用户名: 密码: 验证码:
基于电阻率测量的海床蚀积过程原位监测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文基于国家863项目“风暴过程中海底沉积物再悬浮通量原位监测技术”编号2008AA09Z109)开展研究,研制了一套基于电阻率测量的海床侵蚀淤积过程现场动态原位监测系统,该系统能够实施海水-沉积物界面位置的原位监测。
     本文研究内容主要包括以下两个方面:1系统设计:①设计电阻率蚀积监测系统整体结构;②完成该系统三个部分的设计:机械探杆、主控部分及分析处理软件部分,通过实验选择探杆的直径、材料和极距,确定环形电极电阻率计算方法,完成探杆设计,对主控部分划分模块完成硬件和软件设计,对分析处理软件划分模块完成设计;③对系统进行误差和精度分析;④系统参数实验测试与调整;⑤进行系统机械组合总装,完成整个系统的设计;2系统实验验证:①室内对比实验:和现有的商业化仪器测试数据进行对比分析,验证系统测试数据正确性;②室内实验验证系统的有效性;③进行现场原位实验,进一步对系统进行原位测试的有效性验证
     本论文采用的研究方法:在整个系统的设计中,采用了自上而下、分模块的设计方式,保证了系统具有很好的整体性;在系统调试和实验验证过程中,设计了多种实验,采用分步骤进行验证的方式,确保系统验证过程有序进行和经过验证系统的测试稳定性。
     本文主要结论概括如下:
     1.系统设计:①探杆:通过实验对比分析,选择探杆电极布设方法为环形布设、探杆直径7cm和电极间距1cm;②主控部分:采样频率64次/s,采样间隔初步确定为8s,经误差分析可以达到静态0.012Ω·m电阻率精度。③上位机数据处理软件:开发完成了仪器参数设置、数据处理和曲线拟合三个模块,采用的VC++6.0完成界面部分和计算部分,matcom 4.5完成曲线绘制及曲线拟合。2.系统实验验证:①室内对比实验:与商业化E60BN高密度电法仪和电导率仪数据对比,验证了本系统测试土体和海水电阻率数据的有效性;②室内界面测试实验:经实验确定自制系统界面测定误差在0.80cm以内,提出了中间值-直线界面分析方法,对得到的数据进行了分析,获得的界面位置和实际观察到的结果具有很好的一致性,在多次反复实验中验证了系统电阻率数据测试的有效性、测试界面的正确性,和系统的工作稳定性;③现场测试实验:实验结果表明,在海洋水动力条件较为平静时,测试结果很好的反映海水-沉积物界面;当水动力作用较强时,目前仪器所用电极的极化效应对测试结果影响较大,将在下一步研究中通过改变电极材料来完善。
     本论文创新点主要包括以下三个方面:1多电极自动切换自动记录,基于电阻率测量的海床蚀积监测系统设计;2分级电极开关转换结构和相应的主控软件,极大的减小了多电极电路的硬件开销,缩小了整个系统的体积;3提出了海水-沉积物界面的中间值-直线分析方法,并在多次实验中验证了其分析数据的有效性。
     本论文设计的系统有待进一步工作改进系统设计,主要包括:系统的软硬件功能的进一步完善、系统电极探杆的材料改进,及系统整体结构的进一步调整。
Thework in this thesis was based on National 863 Project“Marine SedimentRe-suspension Flux in-situ Monitoring Techniques during the Storm Process”(No.2008AA09Z109).A set of in situ system monitoring seabed erosion and depositiondynamic process,based on the resistivity measurement,was developed.It couldimplement in situ monitoring water-sediment interface location.
