用户名: 密码: 验证码:
中国斑腿蝗科部分种类分子系统学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
斑腿蝗科(Catantopidae)隶属于直翅目蝗亚目蝗总科(Orthoptera:Caelifera:Acridoidea),是蝗总科中最大的科。我国已知16亚科93属,分布于东洋区的居多,古北区种类较少。其中中华稻蝗、日本黄脊蝗、棉蝗、短星翅蝗等种类为农业生产上的重要害虫,对它们的系统分类学研究不仅具有理论意义,同时在蝗虫防治的农业生产实践中也具有较为重要的应用价值。近些年来从形态学,细胞学等方面对斑腿蝗科系统学研究具有一些报道,但目前国内外对斑腿蝗科昆虫较为全面的分子系统学研究还非常少。本研究以线粒体基因16SrDNA、Cytb及核基因28SrDNA为分子标记,对斑腿蝗科部分种类的系统发育关系进行了重建,为斑腿蝗科的系统学研究提供分子证据。
     本研究采用PCR产物直接测序法测定了9亚科30种斑腿蝗及1种癞蝗(外群)的线粒体Cytb(708bp)(只有其中的27种)、16SrDNA(522bp左右)以及核基因28SrDNA(512bp左右)的部分片段,对三个基因序列片段的组成成分、替换饱和性、分类单元间碱基组成的偏向性以及系统发育信号进行了检验。对三个基因片段之间的相合性进行了分析。采用MP、NJ、ML和BI分别对Cytb、16SrDNA、28SrDNA及三基因片段组成的联合数据集进行建树并比较得出以下结论:
     1.30种斑腿蝗科昆虫线粒体基因Cytb及16SrDNA具有昆虫线粒体所具有的高A+T含量,二基因片段分别为72.9%与68.7%;而核基因28SrDNA只有36%。替换饱和性分析结果表明16SrDNA的环区及Cytb的第三位点存在部分饱和现象。Cytb第三位点在各分类单元间存在碱基组成偏向性。PTP及树长分布检测表明,三数据组及子集、联合数据集都具有较强的系统发育信号,同时发现各数据集子集的gl值具有叠加性。联合数据集的gl也表现为各数据集之间的叠加结果,但其gl值却小于Cytb的gl值,分析认为这一现象是由于数据集之间的部分冲突所致。
     2.ILD检验结果表明16SrDNA环区与Cytb第三位点间具有显著的不相合性,相关系数检验得出相反的结论,分析认为二者之间存在潜在的相合性,不相合原因是二者所含有的进化噪音引起的,故认为可以进行联合分析。
     3.采用四种方法对三数据集及联合数集分别构建MP、NJ、ML、BI树,比较三数据集与联合数据集所建树,三数据集四种方法所建树与联合树都存在一定的差异,但都支持大多数的分支关系。
Catantopidae is the biggest family in Acridoidea (Orthptera: Caelifera). It includes 16 subfamilies, 93 genera in China, mostly distributed in Oriental realm, others in Paleoarctic realm. In this family, there are some important pests in agriculture, such as Oxya chinensis, Patanga japonica, Chondracris rosea rosea, Calliptamus abbreviatus. The systematics study of them has not only theoretical but also practical applications in grasshopper control and plant protection. Recently, some cytological, morphological systematic research works on Catantopidae have been reported. However, the molecular systematic research on Catantopidae insects is still very limited. In this study, we adopted 2 mitochondrial genes (16S and Cyt b) and nuclear gene 28S rDNA sequence as molecular markers, and reconstructed the phylogenetic relationships of 30 species of Catantopidae insects which belong to 9 subfamilies, hence providing molecular evidence for the systematic study for Catantopidae.Partial sequences of Cyt b, 16S rDNA and 28S rDNA of 30 species Catantopidae grasshoppers representing 9 subfamily and 1 outgroup species (belong to Pamphagidae) have been sequenced. The base composition, substitution saturation, base composition bias among taxa, phylogenetic signal have been tested. Incongruence between different data sets and their subdata sets has been analyzed. Reconstruction of phylogeny based on Cyt b, 16S rDNA , 28S rDNA and their combined data set using MP, NJ, ML and BI and with comparison of the trees inferred from four method draw conclusion as follows.1. It is found that there are high ratio of A+T in both of Cyt b and 16S rDNA in 30 species of Catantopidae, with 72.9% and 68.7% respectively, whereas content of A+T in 28S rDNA is only 36%. Substitution saturation analysis indicates