Coupling/1,3-Dipolar Cycloaddition of Acid Chlorides, Terminal Acetylenes, and Sodium Azide. Org. Lett. 2009,11,3024-3027.
    [25]P. Grunanger and P. Vital Finzi. Addition reaction of sulfonyl azides on ethoxyacetylene. Tetrahedron Lett.1963,4,1839-1840.
    [26]Yoo, E. J., Ahlquist, M., Kim, S. H., Bae, I., Fokin, V. V., Sharpless, K. B., Chang, S., Copper-Catalyzed Synthesis of N-Sulfonyl-1,2,3-triazoles:Controlling Selectivity Angew. Chem. Int. Ed.2007,46,1730-1733.
    [27]Cho, S. H.; Yoo, E. J.; Bae, I.; Chang. S. Copper-catalyzed Hydrative Amide Synthesis with Terminal Alkyne, Sulfonyl Azide, and Water. J. Am. Chen. Soc.2005, 127,16046-16047.
    [28]Bae, I.; Han, H.; Chang, S. Highly Efficient One-Pot Synthesis of N-Sulfonylamidines by Cu-catalyzed Three-component Coupling Of Sulfonyl Azide, Alkyne, and Amine. J. Am. Chen. Soc.2005,127,2038-2039.
    [29]Yoo, E. L.; Bae, I.; Chao, S. H.; Han, H.; Chang, S.A Facile Access to N-Sulfonylimidates and Their Synthetic Utility for the Transformation to Amidines and Amides. Org Lett.2006,8,1347-1350.
    [30]Cassidy. M. P.; Raushel. J.; Fokin, V. V. Practical Synthesis of Amides from In Situ Generated Copper(I) Acetylides and Sulfonyl Azides. Angew. Chem., Int. Ed. 2006,45,3154-3157.
    [31]Whiting, M.; Fokin, V. V. Copper-Catalyzed Reaction Cascade:Direct Conversion of Alkynes into N-Sulfonylazetidin-2-imines. Angew. Chem. Int. Ed. 2006,45,3157-3161.
    [32]Cui, S. L.; Lin, X. F.; Wang Y.G. Novel and Efficient Synthesis of Iminocoumarins via copper-catalyzed Multicomponent reaction. Org. Lett.2006,8, 4517-4520
    [33]Cui, S. L.; Wang. J.; Wang Y.G. Efficient synthesis of 2-imino-1,2-dihydro -quinliones and 2-imino-thiochromenes via copper-catalyzed domino reaction. Tetrahedron 2008,64,487-492.
    [34]Cui, S. L.; Wang. J.; Wang Y.G. Copper-catalyzed Multicomponent Reaction: Facile Access to Functionalized 5-Arylidene-2-imino-3-pyyolines. Org.Lett.2007, 9,5023-5025.
    [35]Cui, S. L.; Wang. J.; Wang Y. G. Copper-catalyzed Multicomponent Reaction: Facile Access to Novel Phosphorous Amidines. Org. Lett.2008,10,1267-1269.
    [36]Xu, X.; Cheng, D.; Li, J.; Guo, H.; Yan, J. Copper-Catalyzed Highly Efficient Multicomponent Reactions:Synthesis of 2-(Sulfonylimino)-4-(alkylimino)azetidine Derivatives. Org Lett.2007,9,1585-1587
    [37]. Kim, S.H.; Jung D.Y.; Chang, S. Phosphoryl Azides as Versatile New Reaction Partners in the Cu-Catalyzed Three-Component Couplings. J. Org.Chem.2007,72, 9769-9771
    [38]Fischer, D.; Tomeba, H.; Pahadi, N. K.; Patil, N. T.; Huo, Z. Yamamoto, Y. Iodine-Mediated Electrophilic Cyclization of 2-Alkynyl-l-methylene Azide Aromatics Leading to Highly Substituted Isoquinolines and Its Application to the Synthesis of Norchelerythrine. J. Am. Chem. Soc.2008,130,15720-15725.
    [39]Fischer, D.; Tomeba, H.; Pahadi, N. K.; Patil, N. T.; Yamamoto, Y. Synthesis of 1,3,4-Trisubstituted Isoquinolines by Iodine-Mediated Electrophilic Cyclization of 2-Alkynyl Benzyl Azides. Angew. Chem., Int. Ed.2007,46,4764-4766.
    [40]Huo, Z.; Yamamoto, Y. Gold-catalyzed synthesis of isoquinolines via intramolecular cyclization of 2-alkynyl benzyl azides. Tetrahedron Lett.2009,50, 3651-3653
    [41]Gorin, D. J.; Davis, N. R.; Toste, F. D. Gold(I)-Catalyzed Intramolecular Acetylenic Schmidt Reaction. J. Am. Chen. Soc.2005,127,11260-11261
    [42]Hiroya, K.; Matsumoto, S.; Ashikawa, M.; Ogiwara, K.; and Takao Sakamoto.T. Cyclization Reactions of Homopropargyl Azide Derivatives Catalyzed by PtC14 in Ethanol Solution:Synthesis of Functionalized Pyrrole Derivatives. Org. Lett.2006,8,5349-5352
    [43]Przemyslaw Wyr(?)bek, P.; Sniady, A.; Bewick, N.; Li, Y.; Mikus, A.; Wheeler, K.A.; Dembinski R.Microwave-assisted zinc chloride-catalyzed synthesis of substituted pyrroles from homopropargyl azides. Tetrahedron 2009,65,1268-1275.
    [44]Feldman, A. K., Colasson, B., Fokin, V. V. One-Pot Synthesis of 1,4-Disubstituted 1,2,3-Triazoles from In Situ Generated Azides. Org. Lett.,2004,6, 3897-3899.