     In this thesis,the work consists of two parts,1 Monitoring system design:①Design the whole structure of monitoring system based on resistivity measurement;②Completion the three components design of the system,that is mechanical rod part,control part and analysis software part.Rod design was completed by choosing roddiameter,material and electrode distance through experiments and determining thering electrode resistivity calculating method.Control part was realized by dividinghardware and software into modules to design respectively.Processing and analysissoftware was completed through modularization design;③system error andprecision analysis;④experimentalize for testing and adjusting system parameters;⑤assemble the whole system,and finish system design.2.System verifyingexperiments:①indoor comparative experiment:The measured data fromself-designed instrument was compared with the data from commercialization E60BNhigh-density electrical instrument to verify the system testing data validity of soil andwater resistivity.②indoor testing experiment to verify system effectiveness;③field experiment to verify system in-situ monitoring validity.
     The research methods in this thesis:the top-down,dividing modules designmanner was used in the design of the entire system,which ensured the system a verygood overall;in the system debug and test validation process,a wide range ofexperiments were designed,and step-by-step validate manner was used,whichensured verification process conducting orderly and testing stability of the verifiedsystem.
     The main conclusions of this thesis could be summarized as follows:
     1.System design:①mechanical rod:ring electrode collocation manner,diameter 7cm and electrode spacing lcm;②data logger:sampling rate 64 times/s, the total system error--0.012Ω·m,sampling interval 8s;③host computerdata-processing software:VC ++ 6.0 was used in the interface and the calculationparts,and matcom 4.5 completed curve drawing and curve fitting.2.Systemexperiment verify:①indoor comparative expmeriment:the measured data wasoompared with the data from commercialization E60BN high-density electricalinstrument,which verified the system testing data validity of soil and water resistivity;②indoor interface testing experiment:the apparatus developed in this thesis wasused to conduct the indoor contrast experiment to test the accuracy of the results ofelectrical conductivity;and test effectiveness of sediment-water interface location,which was proved to be a less than 0.80cm error;③Field test results showed thatwhen the hydrodynamic conditions in the ocean was relatively calm,the test resultsreflected a very good water-sediment interface;When it has strong hydrodynamiceffect,the electrode used by the current equipment has polarization effects on theimpact of test results.Changing the electrode material in the next step would beexecuted to improve it.
     The main innovations in this thesis:1 seabed longtime monitoring system whichcoulde automaticly switch between multitrode;2 classifiyed electrode switchingstructure and corresponding control software,would greatly reduce the hardware costof multi-electrode circuit,and reduce the size of the entire system;3IntermidiateValue-StraightLine (Ⅳ-SL) water-sediment interface analysis method wasadvanced,and its validity was verified in a number of experiments.
     The system designed in this thesis would be further improved in future work,including:further perfecting the function of hardware and software,improvingelectrode rod material,and further adjusting the overall structure of the system.
引文
[1]Black,K.S.,et al.Working with Natural Cohesive Sediments.JOURNAL OF HYDRAULIC ENGINEERING,2002.128(1):p.2-8.
    [2]Black,K.,Athey,S.,Wilson,P,Evans,D.Particle Tracking:a new tool for coastal zone sediment management.Littoral,2004:p.20-22.
    [3]Neumeier,U.,C.H.Lucas,and M.Collins.Erodibility and erosion patterns of mudflat sediments investigated using an annular flume.Aquatic Ecology,2006.40(4):p.543-554.
    [4]Friend,P.L.and C.L.Amos.Natural coastal mechanisms--flume and field experiments on links between biology,sediments,and flow.Continental Shelf Research,2007.27(8):p.1017-1019.
    [5]Willows,R.I.,J.Widdows,and R.G.Wood.Influence of an infaunal bivalve on the erosion of an intertidal cohesive sediment:A flume and modeling study.Limnology and Oceanography,1998.43(6):p.1332-1343.
    [6]Widdows,J.,et al.Influence of biota on spatial and temporal variation in sediment erodability and material flux on a tidal flat (Westerschelde,The Netherlands).Marine Ecology Progress Series,2000.194:p.23-37.
    [7]Shimeta,J.,et al.Resuspension of benthic protists at subtidal coastal sites with differing sediment composition.MARINE ECOLOGY PROGRESS SERIES,2003.259:p.103-115.