that saturation occur in loop of 16S rDNA and the 3rd code position of Cyt b, and base bias on the 3rd position of Cyt b among taxa. Strong phylogenetic signal exist in 3 subdata sets and combined data set by PTP and g1 testing. It is found that there are additive of g1 in subdata sets. So does gl of the combined data set, with value less than that of Cyt b. The phenomenon may be caused by conflict among the subdata sets.2. ILD test shows significant incongruence between loop of 16S rDNA and the 3rd position of Cyt b, the correlative co-efficiency draw the reversal conclusion. Further analyses suggest that there is potential congruence between 16S rDNA and Cyt b,
    incongruence caused by evolutionary noise. Thus, both of them can be used for combined analysis.3. MPT, NJT, MLT and BIT were constructed based on 3 data sets and combined data set. Comparing these trees, there are some difference between trees from each other, and that of combined data set.4. The combined unweighted tree was tested by PBS test. The branch supports for combined trees are 73.9% for 16S rDNA, 82.6% for 28S rDNA, and 86.9% for Cyt b respectively. The value of PBS is much higher than the support value of topology. The low of support value of the topology is caused by substitution saturation, base composition bias, compensating substitution.5. The MPT obtained form down weighted on the 3rd positions of Cyt b, loop and stem regions of 16S rDNA with 0 or 0.5 value, compared with unweihted MPT show that the noise of these subdata sets does not affect the topology of combined tree, and suggest combined trees is more robust.6. Based on combined data set, MP, NJ, ML and BI method were separately used to reconstruct the phylogenetic relationships of the 26 Catantopidae insects, and KH test based on likelihood method was used to compare the tree topologies produced by different methods. The result of KH test indicates that all trees based on combined data set have no significant difference in topologies, and each of them can be reasonable in the explanation of phylogenetic relationships among taxa. Based on the trees constructed from 4 methods, we can conclude:(1) The relationship of 9 subfamilies can be described as: ((Melanoplinae, Podisminae,)(((Caryandinae,Oxyinae),Coptocrinae,((CallipIaminae,Eyprepocnemidina), Cyrtacanthacridinae)), Catantopinae)).(2) Eyprepocnemidinae is a paraphyletic group and Podisminae is a polyphyletic group. We proposed to merge them into one subfamily.(3) Sinopodisma isn't a monophyletic group, and need further studies with more data.(4) Oxyinae is allied to Caryandinae and both subfamilies need to clarify whether they are monophyletic respectively.(5) The monophyly of Coptocrinae is not supported and Traualia should be moved out of Coptocrinae.(6) Traualia and Catantops form a clade. It is uncertain that these genera should be
引文
[1] 马恩波,稻蝗属一新种及其染色体C带核型分析(直翅目:蝗总科)动物分类学报,1995,20(2):201~204