    [45]Zhao, Y-B.; Yan, Z.-Y.; Liang, Y.-M. Efficient synthesis of 1,4-disubstituted 1,2,3-triazoles in ionic liquid/water system. Tetrahedron Lett.2006,47,1545-1549
    [46]Appukkuttan, P., Dehaen, W., Fokin, V. V., Eycken, E. V. D. Microwave-Assisted Click Chemistry Synthesis of 1,4-Disubstituted 1,2,3-Triazoles via a Copper(Ⅰ)-Catalyzed Three-Component Reaction. A Org. Lett.2004,6,4223-4225.
    [47]Wang, Z.-X., Zhao, Z.-G., Synthesis of 1,4-Disubstituted 1,2,3-Triazoles via a Three-Component Reaction in Water in the Presence of CuX (X= Cl,I). J. Heterocycl. Chem.2007,44,89-92.
    [48]Odlo, K., H(?)ydahl, E. A., Hansen, T. V., One-pot synthesis of 1,4-disubstituted 1,2,3-triazoles from terminal acetylenes and in situ generated azides. Tetrahedron Lett. 2007,48,2097-2099.
    [49]Tao, C.-Z.; Cui, X.; Li, J.; Liu, A.-X.; Liu, L.; Guo, Q.-X. Copper-catalyzed synthesis of aryl azides and 1-aryl-1,2,3-triazoles from boronic acids. Tetrahedron Letters.2007 48,3525-3529.
    [50]One-Pot Procedure for Diazo Transfer and Azide-Alkyne Cycloaddition: Triazole Linkages from Amines. Beckmann, H. S. G, Wittmann, V. Org. Lett.2007,9, 1-4.
    [51]Barral, K., Moorhouse, A. D., Moses, J. E. Efficient Conversion of Aromatic Amines into Azides:A One-Pot Synthesis of Triazole Linkages. Org. Lett.2007,9, 1809-1811.
    [52]Kumaraswamy, G., Ankamma, K., Pitchaiah, A. Tandem Epoxide or Aziridine Ring Opening by Azide/Copper Catalyzed [3+2] Cycloaddition:Efficient Synthesis of 1,2,3-Triazolo β-Hydroxy or β-Tosylamino Functionality Motif. J. Org. Chem. 2007,72,9822-9825.
    [53]Yadav, J. S., Reddy, B. V. S., Reddy, G. M., Chary, D. N. Three component, regioselective, one-pot synthesis of (3-hydroxytriazoles from epoxides via'click reactions'. Tetrahedron Lett.2007,48,8773-8776.
    [54]Chandrasekhar, S., Basu, D., Rambabu, C. Three-component coupling of alkynes, Baylis-Hillman adducts and sodium azide:a new synthesis of substituted triazoles. Tetrahedron Lett.2006,47,3059-3063.
    [55]Sreedhar, B. Surendra Reddy, P. Rama Krishna, V. Regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles via three-component coupling of secondary alcohols, TMSN3 and alkynes. Tetrahedron Lett.2007,48,5831-5834.
    [56]Yan, Z.-Y., Zhao, Y.-B., Fan, M.-J., Liu, W.-M., Liang, Y.-M. General synthesis of (1-substituted-1H-1,2,3-triazol-4-ylmethyl)-dialkylamines via a copper(Ⅰ)-catalyzed three-component reaction in water. Tetrahedron.2005,61,9331-9337.
    [57]Yan, Z.-Y, Niu, Y.-N., Wei, H.-L., Wu, L.-Y, Zhao, Y.-B., Liang, Y.-M., Combining proline and'click chemistry':a class of versatile organocatalysts for the highly diastereo-and enantioselective Michael addition in water. Tetrahedron: Asymmetry 2006,17,3288-3293.
    [58]Luo, S., Xu, H., Mi, X., Li, J., Zheng, X., Cheng, J.-P., Evolution of Pyrrolidine-Type Asymmetric Organocatalysts by "Click" Chemistry. J. Org. Chem., 2006,71,9244-9247.
    [59]Wu, L.-Y.; Yan, Z.-Y.; Xie, Y.-X.; Niu Y.-N.; Liang, Y.-M. Ionic-liquid-supported organocatalyst for the enantioselective Michael addition of ketones to nitroolefins. Tetrahedron:Asymmetry 2007,18,2086-2090.
    [60]Alza, E., Cambeiro, X. C., Jimeno, C., Pericas, M. A., Highly Enantioselective Michael Additions in Water Catalyzed by a PS-Supported Pyrrolidine. Org. Lett., 2007,9,3717-3720.
    [61]Font, D., Jimeno, C., Pericas, M. A., Polystyrene-Supported Hydroxyproline: An Insoluble, Recyclable Organocatalyst for the Asymmetric Aldol Reaction in Water. Org. Lett.2006,8,4653-4655.
    [62]Zhao,Y-B.; Zhang, L.-W.; Wu, L.-Y.; Zhong, X.; Li, R.; Ma, J-T. Silica-supported pyrrolidine-triazole, an insoluble, recyclable organocatalyst for the enantioselective Michael addition of ketones to nitroalkenes. Tetrahedron:Asymmetry 2008,22,1352-1355.
    [63]Lv, G.; Jin,R.; Mai, W.; Gao, L. Highly efficient and recoverable dendritic organocatalyst from click chemistry for the asymmetric michael addition of ketones to nitroolefins without the use of organic solvent. Tetrahedron:Asymmetry 2008,22 2568-2572.
    [64]Chandrasekhar, S.; Tiwari, B.; Parida B.B.; Reddy Ch. R. Chiral pyrrolidine-triazole conjugate catalyst for asymmetric Michael and Aldol reaction. Tetrahedron:Asymmetry 2008,22,495-499.
    [65]Zimmerman, S. C.; Zharov, I.; Wendland, M. S.; Rakow, N. A.; Suslick, K. S. Molecular Imprinting Inside Dendrimers. J. Am. Chem. Soc.2003,125,13504-13518.