    [8]Sutherland,T.F.,C.L.Amos,and J.Grant.The effect of buoyant biofilms on the erodibility of sublittoral sediments of a temperate microtidal estuary.Limnology and Oceanography,1998.43(2):p.225-235.
    [9]Jie,H.,et al.Differences in the benthic-pelagic particle flux biodeposition and sediment erosion/at intertidal sites with and without clam Ruditapes philippinarum/ cultivation in
    eastern China.Journal of Experimental Marine Biology and Ecology,2001.261:p.245-261.
    [10]Wheatcroft,R.A.and C.K.Sommerfield.River sediment flux and shelf sediment accumulation rates on the Pacific Northwest margin.Continental Shelf Research,2005.25(3):p.311-332.
    [11]Wright,L.D.,et al.Effects of ambient currents and waves on gravity-driven sediment transport on continental shelves.Marine Geology,2001.175(1-4):p.25-45.
    [12]Nittrouer,C.A.STRATAFORM:overview of its design and synthesis of its results.Marine Geology,1999.154(1-4):p.3-12.
    [13]Puig,P.,A.S.Ogston,B.L.Mullenbach,C.A.Nittrouer,J.D.Parsons,and R.W.Sternberg.Storm-induced sediment gravity flows at the head of the Eel submarine canyon,northern California margin.J.Geophys.Res.,2004.109(C03019).
    [14]Ogston,A.S.,et al.Observations of storm and river flood-driven sediment transport on the northern California continental shelf.Continental Shelf Research 2000.20(16):p.2141-2162.
    [15]Traykovski,P.,et al.The role of wave-induced density-driven fluid mud flows for cross-shelf transport on the Eel River continental shelf.Continental Shelf Research,2000.20(16):p.2113-2140.
    [16]Wheatcroft,R.A.and J.C.Borgeld.Oceanic flood deposits on the northern California shelf:large-scale distribution and small-scale physicial properties.Continental Shelf Research,2000.20(16):p.2163-2190.
    [17]Mullenbach,B.L.,et al.Sediment deposition in a modern submarine canyon:Eel Canyon,northern California.Marine Geology,2004.211(1-2):p.101-119.
    [1 8]印萍,et al.北戴河海滩泥沙捕获实验及其初步结果分析.海岸工程,2003.22(2).
    [19]EMERSON,C.W.A Method for the Measurement of Bedload Sediment Transport and Passive Faunal Transport on Intertidal Sandflats.Estuaries,1991.14(4):p.361-371.
    [20]Lamoureux,S.F A sediment accumulation sensor for use in lacustrine and marine sedimentation studies.Geomorphology,2005.68(1-2):p.17-23.
    [21]Black,K.,et al.The use of particle tracking in sediment transport studies:a review Geological Society London Special Publications,2007.274:p.73-91.
    [22]Alvisi,F.,et al.Sampling and dating strategies in studying environments with high spatial and temporal variability.Arch.Oceanogr.Limnol,2001.22:p.207-216.
    [23]ANDERSON,F.E.,et al.A TEMPORAL AND SPATIAL STUDY OF MUDFLAT EROSION AND DEPOSITIONI FRANZ E.ANDERSON AND LUTHER BLACK.JOURNAL OF SEDIMENTARY PETROLOGY,1981.51(3):p.0729-0736.
    [24]Perillo,G.M.E.,E.P.D.Santos,and M.C.Piccolo.An inexpensive instrument for sediment erosion-accumulation rate measurement in intertidal environments.Wetlands Ecology and Management,2003(11):p.195-198.
    [25]Cahoon,D.R.,D.J.Reed,and J.W.Day Jr.Estimating shallow subsidence in microtidal salt marshes of the southeastern Unite States:Kaye and Barghoorn revisited Mar.Geol.,1995.128:p.1-9.