    [2] 马恩波,欧晓红,乔格侠,郑哲民,蝗总科染色体研究及科级综合比较(直翅目),昆虫分类学报,2000,22(1):6~10
    [3] 马恩波,郭亚平,四种斑腿蝗科昆虫染色体带型的比较,昆虫学报,2001,44(3):268~275
    [4] 马恩波,白贵荣,郭亚平,任竹梅,金晓弟,马拉仙,斑腿蝗科精小定形态及其分类学意义探讨,动物学报,2001,47(专刊):30~36
    [5] 王文强,李新江,印象初,中国蹦蝗分类研究(直翅目;蝗总科:斑腿蝗科),河北大学学报(自然科学版) 2004,24(1):99~106
    [6] 叶海燕,中国斑翅蝗科部分种类线粒体Cytb基因的分子进化与系统学研究,2003,硕士论文
    [7] 叶维萍,中国斑翅蝗科部分种类线粒体12SrRNA基因的分子进化与系统学研究,2004,硕士论文
    [8] 叶星,白俊杰,劳海华,简清,罗建仁,草鱼线凿体细胞色素b基因的克隆与序列分析,中国水产科学,2002,9(3):194~198
    [9] 方李宏,薛俊增,董双林,甲壳动物线粒体DNA的研究海洋湖沼通报,2004,2:59~66
    [10] 印象初,中国蝗总科(Acridoidea)分类系统的研究 高原生物学集刊,1982,1:69~99
    [11] 印象初 刘志伟,中国斑腿蝗科一新亚科及一新属新种记述(直翅目:蝗总科),动物分类学报,1987,12(1):66~72
    [12] 印象初,北美洲(包括大安的列斯和夏威夷群岛)镌瓣亚目Caelifera(蝗亚目Acridodea)的分类(直翅目Orthoptera),高原生物学集刊,1990,9:35~61
    [13] 印红,张道川,绋智丽 印展,刘勇,印象初,蝗总科部分种类16SrDNA的分子系统发育关系,遗传学报,2003,30(8):766~772
    [14] 孔晓瑜,刘亚军,喻子牛,庄志猛,武云飞,牙鲆、石鲽和川鲽的线粒体16SrRNA基因片段的序列比较研究,青岛海洋大学学报,2001,31(5):713~717
    [15] 孔晓瑜,姜艳艳,相建海,喻子牛,刘亚军,魁蚶线粒体16SrRNA和COI基因片段序列测定及其应用前景,海洋科学,2001,25(12):46~49
    [16] 孔庆鹏,罗静,黄顺友,向余劲攻,张亚平,从线粒体细胞色素b探讨长臀鲃属三个种分类与进化的关系,遗传,2000,22(6):379~384
    [17] 仓决卓玛,饶刚,吉靳刚,索腊次仁,万秋红,方盛国,藏马鸡分类地位 和马鸡属系统进化问题的探讨,动物分类学报,2003,28(2):173~179
    [18] 冯丽霞,孙继英,傅鹏,腹露蝗属雄性外生殖器的比较研究(直翅目:蝗总科),湖南师范大学自然科学学报,2004,27(2):25~31
    [19] 孙钦霞,张雅林,七种蝽mtDNA-16SrRNA基因序列多态性的研究 昆虫分类学报 2004 26(2):107~114
    [20] 孙红英,周开亚,杨小军,从线粒体16SrDNA序列探讨绒螯蟹类的系统发生关系 动物学报,2003,49(5):592~599
    [21] 孙红英,周开亚,景开颜,汪芳 从线粒体16SrDNA部分序列探讨厚蟹属的系统学位置 南京师大学报(自然科学版),2002,25(1):33~37
    [22] 李爱玲,徐安英,沈兴家,唐顺明,张志芳,潘沈元,家蚕、野桑蚕线粒体Cytb基因片段序列分析及分子b进化研究,蚕业科学,2004,31(1)80~84
    [23] 李庆伟,田春宇,李爽,鹰科四种鸟类线粒体DNA的差异和分子进化关系的研究,遗传,2001,23(6):529~534
    [24] 李伟,张雁云,基于线粒体细胞色素b基因序列探讨红喉姬鹟两亚种的分类地位,动物学研究,2004,25(2):127~131
    [25] 李明,盛和林,玉手英利,增田隆一,永田纯子,麝、獐、麂和鹿间线粒体DNA的差异及其系统进化研究,兽类学报,1998,18(3):184~191
    [26] 李悦,吴敏,王秀玲,小鲵科线粒体16SrRNA基因序列分析及其系统发育,动物学报,2004,50(3):464~469
    [27] 龙滢 凯里地区短角外斑腿蝗核型分析初探,黔东南民话师专学报 1996,13(1):26~28
    [28] 宋社吾 赵彤言 董言德 蒋书楠 陆宝磷 几种蚊虫线粒体DNA-16SrRNA序列及其相互关系的研究 动物分类学报 2002,4(27):665~672
    [29] 许升全,郑哲民,蝗总科昆虫雌性下生殖板及系统发育关系研究(直翅目),昆虫分类学报,199921(2):79~83
    [30] 许升全,郑哲发,李后魂,中国南部斑腿蝗科四属昆虫的支序生物地理学研究,动物学研究,2003,24(2):99~105
    [31] 任竹梅,马恩波,郭亚平,蝗总科部分种类Cytb基因序列有系统进化研究,遗传学报,2002,29(4):314~321
    [32] 任竹梅,马恩波,郭亚平,山稻蝗及相关物种Cytb基因序列及其遗传关系,遗传学报,2002,29(6):507~513
    [33] 任竹梅,马恩波,郭亚平,不同区域日本稻蝗Cytb基因序列及相互关系,山西大学学报(自然科学版),2002,25(3):244~248
    [34] 任竹梅,马恩波,郭亚平,不同地域小稻蝗mtDNA部分序列及其相互关系,昆虫学报,2003,46(1):51~57
    [35] 刘珊,杨光,周开亚,RicardoBastida,LauraRivero,淡水豚类mtDNA16SrRNA基因的系统发生,南京师大学报(自然科学版),2000,23(3):74~79
    [36] 刘亚军,喻子牛,姜艳艳,张留所,孔晓瑜,宋林生,栉孔扇贝16SrRNA基因片段序列的多态性研究,海洋与湖沼,2002,33(5):477~483
    [37] 刘树俊,程光潮,DNA指纹技术的应用有局限性,生物式程进展,1992,12(5):13~17
    [38] 江世贵,刘红艳,苏天凤,龚世园,4种鲷科鱼类的线粒体细胞色素b基因序列及分子系统学分析,中国水产科学,2003,10(3):184~188
    [39] 江建平,袁富蓉,谢锋,郑中华,基于线粒体12S和16SrRNA基因部分序列的角蟾亚科部分属种的系统发育关系,动物学研究,2003,24(4):241~248
    [40] 何舜平,刘焕章,陈宜瑜,Masayuki Kuwahara,Tsuneo Nakajima,钟扬,基于细胞色素b基因序列的鲤科鱼类系统发育研究(鱼纲:鲤形目),中国科学C辑生命科学,2004,34(1):96~104
    [41] 吕雪梅,伍应祥,张亚平,蜂猴线粒体细胞色素b基因变民特点及系统发育分析,动物学研究,2001,22(2):93~98