    [66]Lee, J. W.; Kim, B. K.; Kim, J. H.; Han, S. C.; Shin,W. S.; Jin, S. H. Convergent Synthesis of Symmetrical and Unsymmetrical PAMAM Dendrimers. Macromolecules 2006,39,2418-2422.
    [67]Lee, J. W.; Kim, B. K.; Kim, J. H.; Shin,W. S.; Jin, S. H. Facile Approach for Diblock Codendrimers by Fusion between Frechet Dendrons and PAMAM Dendrons. J. Org. Chem.2006,71,4988-4991.
    [68]Wu, P.; Feldman, A. K.; Nugent, A. K.; Hawker, C. J.; Scheel, A.; Voit, B.; Pyun, J.; Frechet, J. M. J.; Sharpless, K. B.; Fokin, V.V. Efficiency and Fidelity in a Click-Chemistry Route to Trizole Dendrimers by the copper(1)-catalyzed Ligation of Azides and Alkynes. Angew. Chem., Int. Ed.2004,43,3928-3932.
    [69]Malkoch, M.; Schleicher, K.; Drockenmuller, E.; Hawker, C. J.; Russell, T P.; Wu, P.; Fokin, V. V. Structurally Diverse Dendritic Libraries:A Highly Efficient Functionalization Approach Using Click Chemistry. Macromolecules 2005, 38,3663.
    [70]Ornelas, C.; Aranzaes, J. R.; Cloutet, E.; Alves, S.; Astruc, D. Click Assembly of 1,2,3-triazole-Linked Dendromers, Including Ferrocenyl Dendrimers, Which Sense Both Oxo Anions and Metal Cations. Angew. Chem., Int. Ed.2006,45,872-876.
    [71]Suarez, P. L.; Gandara,Z.; Gomez, G.; Fall, Y. Vitamin D and click chemistry. Part 1:A stereoselective route to vitamin D analogues with triazole rings in their side chains. Tetrahedron Lett.2004,45,4619-4621.
    [72]Sun,B. C.; Jeon, H.; Posner, G.H.; Silverman, S. M. Vitamin D side chain triazole analogs via cycloaddition'click'chemistry. Tetrahedron Lett.2004,45, 4623-4625
    [73]Xu, C.Y.; Huang, M. Z. An Approach to New Water-soluble Oligo (ethylene glycol) Camptothecin Analogues by 1,3-Dipolar Cycloaddition. Chin. Chem. Lett. 2006,17,883-886.
    [74]Pletchprayoon, C.; Suwanborirux, K.; Miller, R.; Sakata, T.; Marriott, G. Synthesis and Characterization of the 7-(4-Aminomethyl-1H-1,2,3-triazol-1-yl) Analogue of Kabiramide C.J.Nat. Prod.2005, 68,157-161.
    [75]Li, J.; Zheng, M.; Tang, W.; He, P.L.; Zhu,E.; Li, T.; Zuo, J. P.; Liu,H.; Jiang, H. Syntheses of triazole-modified zanamivir analogues via click chemistry and anti-AIV activities. Bioorg. Med. Chem. Lett.2006,16,5009-5013.
    [76]Reck, F.; Zhou, F.; Girardot, M.; kern, G.; Eyermann, C. J.; Hales, N. J.; Ramsay, R. R.; Gravestock, M. B. Identification of 4-Substituted 1,2,3-Triazoles as Novel Oxazolidinone Antibacterial Agents with Reduced Activity against Monoamine Oxidase A. J. Med. Chem.2005,48,499-506.
    [77]Lee, L. V.; Mitchell, M. L.; Huang, S.-J.; Fokin, V. V.; Sharpless, K. B.; Wong, C.-H. A Potent and Highly Selective Inhibitor of Human α-1,3-Fucosyltransferase via Click Chemistry. J. Am. Chem. Soc.2003,125,9588-9589.
    [78]Choi, W. J.; Shi, Z. D.; Worthy, K.M.; Bindu,L,; KarKi, R.G.; Nicklaus, M.C.; Fisher, R. J.; Burke, J. Application of azide-alkyne cycloaddition'click chemistry'for the synthesis of Grb2 SH2 domain-binding macrocycles Bioorg. Med. Chem. Lett. 2006,16,5265-5269.
    [79]Bodine, K. D.; Gin, D. Y.:Gin, M. S. Highly Convergent Synthesis of C3- or C2-Symmetric Carbohydrate Macrocycles. Org. Lett.2005,7,4479-4482.
    [80]Punna, S.; Kuzelka, J.; Wang, Q.; Finn, M.G. Head-to-Tail Peptide Cyclodimerization by Copper-Catalyzed Azide-Alkyne Cycloaddition. Angew. Chem., Int. Ed.2005,44,2215-2220.
    [81]Bodine, K. D.; Gin, D. Y.:Gin, M. S. Synthesis of Readily Modifiable Cyclodextrin Analogues via Cyclodimerization of an Alkynyl-Azido Trisaccharide. J. Am. Chem. Soc.2004,126,1638-1639..
    [82]Lin, H., Walsh, C. T. A Chemoenzymatic Approach to Glycopeptide Antibiotics., J. Am. Chem. Soc.2004,126,13998-14003.
    [83]Lewis, W. G., Green, L. G., Grynszpan, F., Radi, Z., Carlier, P. R., Taylor, P., Finn, M. G, Sharpless, K. B., Click Chemistry In Situ:Acetylcholinesterase as a Reaction Vessel for the Selective Assembly of a Femtomolar Inhibitor from an Array of Building Blocks. Angew. Chem., Int. Ed.2002 41,1053-1057.