    [26]Lawlar,D.M.A New Technique for the Automatic Monitoring of Erosion and Deposition Rates WATER RESOURCES RESEARCH,1991.27(8):p.2125-2128.
    [27]Lawler,D.M.The importance of high-resolution monitoring in erosion and deposition dynamics studies:examples from estuarine and fluvial systems.Geomorphology,2005.64:p.1-23.
    [28]Thomas,S.and P.V.Ridd.Review of:methods to measure short time scale sediment accumulation.Marine Geology 2004.207:p.95-114.
    [29]Young,R.N.and J.B.Southard,Erosion of fine-grained marine sediments:Sea-floor and laboratory experiments.Geological Society of America Bulletin,1978.89(5):p.663-672.
    [30]Amos,C.L.,et al.In situ erosion measurements on fine-grained sediments from the Bay of Fundy.Marine Geology,1992.108(2):p.175-196.
    [31]Maa,J.P.Y.,et al.VIMS Sea Carousel:A field instrument for studying sediment transport.Marine Geology,1993.115(3-4):p.271-287.
    [32]Maa,J.P.Y.,C.H.Lee,and F.J.Chen.Bed shear stress measurements for Sea Carousel.Marine Geology,1995.129(1-2):p.129-136.
    [33]Houwing,E.-J.and I.C.van Rijn.In Situ Erosion Flume (ISEF):determination of bed-shear stress and erosion of a kaolinite bed.Journal of Sea Research,1998.39(3-4):p.243-253.
    [34]Maa,J.P.Y.,L.Sanford,and J.P.Halka,Sediment resuspension characteristics in Baltimore Harbor,Maryland.Marine-Geology,1998.146(1-4):p.137-145.
    [35]Andersen,T.J.,J.Fredsoe,and M.Pejrup.In situ estimation of erosion and deposition thresholds by Acoustic Doppler Velocimeter (ADV).Estuarine,Coastal and Shelf Science,2007.75(3):p.327-336.
    [36]Tolhurst,T.J.,et al.A comparison and measurement standardisation of four in situ devices for determining the erosion shear stress of intertidal sediments.Continental Shelf Research,2000. 20(10-11):p.1397-1418.
    [37]Widdo.ws,J.,et al.Inter-comparison between five devices for determining erodability of intertidal sediments.Continental Shelf Research,2007.27(8):p.1174-1189.
    [38]Pope,N.D.,J.Widdows,and M.D.Brinsley.Estimation of bed shear stress using the turbulent kinetic energy approach--A comparison of annular flume and field data.Continental Shelf Research,2006.26(8):p.959-970.
    [39]Cacchione,D.A.,R.W.Sternberg,and A.S.Ogston.Bottom instrumented tripods:History,.applications,and impacts.Continental Shelf Research,2006.26(17-18):p.2319-2334.
    [40]Heffler,D.RALPH-A Dynamic Instrument for Sediment Dynamics.OCEANS '96.MTS/IEEE.‘Prospects for the 21 st Century’.Conference Proceedings,1996.2:p.728-732
    [41]Ogston,A.S.,J.V.Guerra,and R.W.Sternberg.Interannual variability ofnearbed sediment flux on the Eel River shelf,northern California.Continental Shelf Research,2004.24(1):p.117-136.
    [42]汪亚平,et al.长江口水沙入海通量的观测与分析.地理学报2006.61(1):P.35-46.
    [43]Schaaff,E.,et al.,Field and laboratory measurements of sediment erodibility:A comparison.Journal of Sea Research,2006.55(1):p.30-42.
    [44]Ridd,P.,et al.Measurement of Sediment Deposition Rates using an Optical Backscatter Sensor.Estuarine,Coastal and Shelf Science,2001.52:p.155-163.
    [45]Erlingsson,U.A sensor for measuring erosion and deposition.J.Sediment.Petrol.,1991.61:p.620-623.