    [42] 庆宁,林岳光,墨吉对虾penaeus merguiensis线粒体16SrDNA基因序列分析,华南师范大学学报(自然科学版),2002,3:63~69
    [43] 杨光,周开亚,淡水豚分子系统发生的研究,兽类学报,1999,19(1):1~9
    [44] 杨学干,王义权,周开亚,刘中权,从细胞色素b基因序列探讨我国林蛙属动物的系统发生关系,动物学研究,2001,22(5):345~350
    [45] 陈晓芳,王翔,袁晓东,汤敏谦,李玉祥,郭玉梅,李庆伟,鸻形目12种鸟类线粒体细胞色素b基因序列差异及其系统发育关系,遗传学报,2003,30(5):419~424
    [46] 陈永久,张亚平,沈发荣,张云武,杨大荣,聂龙,杨跃雄,中国5种珍稀绢蝶非损伤性取样的mtDNA序列及系统进化,遗传学报,1999,26(3):203~207
    [47] 张亚平,长臂猿的DNA序列进化及其系统发育研究,遗传学报,1997,24(3):231~237
    [48] 张亚平,金丝猴属的DNA序列变异及进化与保护遗传学研究,遗传学报,1997,24(2):116~121
    [49] 张亮 黄艳艳 刘焕章,利用mtDNA16SrRNA序列差异鉴定江西青岚湖的河蚌物种,水生生物学报,2004,28(3):294~298
    [50] 张建珍,马恩波,郭亚平,稻蝗属部分种类RAPD及其分子系统学关系,遗传学报,2003,30(6):533~539
    [51] 邵志勇,茅红新,符文俊,张亚平,细胞色素b基因序列与11种熊蜂的系统进化,动物学研究,2002,23(5):361~366
    [52] 吴孝兵,王义权,同开亚,朱伟铨,聂继山,王朝林,扬子鳄的线粒体全基因组与鳄类系统发生,科学通报,2003,48(18):1954~1959
    [53] 邱高峰,常林瑞,徐巧婷,方雄英,楼允东,中国对虾16SrRNA基因序列多态性的研究,动物学研究,2000,21(1):35~40
    [54] 郑哲民,蝗虫分类学,陕西师范大学出版社,1994 1~442
    [55] 郑哲民,汪桂玲,黄原,斑腿蝗科11种蝗虫PAPD带型的变异,动物学报,2001,47(4):367~370
    [56] 郑哲民,乔格侠,中国蝗总科昆虫科间系统发育关系支序分析(直翅目:蜱亚目),动物分类学报,1998,23(3):276~280
    [57] 周材权,周开亚,胡锦矗,从线粒体细胞色素b基因探讨矮岩羊物种地位的有效性,动物学报,2003,49(5):578~584
    [58] 周继亮,张亚平,黄美华陈永久,陈小青,姚耿东,蝮亚科蛇线粒体细胞色素b基因序列分析及其系统发育,动物学报,2001,47(4):361~266
    [59] 周发林,江世贵,苏天凤,吕俊霖,6种笛鲷属鱼类线粒体16SrRNA基因片段的序列比较,中国水产科学,2004,11(2):99~104
    [60] 周江,姚世鸿,王景佑,短角外斑腿蝗核型和C-带的研究,贵州师范大学学报(自然科学版),1997,15(2):33~36
    [61] 施燕峰,单祥年,李健,张海军,郑爱玲,基于线粒体基因组探讨鲸偶蹄类七种动物的系统发育关系,动物学研究,2003,24(5):331~336
    [62] 姚世鸿,王景佑,周江,贵阳地区蝗虫的染色体研究,贵州师范大学学报(自然科学版),1997,15(1):35~38
    [63] 姚世鸿,王景佑 谷晓民,王定平,张培文,贵州两种黄脊蝗核型和C~带的比较研究,昆虫学报,1995,38(3):312~317
    [64] 姚世鸿,吴昌谋,三科五属18种蝗虫的核型似近系数聚类分析研究,贵州师范大学不报(自然科学版) 2004,22(3):19~24
    [65] 郭宪光,张耀光,何舜平,中国石爬属鱼类的形态变异及物种有效性研究,水生生物学报,2004,28(3):260~269
    [66] 席碧侠,郑哲民,四种蝗虫前肠形态的比较研究(直翅目:斑腿蝗科),动物分类学报,1999,24(4):380~383
    [67] 席碧侠,郑哲民,蝗虫前肠形太及其在分类学上的意义,昆虫分类学报,1998,20(4):239~344
    [68] 奚耕思,郑哲民,斑腿蝗科三个种类精子的比较研究(直翅目:蝗总科),昆虫分类学报,1996,18(1):17~22
    [69] 奚耕思,郑哲民,蝗总科精子超微形态比较有其在系统分类上的意义(直翅目),昆虫分类学报,1997,19(1):1~9
    [70] 高天翔,张秀梅,渡边精一,中华绒螯蟹与日本绒螯蟹线粒体DNA12SrDNA序列的比较,水产学报,2000,24(5):413~416
    [71] 黄原,分子系统学——原理方法及应用,北京:中国农业出版社,1998
    [72] 黄春梅,成新跃,我国及令了近地区斑腿蝗科区系及其起源研究,昆虫学报,1999,42(2):184~198
    [73] 黄艳艳,欧阳珊,吴小平,刘焕章,中国蚌科线粒体16SrRNA序列变异及系统发育,水生生物学报,2003,27(3):258~264
    [74] 鲁亮,吴厚永,基于16SrDNA序列的新蚤属二齿新蚤种团部分种类的分子系统发育关系,昆虫学报,2001,44(4):548-555
    [75] 曹祥荣,束峰珏,张锡然,毕春明,李朝军,胡均,毛冠鹿与3种麂属动物的线粒体细胞色素b的系统进化分析,动物学报,2002,48(1):44~49
    [76] 曹丽荣,王小明,方盛国,从细胞色素b基因全序列差异分析岩羊和矮岩羊的系统进化关系,动物学报,2003,49(2):198-204
    [77] 曾维铭,蒋国芳,张大羽,洪芳,用12SrRNA基因序列研究斑腿蝗科二属六种的进化关系,昆虫学报,2004,47(2):248-252
    [78] 童金苟,吴清江,三个鲤品种线粒体基因片段序列保守性,水生生物学报,2001,25(1):54-61
    [79] 詹祥江,张正旺,吴爱平,陶玉静,基于线凿体细胞色素b基因序列的虹雉属鸟类的系统发育关系,动物学研究,2003,24(5):337~342
    [80] 以线粒体DNA细胞色素b基因的全序列作为遗传标记,探讨红喉姬鹟普通亚种和指名亚种的分类地位。
    [81] 蒙世杰,王静,刘佩,宿兵,张亚平,羚牛细胞色素b基因序列分析和系统进化研究,西北大学学报(自然科学版),2001,31(4)347~352
    [82] 蒙子宁,庄志猛,金显仕,唐启升,苏永全,黄海带鱼、小带鱼RAPD和线粒体16SrRNA基因序列列变异分析,自然科学进展,2003,13(11):1170-1177