    [84]Breinbauer, R., Kohn, M Azide-Alkyne Coupling:A Powerful Reaction for Bioconjugate Chemistry. ChemBioChem,2003,4,1147-1149.
    [85]Wang, Q., Chan, T. R., Hilgraf, R., Fokin, V. V., Sharpless, K. B., Finn, M. G. Bioconjugation by Copper(I)-Catalyzed Azide-Alkyne [3+2] Cycloaddition. J. Am. Chem. Soc.,2003,125,3192-3210.
    [86]Li, H., Cheng, F., Duft, A. M., Adronov, A. Functionalization of Single-Walled Carbon Nanotubes with Well-Defined Polystyrene by "Click" Coupling. J. Am. Chem. Soc.2005,127,14518-14524.
    [87]Diaz, D. D., Punna, S., Holzer, P., McPherson, A. K., Sharpless, K. B., Fokin, V. V., Finn, M. G. Click chemistry in materials synthesis.1. Adhesive polymers from copper-catalyzed azide-alkyne cycloaddition. J. Polym. Science, Part A:Polym. Chem.2004,42,4392-4403.
    [88]Collman, J. P., Devaraj, N. K., Chidsey, C. E. D. "Clicking" Functionality onto Electrode Surfaces. Langmuir 2004,20,1051-1053.
    [89]White, M. A., Johnson, J. A., Koberstein, J. T., Turro, N. J. Toward the Syntheses of Universal Ligands for Metal Oxide Surfaces:Controlling Surface Functionality through Click Chemistry. J. Am. Chem. Soc.2006,128,11356-11357.
    [1]Singh, V. K. Practical and useful methods for the enantioselective reduction of unsymmetrical ketones. Synthesis 1992,605-617.
    [2]Hirao, A.; Nakahama, S.; Mochizuki, H.; Itsuno, S.; Yamazaki, N. Asymmetric reduction of prochiral aromatic ketones with modified reagents prepared from sodium borohydride and carboxylic acids in the presence of 1,2:5,6-di-O-isopropylidene-.alpha.-D-glucofuranose. J. Org. Chem.1980,45, 4231-4233.
    [3]Noyori, R.; Tomino, I.; Tanimoto, Y.; Nishizawa, M. Asymmetric synthesis via axially dissymmetric molecules.6. Rational designing of efficient chiral reducing agents. Highly enantioselective reduction of aromatic ketones by binaphthol-modified lithium aluminum hydride reagents. J. Am. Chem. Soc.1984,106,6709-6716.
    [4]Pini, D.; Iuliano, A.; Salvadori, P. Optically active lithium 1,2-diphenyl-1,2-ethanediolate:an efficient chiral auxiliary in the enantioselective hydrosilylation of ketones. Tetrahedron:Asymmetry 1992,3,693-694.
    [5]Midland, M. M.; Greer, S.; Tramontano, A.; Zderuc, S. A. Chiral trialkylborane reducing agents. Preparation of 1-deuterio primary alcohols of high enantiomeric purity. J. Am. Chem. Soc.1979101,2352-2355.
    [6]Evans, D. A.; Nelson, S. G.; Gagne, M. R.; Muci, A. R. A chiral samarium-based catalyst for the asymmetric Meerwein-Ponndorf-Verley reduction. J. Am. Chem. Soc. 1993,115,9800-9801.
    [7]Zassinovich, G.; Grisoni, F. Enantioselective transfer hydrogenation of ketones catalyzed by rhodium(I) Complexes of chiral schiff bases. J. Organometal. Chem. 1983,247, c24-c26.
    [8]Hirao, A.; Itsuno, S.; Nakahama, S.; Yamazaki, N. Asymmetric reduction of aromatic ketones'vith chiral alkoxy-amineborane complexes. J. Chem. Soc. Chem. Commun.1981,315-316.
    [9]Itsuno, S.; Hirao, A.; Nakahama, S.; Yamazaki, N. Asymmetric synthesis using chirally modified borohydrides. Part 1. Enantioselective reduction of aromatic ketones with the reagent prepared from borane and (S)-valinol. J. Chem. Soc., Perkin Trans.1 1983,1673-1676.
    [10]Itsuno, S.; Ito, K.; Hirao, A.; Nakahama, S. Asymmetric reducaion of aromatic ketones with the reagent prepared from (S)-(-)-2-amino-3-methyl-1,1-diphenylbutan-l-ol and borane.. J. Chem. Soc., Chem. Commun.1983,469-470.
    [11]Itsuno, S.; Nakano, M.; Miyazaki, K.; Masuda, H.; Ito, K.; Hirao, A.; Nakahama, S. Asymmetric synthesis using chirally modified borohydrides. Part 3. Enantioselective reduction of ketones and oxime ethers with reagents prepared from borane and chiral amino al cohols. J. Chem. Soc., Perkin Trans.1 1985,2039-2044.
    [12]Corey, E.J.; BaKshi, R. K.; Shibata, S. Highly enantioselective borane reduction of ketones catalyzed by chiral oxazaborolidines. Mechanism and synthetic implications. J. Am. Chem. Soc.1987,109,5551-5553.
    [13]Corey, E.J.; BaKshi, R. K.; Shibata, S.; Chen, C. P.; Singh, V. K. A stable and easily prepared catalyst for the enantioselective reduction of ketones. Applications to multistep syntheses. J. Am. Chem. Soc.1987,109,7925-7926.
    [14]D. J.; Jones, T. K.; Xavier, L. C.; Blacklock, T. J.; Reamer, R. A.; Mohan, J. J. Jones, E. T. T.; Hoogsteen, K.; Baum, M. W.; Grabowski, E. J. J. A practical enantioselective synthesis of.alpha.,.alpha.-diaryl-2-pyrrolidine-methanol. Preparation and chemistry of the corresponding oxazaborolidinesMathre, J. Org. Chem.1991,56,751-762.