    [46]Lawler,D.M.,et al.Application of a Novel Automatic Erosion and Deposition Monitoring System at a Channel Bank Site on the Tidal River Trent,U.K.Estuarine,Coastal and Shelf Science,2001.53:p.237-247.
    [47]Lawler,D.M.Advances in the continuous monitoring of erosion and deposition dynamics.Developments and applications of the new PEEP-3T system.Geomorphology 2008.93:p.17-39.
    [48]H.JESTIN,P.B.,P.LE HIR,J.L'YAVANC,Y.DEGRES.Development ofALTUS,a high frequency acoustic submersible recording altimeter to accurately monitor bed elevation and quantify deposition or erosion of sediments.Conference Proceedings,1998:p.189-194.
    [49]Bassoullet,P.,et al.Sediment transport over an intertidal mudflat:field investigations and estimation of fluxes withinthe “Bale de Marennes-Olerona ”(France).Continental Shelf Research 2000.20:p.1635-1653.
    [50]WON,I.J.The Geometrical Factor of a Marine Resistivity Probe with Four Ring Electrodes.IEEE JOURNAL OF OCEANIC ENGINEERING,1987.OE-12(1):p.301-303,
    [51]Ridd,P.V.A Sediment Level Sensor for Erosion and Siltation Detection.Estuarine,Coastal and Shelf Science,1992.35:p.353-362.
    [52]Thomas,S.,P.V.Ridd,and P.J.Smith.New instrumentation for sediment dynamics studies.Mar.Technol.Soc.J.,2002.36(1):p.55-58.
    [53]Wheatcroft,R.A.In Situ Measurements of Near-Surface Porosity in Shallow-Water Marine Sands.IEEE JOURNAL OF OCEANIC ENGINEERING,2002.27(3).
    [54]Samou(e|¨)liana,A.,et al.Electrical resistivity survey in soil science:a review.Soil & Tillage Research,2005.83 p.173-193.
    [55]Ridd,P.V.Electric Potential Due to a Ring Electrode.IEEE JOURNAL OF OCEANIC ENGINEERING,1994.19(3):p.464-467.
    [56]Loke,M.H.Tutorial:2-D and 3-D electrical imaging surveys.Course Notes for USGS Workshop 2-D and 3-D Inversion and Modeling of Surface and Borehole Resistivity Data,Torrs,CT.2001.
    [57]Pozdnyakova,L.,A.Pozdnyakov,and R.Zhang.Application of geophysicalmethods to evaluate hydrology and soil properties in urban areas.Urban Water 2001.3:p.205-216.
    [58]孙永福,孙惠凤,and董立峰.海底土的电阻率特征及其腐蚀性评价.海岸工程,2005.24(2).
    [59]郭秀军,贾永刚,and黄潇雨.基于电性变化进行黄河水下三角洲饱和粉土触变过程研究.岩石力学与工程学报,2006.z1:p.3131-3136.
    [60]郭秀军,et al.黄河口饱和粉土的电性特征及其工程地质应用.岩土力学,2007.28(3):p.593-598.
    [61]Kermabon,A.,et al.Acoustic and Other Physical Properties of Deep-Sea Sediments in Tyrrhenian Abyssal Plain.Marine Geology,1969.7(2):p.129-&.
    [62]Jackson,P.D.Electrical-Resistivity Method for Evaluating lnsitu Porosity of Clean Marine Sands.Marine Geotechnology,1975.1(2):p.91-115.
    [63]Cheesman,S.J.,L.K.Law,and R.N.Edwards.Porosity Determinations of Sediments in Knight Inlet Using a Transient Electromagnetic System.Geo-Marine Letters,1991.11(2):p.84-89.
    [64]Cheesman,S.J.,L.K.Lav,and B.Stlouis.A Porosity Mapping Survey in Hecate Strait Using a Sea-Floor Electromagnetic Profiling System.Marine Geology,1993.110(3-4):p.245-256.
    [65]Lauer-Leredde,C.,P.A.Pezard,and I.Dekeyser.FICUS,a new in-situ probe for resistivity measurements in unconsolidated marine sediments.Marine Geophysical Researches,1998.20(2):p.95-107.