    [83] 蒙子宁,庄志猛,丁少雄,金显仕,苏永全,唐启升,中国近海8种石首鱼类的线粒体16SrRNA基因序列变异及其分子系统进化,自然科学进展,2004,14(5):514-521
    [84] 蒋国芳,陆敢,中国蔗蝗属三种之间亲缘关系的RAPD分析,昆虫分类学报,2003,25(2):85~90
    [85] Anthony I. Cognato AND Alfried P. Vogler, Exploring Data Interaction and Nucleotide Alignment in a Multiple Gene Analysis of Ips (Coleoptera: Scolytinae), Systemtic Biology, 2001, 50 (6): 758-780
    [86] Alfried P. Vogler, and David L. Pearson, Amolecular phylogeny of the Tiger Beetles (Cicindelidae): congruence of mitochondrial and nuclear rDNAdata sets, Molecular phylogenetics and Evolution 1996, 6 (3): 321-338
    [87] Avisn J. C, Intraspecific phyogeograpyy: the mitochondrial DNA Bridge between Population genetics and systematcs., Annu. Rev. Ecol. Syst. 1987,18:489-522
    [88] Babcock C. S., Heraty J. M., De Barro P. J., Driver F., and Schmidt S., Preliminary Phylogeny of Encarsia Forster (Hymenoptera: Aphelinidae) based on morphology and 28S rDNA, Mol. Phyl. Evol., 2001 18(2): 3006-323
    [89] Benolt D., Annie T. Guillaume L.Simon T.,New clades of Euthyneura Gastropods (Mollusca) from 28S rRNA Sequences 2001, Mol. Phyl. Evol., 2001. 19 (2): 225-235
    [90] Bensasson D., Zhang DX., Hewitt GM., Frequent assimilation of mitochondrial DNA by grasshopper nuclear genome, Mol. Biol. Evol., 2000,17: 406-415
    [91] Brown W. M., Evolution of anima mtDNA, In: Nei, M., and doehn, R. K. Evolution of Gene and Proteins, Sinauer, Sunderland, 1983, 62-68
    [92] Brown J. M., Pellmyr O., Thomspon J. N., Mitochondrial DNA phylogeny of the prodoxidae (Lepidotera: Incurvariodea) indicates rapid ecological diversification of yucca moths, Ann. Entomol. Soc. 1994, 8(6):795-802
    [93] Bull J.J., Huelsenbeck J.P., Cunningham C. W., Swofford,D. L., Waddell, P.J., Partitioning and combining data in phylogenetic analysis, Syst. Biol. 1993, 42:384-397
    [94] Carole Borchiellini, Catherine Chombard, Michael Manuel, Eliane Alivon, Jean Vacelet, and Nicole boury-Esnault, Molecular phylogeny of Demospongiae: implications for classification and scenarios of character evolution, Mol. Phyl. Evol. 2004, 32:823-837
    [95] Chapco W., Martel RKB., Kuperus WR., Molecular phylogeny of north Acerican band-winged grasshoppers (Orthoptera: Acrididae), Anna.Entomo. Soc. Am., 1997, 90(5):555-562
    [96] Chapco W, Molecular Evolutionary Genetics in Orthopteroid Insects,Molecular Evolutionary Genetics in Orthopteroid Insects,337-354
    [97] Chapco W., Duperus W. R., Litzenberger G, Molecular phylogeny of Melanopline Grasshoppers (Orthoptera: Acridedae): The Genus Melanopls, Annals of the Entomological Society of America, 1999, 92(5):617-623
    [98] Chopard L. Recherches sur la conformation et la dveloppimert des derniers sege8es abbominaux des orthopteres, The Facult ? des Scineces de Paris, Oberth, Kennes. 1920, 352pp
    [99] Chippindale P. T., and Wiens J. J., 1994, Weighting, partitioning, and combing characters in phylogenetic analysis Syst. Biol. 1994 , 43:278-287.