    [15]Corey, E. J.; Link, J. O. A new chiral catalyst for the enantioselective synthesis of secondary alcohols and deuterated primary alcohols by carbonyl reduction. Tetrahedron Lett.1989,30,6275-6278.
    [16]Willems, J. G. H.; Dommerholt, F. J.; Hammink, J. B.; Vaarhorst, A. M.; Thijs, L.; Zwaneburg, B. Asymmetric ketone reduction using chiral oxazaborolidines derived from aziridine carbinols. Tetrahedron Lett.1995,36,603-606.
    [17]Corey, E. J. Chen, C.-P.; Reichard, G. A.Novel regioselective hydrogenation of alkadienoic acids caused by the addition of water. Tetrahedron Lett.1992,33, 5547-5550.
    [18]Corey, E. J.; Link, J.O. A new process for the generation of 1,3, 2-oxazaborolidines, catalysts for enantioselective synthesis. Tetrahedron Lett.1992, 33,4141-4144.
    [19]Corey, E. J.; Link, J. O. The first enantioselective syntheses of pure R-and S-isoproterenol. Tetrahedron Lett.1990,31,601-604.
    [20]Helal, C. J.; Magriotis, P. A.; Corey, E. J. Direct Catalytic Enantioselective Reduction of Achiral a,P-Ynones. Strong Remote Steric Effects Across the C-C Triple Bond. J. Am. Chem. Soc.1996,118,10938-10939.
    [21]Li, K.-Y.; Zhou, Z.-H.; Wang, L.-X.; Chen, Q.-F.; Zhao, G..-F.; Zhou, Q.-L.; Tang, C.-C. Asymmetric carbonyl reduction with borane catalyzed by chiral phosphinamides derived from i.-amino acid.. Tetrahedron:Asymmetry 2003,14, 95-100.
    [22]Yang,G.-S.; Hu, J.-B.; Zhao, G.; Ding, Y.; Tang, M.-H. Catalytic enantioselective borane reduction of aromatic ketones with sulfonyl (S)-prolinol. Tetrahedron: Asymmetry 1999,10,4307-4311.
    [23]Zhou, H.-B.; Zhang, J.; Lu, S.-M.; Xie, R.-G.; Zhou, Z.-Y.; Choi, M.C.K.; Chan, A. S. C.; Yang, T.-K. Design, synthesis and structure of new chiral squaric acid monoaminoalcohols and diaminoalcohols and their use as catalysts in asymmetric reduction of ketones and diketones. Tetrahedron 2001,57,9325-9333.
    [24]Fang, T.; Xu, J.-X.; Du, D.-M. Highly Enantioselective Borane Reduction of Prochiral Ketones Catalyzed by C3-Symmetric Tripodal (3-Hydroxy Amides. Synlett 2006,1559-1563.
    [25]Zhang, Y.-X.; Du, D.-M.; Chen, X.; Lu, S.-F.; Hua, W.-T. Enantiospecific synthesis of pyridinylmethyl pyrrolidinemethanols and catalytic asymmetric borane reduction of prochiral ketones. Tetrahedron:Asymmetry 2004,15,177-182.
    [26]Giffels, G.; Dreisbach, C.; Kragl, U.; Weigerding, M.; Waldmann, H.; Wandrey, C. Chiral Titanium Alkoxides as Catalysts for the Enantioselective Reduction of Ketones with Boranes. Angew. Chem., Int. Ed.1995,34,2005-2006.
    [27]Fu, I.-P.; Uang, B.-J. Enantioselective borane reduction of aromatic ketones catalyzed by chiral aluminum alkoxides. Tetrahedron:Asymmetry 2001,12,45-48
    [28]Lin, Y.-M.; Fu, I.-P.; Uang, B.-J. Enantioselective borane reduction of aromatic ketones using chiral BINOL derivatives as ligands in an aluminum catalyst. Tetrahedron:Asymmetry 2001,12,3217-3221.
    [29]Degni, S.; Wilen, C.-E.; Leino, R. Immobilization of Chiral Ligands on Polymer Fibers by Electron Beam Induced Grafting and Applications in Enantioselective Catalysis. Org. Lett.2001,3,2551-2554.
    [30]Degni, S.; Wilen, C.-E.; Leino, R. Asymmetric C-C bond formation with (?)-prolinol derived chiral catalysts immobilized on polymer fibers. Tetrahedron: Asymmetry 2004,15,231-237.
    [31]Hu, J.-B.; Zhao, G.; Yang, G.-S.; Ding, Z.-D. Asymmetric Borane Reduction of Prochiral Ketones by Polymer-Supported Chiral Sulfonamides. J. Org. Chem.2001, 66,303-304.
    [32]Yang, S.-D.; Shi, Y.; Sun, Z.-H.; Zhao,Y.-B.; Liang, Y.-M. Asymmetric borane reduction of prochiral ketones using imidazolium-tagged sulfonamide catalyst. Tetrahedron:Asymmetry 2006,17,1895-1900.
    [33]Li, G.-Q.; Yan, Z.-Y.; Niu, Y.-N.; Wu, L.-Y. Wei, H.-L.; Liang, Y-M.Asymmetric borane reduction of prochiral ketones catalyzed by C3-symmetric sulfonamide Tetrahedron:Asymmetry 2008,19,816-821.
    [34]Felder, M.; Giffels, G.; Wandrey, C. A polymer-enlarged homogeneously soluble oxazaborolidine catalyst for the asymmetric reduction of ketones by borane. Tetrahedron:Asymmetry 1997,8,1975-1977.
    [35]Caze, C.; Hodge, N. E. M.; Lock, C. J. Changes of thermodynamic and dynamic mechanical properties of poly(methyl methacrylate) due to structural relaxation: low-temperature ageing and modelling Polymery 1995,36,611-620.