    [66]Lauer-Leredde,C.,P.A.Pezard,and I.Dekeyser.FICUS,a new in-situ probe for resistivity measurements in unconsolidated marine sediments.Marine Geophysical Researches 1998.20:p.95-107.
    [67]Rosenberger,A.,et el.Design and application of a new free fall in situ resistivity probe for marine deep water sediments Marine Geology,1999.160(327-337).
    [68]Jansen,D.,et al.In situ measurement of electrical resistivity of marine sediments,results from Cascadia Basin off Vancouver lsland Marine Geology,2005.216:p.17-26.
    [69]董劲松.电法勘探数据与解释的可视化方法研究:[硕士学位论文].西安:西安科技大学,2006.
    [70]李银真.高密度电阻率法物探技术及其应用研究:[硕士学位论文].阜新:辽宁工程技术大学2007.
    [71]雷世红.高密度电法室内模型与工程应用研究:[硕士学位论文].南京:河海大学.2005
    [72]郑采君.分布式高密度电阻率仪电极转换装置设计.地质装备,2004.5(1):p.34-37.
    [73]李聪嫔.新型高密度电法仪器设计与实现:[硕士学位论文].北京:中国地质大学,2002.
    [74]利奕年and罗延钟.高密度电法视电阻率数据预处理算法.物探化探计算技术,2006.28(4):p.328-331.
    [75]刘海飞,高密度电阻率法数据处理方法研究:[硕士学位论文].长沙:中南大学.2004.
    [76]姚健,曾昭发,and李.芳.高密度电阻率法测量多排列数据拼接及误差校正方法研究.物探化探计算技术,2007.29(3):p.209-212.
    [77]董浩斌and王传雷.分布式智能化高密度电法测量系统地学仪器,1997.4:p.26-27.
    [78]管奕.高密度电阻率法测试系统的研究.吉林地质,1995.14(4):p.79-83.
    [79]朱栋华,et al.基于80C552的高密度电阻率法测量系统设计.沈阳建筑工程学院学报(自 然科学版),2003.19(3):P.232-235.
    [80]ATMEL.AT89 ISP.programmer cable.cited;Available from:www.atmel.com
    [81]Imeson,A.C.,et al.The erosional response of calcareous soils along a climatological gradient in Southeast Spain.Geomorphology,1998.24(1):p.3-16.
    [82]Anderson,R.性能最大化Δ∑转换器(TI).2006.cited;Available from:www.ti.com
    [83]庞世甫,et al.∑-Δ调制器的六阶噪声整形算法.电子与封装,2007.7(2):P.23-26.
    [84]张亮and高光天,∑-Δ模数转换器基本原理及应用(1).电子技术应用,1997.23(2):P.57-59.
    [85]易婷.高性能∑-Δ模数转换器设计:[博士学位论文].上海:复旦大学.2002.
    [86]张亮and高光天.∑-Δ模数转换器基本原理及应用(2).电子技术应用,1997.23(3):P.50-52.
    [87]Kitchin,C.and L.Counts.A designer's guide to instrument amplifiers.2005,cited;Available from:www.analog.com.
    [88]ADI.Single Supply,Rail-to-Rail,Low Cost Instrumentation Amplifier.1999.cited;Available from:www.analog.com
    [89]Miller,P.and D.Moore..精密电压基准.2006.cited;Available fiom:www.analog.com
    [90].M.Fukue,et al.,Use of a resistivity cone for detecting contaminated soil layers.Engineering Geology,2001.60:p.361-369.
    [91]刘维.精通matlab与C/C++混合程序设计2008,北京:北京航空航天大学出版社.
    [92]美信公司.谈谈ADC误差对系统性能的影响.电子质量,2002.8:P.29-33.
    [93]杨振吉.电压基准.电子测量技术,2003(3):P.6-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700