    [100] Clifford W. Cunningham, Is Congruence Between Data Partitions a Reliable Predictor of Phylogenetic Accuracy? Empirically Testing an Iterative Procedure for Choosing Among PhylogeneticMethods, Systematic Biology, 1997, 46 (3): 464-478
    [101] Crozier R.H., Crozier Y. C, The mitochondrial genome of the honeybee Apis mellifera: Complete sequence and genome organization,Genetics, 1993,97-117
    [102] Christoph H., Phylogeny and biogeography of Serolid Isopods (Crustacea,Isopoda, Serolidae) and The use of ribosomal expansion segments in molecular systematics, Molecular Phylogenetics and Evolution, 2000, 15(2): 165-178
    [103] Chung-Ping Lin and Bryan N. Danforth,How do insect nuclear and mitochondrial gene Substitution patterns differ ? Insights from Bayesian analyses of combined datasets, Molecular Phylogenetics and Evolution, 2004, 30: 686-702
    [104] Danforth B. N., and Ji S., Elongation factor-la occurs as two copies in bees: Implications for phylogenetic analysis of EF-la sequences in insects. Mol. Biol. Evol. 1998,15:225-235
    [105] David M. Hillis , Michael T. Dixon, Ribosomal DNA: molecular evolution and phylogenetec inference, The Quarterly Review of Biology, 1991, 66 (4):411-453
    [106] David Posada and Keitha. Crandall, Selecting the Best-Fit Model of Nucleotide Substitution, Systematic Biology,2001,50 (4): 580-601
    [107] de Queiroz A., Donoghue M. J., and Kim J., Separate versus combined analysis of phylogenetic evidence. Annu. Rev. Ecol; Syst. 1995 26S:657-681.
    [108] de Queiroz A., For consensus, Syst. Bilo. 1993, 42: 368-372
    [109] Diethard Tautz, John M.Hancock, DavidA. Webb, Christiane Tautz,and Gabriel A.Dover, Complete Sequences of the rRNA Genes of Drosophila melanogaster, Molecular Biology and Evolution, 1988, 5 (4): 366-376
    [110] Dietrich C. H., Rakitov R. A., Holmes J. L.,and Black W. C, Phylogeny of the Major Lineages of Membracoidea (Insecta: Hemiptera: Cicadomorpha) Based on 28S rDNA Sequences, Molecular Phylogenetics and Evolution,2001, 18 (2):293-305
    [111] Dirsh V. M., The phallic complex in Acridoidea (ORthoptera) in relationship to taxonomy, Trans. Royal Entomol. Soc. Lodon. 1956, 108:223-356
    [112] Dirsh V. M., Classification of the Acridomorphoed insects 1975, 170pp: E. W. Classey LTD. Farindon, Oxon London
    [113] Dixon MT. and Hillis DM., Ribosomal RNA secondary structure, compensatory mutations and implication for phylogenetic analysis, Mol. Biol. Evol., 1993, 10(1), 256-267.
    [114] Dmitrv Mukha, Brian M. Wiegmann, Coby Shal, Evolution and phylogenetic information content of the ribosomal DNA repeat unit in the Blattodea (Insecta ), Insect Biochemistry and MOLecular Biology 2002, 32: 951-960
    [115] Dowlong T. E., Arnheim N., Treco D., Taylor B., and Eicher E., Distribution of ribosomal gene length variants among mouse chromosomes, Proc. Natl. Acad. Sci. USA, 1982m79:4677-468
    [116] Dowton M., and Austin A. D., Phylogenetic relationships among the Microgasroid wasps (Hymenoptera: Braconidae): combined analysis of 16S and 28S rDNA genes and morphological data, Mol. Phyl. Evol. 1998, 10(3): 354-366
    [117] Farris, J. S., Kallersjo, M., Kluge, A. G., Bult, C, Constructing a significance test for incongruence. Syst. Biol. 1995, 44: 570-572
    [118] Flook P. K., Rowell C. H. F., Gellissen G, The Sequence, Organization,and Evolution of the Locusta migratoria Mitochondrial Genome,Journal of Molecular Evolution, 1995,41:928-941
    [119] Flook P. K., Rowell C. H. F., The effectiveness of Mitochondrial rDNA gene seqnces for the recondtruction of the phylogeny of an insect order(Orthoptera), Mol. PHY. Evol. 1997, 8(2): 177-192
    [120] Flook P. K., Klee S., AND Rowell C. H. F., Combined Molecular Phylogenetic Analysis of the Orthoptera (Arthropoda,Insecta) and Implications for Their Higher Systematics, Systematic Biology, 1999,48(2):233-253
    [121] Gonzalo Giribet, and Carles Ribera, A review of arthropod phylogeny: New data based on ribosomal DNA sequences and direct character optimization, Cladistics 2000, 16:204-231
    [122] Gonzalo giribet, Gregory D. Edgecombe, Ward C. Wheeler, and Courtney Babbitt, Phylogeny and systematic position of Opiliones: A combined analysis of Chelicerate relationships using morphological and molecular data , Cladistics, 2002,18:5-70
    [123] Graur D., Li W. H., Fundamentals of molecuar Evolution, Sinauer Associates, Sunderland, 2000, MA
    [124] Gorochov A. B., Contribution to the systematics and evolution of the order Orthoptera Zool. Journal, 1995, 74:39-45
    [125] Groves P., Shields G, Phylogenetics of the Caprenae based on cytochrome b sequence, Mol. PHY1. Evol. 1996, 5: 467-476
    [126] Harz K. Die orthopteran Euopas, 1975,VoI. II p211-409 Dr. W Junk the Hague
    [127] Hassanin A., Lecointre G, Tillier, S., The 'evolutionary signal' of homoplasy in protein -coding gene sequences and its consequences for a priori weighting in phylogeny. C. R. Acak. Sci. Paris, Sciences de la vie 1998, 321, 611-620.