    [36]Blangey, Stamm, G. Uber die Sulfierung des Athyl-benyl-anilins. J. Chem. Soc. 1938,1162-1179.
    [37]Polymer enlarged oxazaborolidines in a membrane reactor:enhancing effectivity by retention of the homogeneous catalyst. Giffels, G.; Beliczey, J.; Felder, M.; Kragl, U. Tetrahedron:Asymmetry 1998,9,691-696.
    [38]Du, D.-M.; Fang, T.; Xu, J.-X.; Zhang, S.-W. Structurally Well-Defined, Recoverable C3-Symmetric Tris((3-hydroxy phosphoramide)-Catalyzed Enantioselective Borane Reduction of Ketones. Org. Lett.2006,8,1327-1330.
    [39]Wu, P.; Feldman, A. K.; Nugent, A.K.; Hawker, C. J.; Scheel, A.; Voit, B.; Pyun, J.; Frechet, J. M. J; Sharpless, K. B.; Fokin, V. V. Efficiency and Fidelity in a. Click-Chemistry Route to Triazole Dendrimers by the Copper(Ⅰ)-Catalyzed Ligation of Azides and Alkynes. Angew. Chem. Int Ed.2004,43,3928-3932.
    [40]Malkoch, M.; Schleicher, K.; Drockenmuller, E.; Hawker, C. J.; Russell, T. P.; Wu, P.; Fokin, V. V. Structurally Diverse Dendritic Libraries:A Highly Efficient Functionalization Approach Using Click Chemistry. Macromolecules 2005,38, 3663-3678.
    [41]Suseela. K.; David.G. C. Selective Upper Rim Functionalization and Lower Rim Bridge Building with Calix[4]arenes and Calix[6]arenes'. J. Org.Chem.1996,61, 2511-2516.
    (1)Bentley, K. W. The Isoquinoline Alkaloids; Hardwood Academic: Amsterdam,1998; Vol.1.
    (2)Kletsas, D.; Li, W.; Han, Z.; Papadopoulos, V. Peripheral-type benzodiazepine receptor (PBR) and PBR drug ligands in fibroblast and fibrosarcoma cell proliferation role of ERK, c-Jun and ligand-activated PBR-independent pathways. Biochem. Pharmacol.2004,67,1927-1932.
    (3)Mach, U. R.; Hackling, A. E.; Perachon, S.; Ferry, S.; Wermuth, C. G.; Schwartz, J.-C.; Sokoloff, P.; Stark, H. Development of Novel 1,2,3,4-Tetrahydroisoquinoline Derivatives and Closely Related Compounds as Potent and Selective Dopamine D3 Receptor Ligands. ChemBioChem 2004,5,508-518.
    (4)Muscarella, D. E.; O'Brain, K. A.; Lemley, A. T.; Bloom, S. E. Reversal of Bcl-2-Mediated Resistance of the EW36 Human B-Cell Lymphoma Cell Line to Arsenite-and Pesticide-Induced Apoptosis by PK11195, a Ligand of the Mitochondrial Benzodiazepine Receptor. Toxicol. Sci.2003,74,66-73.
    (5)Dzierszinski, F.; Coppin, A.; Mortuaire, M.; Dewally, E.; Slomianny, C.; Ameisen, J.-C.; DeBels, F.; Tomavo, S. Ligands of the Peripheral Benzodiazepine Receptor Are Potent Inhibitors of Plasmodium falciparum and Toxoplasma gondii In Vitro. Antimicrob. Agents Chemother.2002,46,3197-3207.
    (6)Durola, F.; Sauvage, J.-P.; Wenger, O. S. Sterically non-hindering endocyclic ligands of the bi-isoquinoline family. Chem. Commun.2006,171-173.
    (7)Sweetman, B. A.; Muller-Bunz, H.; Guiry, P. J. Synthesis, resolution and racemisation studies of new tridentate ligands for asymmetric catalysis. Tetrahedron Lett.2005,46,4643-4646.
    (8)Lim, C. W.; Tissot, O.; Mattison, A.; Hooper, M. W.; Brown, J. M.; Cowley, A. R.; Hulmes, D. I.; Blacker, A. Practical Preparation and Resolution of 1-(2-Diphenylphosphino-l-naphthyl) isoquinoline:A Useful Ligand for Catalytic Asymmetric Synthesis. J. Org. Process Res. Dev.2003,7,379-384.
    (9)Alcock, N.W., Brown, J. M., Hulmes, G. I. Synthesis and resolution of 1-(2-diphenylphosphino-l-naphthyl)isoquinoline; a P---N chelating ligand for asymmetric catalysis. Tetrahedron:Asymmetry 1993,4,743-756.
    (10)Liu, S.-J.; Zhao, Q.; Chen, R.-F.; Deng, Y.; Fan, Q.-L.; Li, F.-Y.; Wang, L.-H.; Huang, C.-H.; Huang, W. π-Conjugated Chelating Polymers with Charged Iridium Complexes in the Backbones:Synthesis, Characterization, Energy Transfer, and Electrochemical Properties. Chem. Eur. J.2006,12,4351-4361.
    (11)Zhao, Q.; Liu, S.; Shi, M.; Wang, C.; Yu, M.; Li, L.; Li, F.; Yi, T.; Huang, C. Series of New Cationic Iridium(III) Complexes with Tunable Emission Wavelength and Excited State Properties:Structures, Theoretical Calculations, and Photophysical and Electrochemical Properties. Inorg. Chem.2006,45,6152-6160.
    (12)Tsuboyama, A.; Iwawaki, H.; Furugori, M.; Mukaide, T.; Kamatani, J.; Igawa, S.; Moriyama, T.; Miura, S.; Takiguchi, T.; Okada, S.; Hoshino, M.; Ueno, K Homoleptic Cyclometalated Iridium Complexes with Highly Efficient Red Phosphorescence and Application to Organic Light-Emitting Diode.. J. Am. Chem. Soc.2003,125,12971-12979.