    [128] Hennig , W., Insect Phylogeny, Chchester: John Wiley and Sons. 1981,
    [129] Hillis D. M., and Dixon M. T., Ribosomal DNA: molecular evolution and Phylogenetic inference. Q. Rev. Biol. 1991, 66: 411-453
    [130] Hovemann B., Richter S., Walldorf U., and Cziepluch C. Two genes encode related cytoplasmic elaongation factors 1 alpha (EF-1 alpha) in Drosophila melanogaster with continuous and stage specific expression. Nucleic Acids Res. 1998,16:3175-3194
    [131] Ignacio Ribera, Anders N. Nilsson, and Alfried P. Vogler, Phylogeny and historica biogeography of Agabinae diving beetles (Coleoptera) inferred from mitochondrial DNA sequences, Molecular Phlogenetics and Evolution,2004, 30 :545-562
    [132] Irwin D. M., Dcher t. D., Wilson A. C, Evolutio of the cytochrome b gene of mammals. J. Mol. Evol. 1991, 32:128-144.
    [133] Jackie N. Doda, Catrarine T. Wright, David A. Clayton Proc. Natl. Acad. Sci. USA, 1981, 79 (10): 6116-6120
    [134] James S. Miller, Andrew V. Z. Brower and Rob Desalle, Phylogeny of the neotropical moth tribe Josiini (Notodontidae: Dioptinae): comparing and combining evidence from DNA sequences and morphology, Biological Journal of the Linnean Society, 1997, 60:297-316
    [135] James Remsen and Patrick O'Grady, Phylogeny of Drosophilinae (Diptera: Drosophilidae), with comments on combined analysis and character support, Molecular Phylogenetics and Evolution,2002,24:249-264
    [136] Jamie R. S., the evolution of myiasis in blowflies (Calliphoridae) International Journal for Parasitology ,2003, 33:1105-111
    [137] Jaroslaw Krzywinski, Richard C. Wikerson, and Nora J. Besansky, Evolution of mitochondrial and ribosomal gene sequences in Anophelinae (Diptera: Culicidae): Implications for phylogeny reconstruction, Mol. PHyl. Evol., 2001, 18 (3): 479-487
    [138] Jason R. Cryan, James K. Liebherr, James W. Fetzner, Jr., and Cichael F. Whiting, Evalutation of relationships within the endemic Hawaiian platynini (Coleoptera: Carabidae) based on molecular and morphological evidence, Mol. Phyl. Evol., 2001, 21(1): 72-85
    [139] Jean-Yves Rasplus, Carole Kerdelhue, Isabelle Le Clainche, Guenaelle Mondor, Molecular phylogeny of fig wasps Agaonidae are not Monophyletic, Life Sciences 1998, 321:517-527
    [140] Jeffrey L. Boore, Animal mitochondrial genomes, Nucleic Acids Research, 1999,27(8): 1767-1780
    [141] Jonathon H. Stillman and Carol A. reeb, Molecular phylogeny of eastern pacific rorcelain crabs, genera Petrolisthes and Pachycheles, and systematic implications, Molecular Phylogenetecs and Evolution , 2001,19 (2): 236-245
    [142] Johan A. A. Nylander, Fredrik Ronquist, Jonh P. Huelsenbeck, AND Jose Luis Nieves-Alerey, Bayesian Phylogenetic Analysis of Combined Data, Systematic Biology, 2001,53(1):47-67
    [143] Jose Pestano, Richard P. Brown, Nicolas M. Suarez. And Marcos Baez, Diversification of sympatric Sapromyza (Diptera: Lauxaniidae) from Madeira: six morphological species but only four mtDNA lineages, Molecular Phylogenetics and Evolution 2003,27:422-428
    [144] Karen A. Ober, Phylogenetic relationships of the carabid subfamily Harpalinae (Coleoptera) based on molecular sequence data, Mol. Phyl. Evol., 2002, (24): 228-248
    [145] Karl Zehethofer and Christian Sturmbauer, Phylogenetic relationships of central European wolf spiders (Araneae: lycosidae) inferred from 12S ribosomal DNA sequences, Molecular Phylogenetics and Evolution, 1998, 10(3):391-398
    [146] Kevin P. Johnson and Michael F. Whiting, Multiple Genes and the Monophyly of Ischnocera (Insecta: Phthiraptera), Molecular Phylogentics and Evolution, 2002, 22(1): 101-110
    [147] Kristensen N. P., Phylogeny of extant hexapods. In: the Insects of Australia (edited by CSIRO). Melbourne: Milbourne university Press 1991
    [148] Kukalova-peck,Fossil history and the evolution of Hexapod structures. In "the insects of Australia, second edition" (Naumann I. D., Ed.), 1991, 1: 141-179
    [149] Lanyon, S. M. The stochastic mode of molecular evolution: What consequences for systematic investigations? Auk 1988, 105: 565-573.