    (13)Pandy. G.; Balakrishnan, M. Suzuki Cross-Coupling/Reductive Debenzyloxycarbonylation Sequence for the Syntheses of [c]Annulated Isoquinolines: Application for the Syntheses of Pancratistatin-like Isoquinolines. J. Org. Chem.2008, 73,8128-8131.
    (14)Hashmi, A. S. K.; Schaefer, S.; Woelfe, M.; DiezGil, C.; Fischer, P.; Laguna, A.; Blanco, M. C.; Gimeno, M. C. Gold-Catalyzed Benzylic C-H Activation at Room Temperature. Angew. Chem., In. Ed.2007,46,6184-6187.
    (15)Konno, T.; Chae, J.; Miyabe, T.; Ishihara, T. Regioselective One-Step Synthesis of 4-Fluoroalkylated Isoquinolines via Carbopalladation Reaction of Fluorine-Containing Alkynes. J. Org. Chem.2005,70,10172-10174.
    (16)Palacios, F.; Alonso, C.; Rodriguez, M.; de Marigorta, E. M.; Rubiales, G. Preparation of 3-(Fluoroalkyl)-2-azadienes and Its Application in the Synthesis of (Fluoroalkyl)isoquinoline and-pyridine Derivatives. Eur. J. Org. Chem.2005, 1795-1804.
    (17)Ichikawa, J.; Wada, Y.; Miyazaki, H.; Mori, T.; Kuroki, H. Ring-Fluorinated Isoquinoline and Quinoline Synthesis:Intramolecular Cyclization of o-Cyano-and o-Isocyano-β,β-difluorostyrenes. Org. Lett.2003,5,1455-1458.
    (18)Ishikawa, T.; Shimooka, K.; Narioka, T.; Noguchi, S.; Saito, T.; Ishikawa, A.; Yamazaki, E.; Harayama, T.; Seki, H.; Yamaguchi, K. Anomalous Substituent Effects in the Bischler-Napieralski Reaction of 2-Aryl Aromatic Formamides. J. Org. Chem. 2000,65,9143-9151.
    (19)Sotomayor, N.; Dominguez, E. Bischler-Napieralski Cyclization-N/C-Alkylation Sequences for the Construction of Isoquinoline Alkaloids. Synthesis of Protoberberines and Benzo[c]phenanthridines via C-2'-Functionalized 3-Arylisoquinolines. J. Org. Chem.1996, 61,4062-4072.
    (20)Youn, S. W. Development of the Pictet-Spengler Reaction Catalyzed by AuCl3/AgOTf. J. Org. Chem.2006,71,2521-2523.
    (21)Chrzanowska, M.; Rozwadowska, M. D. Asymmetric Synthesis of Isoquinoline Alkaloids. Chem. Rev.2004,104,3341-3370.
    (22)Cox, E. D.; Cook, J. M. The Pictet-Spengler condensation:a new direction for an old reaction. Chem. Rev.1995,95,1797-1842.
    (23)Boudou, M.; Enders, D. Asymmetric Synthesis of Tetrahydropalmatine via Tandem 1,2-Addition/Cyclization. J. Org. Chem.2005,70,9486-9494.
    (24)Walker, E. R.; Leung, S. Y.; Barrett, A. G. M. Studies towards the total synthesis of Sch 56036; isoquinolinone synthesis and the synthesis of phenanthrenes. Tetrahedron Lett.2005,46,6537-6540.
    (25)Maassarani, F.; Pfeffer, M.; Le Borgne, G. Control of the Reactivity of Cyclopalladated Complexes for the Synthesis of Heterocyclic Compounds. J. Chem. Soc., Chem. Commun.1987,8,565-567.
    (26)Wu, G.; Geib, S. J.; Rheingold, A. L.; Heck, R. F. Isoquinolinium salt syntheses from cyclopalladated benzaldimines and alkynes. J. Org. Chem.1988,53,3238-3241.
    (27)Girling, I. R.; Widdowson, D. A. Cyclopalladated imines in synthesis 2:a new synthesis of isoquinolines. Tetrahedron Lett.1982,23,4281-4284.
    (28)Roesch, K. R.; Zhang, H.; Larock, R. C. Synthesis of Isoquinolines and Pyridines via Palladium-Catalyzed Iminoannulation of Internal Acetylenes. J. Org. Chem.1998, 63,5306-5307.
    (29)Roesch, K. R.; Zhang, H.; Larock, R. C. Synthesis of Isoquinolines and Pyridines by the Palladium-Catalyzed Iminoannulation of Internal Alkynes. J. Org. Chem.2001, 66,8042-8051.
    (30)Synthesis of 3,4-Disubstituted Isoquinolines via Palladium-Catalyzed Cross-Coupling of 2-(1-Alkynyl)benzaldimines and Organic Halides. Dai, G. X.; Larock, R. C. J. Org. Chem.2003,68,920-928.
    (31)Huang, Q.; Larock, R. C. Synthesis of 4-(1-Alkenyl)isoquinolines by Palladium(II)-Catalyzed Cyclization/Olefination.J. Org. Chem.2003,68,980-988.
    (32)Dai, G.; Larock, R. C. Synthesis of 3-Substituted 4-Aroylisoquinolines via Pd-Catalyzed Carbonylative Cyclization of 2-(1-Alkynyl)benzaldimines. J. Org. Chem.2002,67,7042-7047.
    (33)Roesch, K. R.; Larock, R. C. Synthesis of Isoquinolines and Pyridines by the Palladium-and Copper-Catalyzed Coupling and Cyclization of Terminal Acetylenes. Org. Lett.1999,1,553-556.
    (34)Roesch, K. R.; Larock, R. C. Synthesis of Isoquinolines and Pyridines by the Palladium/Copper-Catalyzed Coupling and Cyclization of Terminal Acetylenes and unsaturated imines:the total synthesis of Decumbenine B. J. Org. Chem.2002,67, 86-94
    (35)Huang, Q. H.; Hunter, J. A.; Larock, R. C. Synthesis of isoquinoline and naphthyridines by electrophilic ring closure of iminoalkynes. Org. Lett.2001,3, 2973-2976
    (36)Korivi, R. P.; Cheng, C.-H. Highly Efficient Synthesis of Isoquinolines via Nickel-Catalyzed Annulation of 2-Iodobenzaldimines with Alkynes:Evidence for Dual Pathways of Alkyne Insertion. Org. Lett.2005,7,5179-5182.
    (37)Guimond. N.; Fagnou. K. Isoquinoline Synthesis via Rhodium-Catalyzed Oxidative Cross-Coupling/ Cyclization of Aryl Aldimines and Alkynes. J. Am. Chem. Soc.2009,131, 12050-12051
    (38)Yang, Y.-Y.; Shou, W.-G.; Chen, Z.-B.; Hong, D.; Wang,.Y-G. A Tandem Approach to Isoquinolines from 2-Azido-3-arylacrylates and a-Diazocarbonyl Compounds. J. Org. Chem.2008,73,3928-3930.
    (39)Wang, B.; Lu, B.; Jiang, Y.; Zhang, Y.; Ma, D. Assembly of Isoquinolines via CuⅠ-Catalyzed Coupling of β-Keto Esters and 2-Halobenzylamines. Org. Lett.2008, 10,2761-2763.
    (40)Fischer, D.; Tomeba, H.; Pahadi, N. K.; Patil, N. T.; Huo, Z. Yamamoto, Y. Iodine-Mediated Electrophilic Cyclization of 2-Alkynyl-l-methylene Azide Aromatics Leading to Highly Substituted Isoquinolines and Its Application to the Synthesis of Norchelerythrine. J. Am. Chem. Soc.2008,130,15720-15725.
    (41)Fischer, D.; Tomeba, H.; Pahadi, N. K.; Patil, N. T.; Yamamoto, Y. Synthesis of 1,3,4-Trisubstituted Isoquinolines by Iodine-Mediated Electrophilic Cyclization of 2-Alkynyl Benzyl Azides. Angew. Chem., Int. Ed.2007,46,4764-4766.
    (42)Huo, Z.; Yamamoto, Y. Gold-catalyzed synthesis of isoquinolines via intramolecular cyclization of 2-alkynyl benzyl azides. Tetrahedron Lett.2009,50, 3651-3653
    (43)Alfonsi, M.; Dell'Acqua, M.; Facoetti, D.; Arcadi, A.; Abbiati, G.; Rossi, E. Microwave-Promoted Synthesis of N-Heterocycles by Tandem Imination/ Annulation of γ-and δ-Ketoalkynes in the Presence of Ammonia. Eur. J. Org. Chem. 2009,2852-2862
    (44)Lim, S.-G.; Lee, J. H.; Moon, C. W.; Hong, J.-B.; Jun, C.-H. Rh (I)-Catalyzed Direct ortho-Alkenylation of Aromatic Ketimines with Alkynes and Its Application to the Synthesis of Isoquinoline Derivatives. Org. Lett.2003,5,2759-2761.
    (45)Ramakrishna, T. V. V.; Sharp, P. R. Naphthalenes, Isoquinolines, and a Benzazocine from Zirconocene-Copper-Mediated Coupling of Benzocyclobutadiene with Nitriles and Alkynes. Org. Lett.2003,5,877-879.
    (46)Hwang, S.; Lee, Y.; Lee, P. H. Shin, S. AgOTf and TfOH co-catalyzed isoquinoline synthesis via redox reactions of O-alkyl oximes. Tetrahedron Lett.2009, 50,2305-2308
    (47)Li, Z.; Capretto, D. A.; Rahaman, R.; He, C. Silver-Catalyzed Intermolecular Amination of C-H Groups. Angew. Chem., Int. Ed.2007,46,5184-5186.
    (48)Cui. Y; He, C. A Silver-Catalyzed Intramolecular Amidation of Saturated C-H Bonds. Angew. Chem., Int. Ed.2004,43,4210-4212.
    (49)Clark, T. B.; Woerpel, K. A. Formation and Utility of Oxasilacyclopentenes Derived from Functionalized Alkynes. J. Am. Chem. Soc.2004,126,9522-9523.
    (50)Cui, Y.; He, C. Efficient Aziridination of Olefins Catalyzed by a Unique Disilver(I) Compound. J. Am. Chem. Soc.2003,125,16202-16203.
    (51)Josephsohn, N. S.; Snapper, M. L.; Hoveyda, A. H. Efficient and Practical Ag-Catalyzed Cycloadditions between Arylimines and the Danishefsky Diene. J. Am. Chem. Soc.2003,125,4018-4019.
    (52)Momiyama, N.; Yamamoto, H. Catalytic Enantioselective Synthesis of a-Aminooxy and a-Hydroxy Ketone Using Nitrosobenzene. J. Am. Chem. Soc.2003, 125,6038-6039.
    (53)Dias, H. V. R.; Browning, R. G.; Polach, S. A.; Diyabalanage, H. V. K.; Lovely, C. J. Activation of Alkyl Halides via a Silver-Catalyzed Carbene Insertion Process. J. Am. Chem. Soc.2003,125,9270-9271.
    (54)R. Huisgen,1,3-Dipolar Cycloaddition Chemistry, Vol.1, Wiley, New York, 1984, pp.1-176.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700