    [150] Nobumttsu Suno-Uchi, Fumiyo Sasaki and Satoshi Chiba, Masakado kawata, Morphological stasis and phylogenetic relationships in Tadpole shrimps, Triops (Crustacea: Notostraca), Biological Journal of the Linnean Society, 1997, 61: 439-457
    [151] Maddison W. P., Gene trees in species trees. Syst. Biol. 1997, 46: 523-536
    [152] Mallatt J. M., James R. G, and Jeffrey W. S., Ecdysozoan phylogeny and Bayesian inference: first uSe of nearly Complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin 2004 Mol. Phyl. Evol.,31:178-191
    [153] Marshal C. Hedin and Wayne P. Maddison, A Combined Molecular Approach to Phylogeny of the Jumping Spider Subfamily Dendryphantinae (Araneae: Salticidae), Molecular Phylogenetics and Evolution, 2001,18 (3): 386-403
    [154] Martel R. K. B., and Chapco W., Mitochondrial DNA Variation in North American Oedipodinae, Biochemical Genetics, 1995,33 (1/2): 1-11
    [155] Marina Zelwer, Vincent Daubin, Detecting phylogenetic incongruence using BIONJ: an improvement of the ILD test, Molecular Phylogenetics and Evolution 2004, 33:687-693
    [156] Maxmen A. B., Burnett F. K., Edward B. C, and Gonzalo G, Evolutionary relation ships within the protostome phylum Sipuncula: a molecular analysis of ribosomal genes and histone H3 sequence data, Mol. Phyl., Evolution 2003, 27:489-503
    [157] Michelle Y. Mattern, Molecular phylogeny of the Basterosteidae: the importance of using multiple genes, Molecular Phylogenetics and Evolution 2004, 30: 366-377
    [158] Mistsenko L. L., Catantopinae, Fauna USSR Leninggrad 1952, 611pp.
    [159] Mollaret I., Susan Lim L. H., Justine J.-L., Phylogenetic position of the monogeneans Sundanonchus, Thaparocleidus, and Cichlidogyrus inferred from 28S rDNA sequenes International ournal for Parasitology, 2000, 30: 659-662
    [160] Moore W. S., Inferring phylogenies from mtDNA variation: Mitochondrial-gene trees versus nuclear-gene trees . Evolution, 1995, 49:718-726.
    [161] Morrison DA and Ellis JT, Effects of nucleotides sequence alignment on phylogeny estimation: a case study of 18S rDNA of Apicomplexa, Mol. Biol. Evol., 1997, 14 (4): 428-441.
    [162] Mugridge NB, Morrison DA, Jakel T, Heckeroth AR, Tenter AM and Johnson AM, Effects of sequence alignment and structural domains of ribosomal DNA on phylogeny reconstruction for the protozoan - family Sarcocystidae, Mol. Biol.Evol., 2000, 17:1842-1853.
    [163] Orita M., Suzuki T., Hayashi K. Rapid and sensitive detection of point mutation and DNA polymorphisms using the polymerase chain reaction. Genomics, 1989, 5: 874-879
    [164] Pamilo P., and Nei M., Relatonships between gene trees and species trees. Mol. Biol. Evol. 1998, 5: 568-583
    [165] Passamaneck, J. Yale, Christoffer Schander, and Kenneth M. Halanych. Investigation of molluscan Phylogeny using large-subunit and small-subunit nuclear rRNA sequences 2004, 32: 25-38
    [166] Patrick M. O'Grady, Jonathan B. Clark,and Margaret G. Kidwell,Phylogeny of the Drosophila saltans Species Group Based on Combined Analysis of Nuclear and Mitochondrial DNA Sequences, Molecular Phylogenetics and Evolution, 1998,15 (6): 656-664
    [167] Pot J., Peleman J., Kuiper, M., Azbeau, M. , AFLP: a new technique for DNA fingerprinting, NUCLeic Acids Research, 1995, 23 (21): 4407-4414
    [168] Robert Belshaw and Donald L. J. Quicde, A molecular phylgeny of the Aphidiinae (Hymenoptera: Braconidae, Mol. Phyl. Evol., 1997, 7 (3): 281-293
    [169] Robert, K. D. Belshaw, C. David L. Orme and Donald L. J. Quicke,Noise and Incongruence: Interpreting Results of the Incongruence Length Difference Test, Molecular Phylogenetics and Evolution, 2000,17 (3): 401-406
    [170] Robert H. cruickshank, Molecular markers for the phylogenetics of mites and ticks, Systematic & Applied Acarology, 2002,7:3-14
    [171] Robert M. D. Reed , Felix A. H. Sperling, Enteraction of process partitions in phylogenetic analysis : an example from the Swallowtail butterfly Genus papiliw, Mol. Biol. Evol. 1999, 16 (2): 286-297
    [172] Rodrigo Maggioni, Alex D. Roger,, Norman Maclean, and Fernando D. incao, Molecular phylogeny of western Atlantic I Farfantepenaeusi and litopenaeus shrimp based on mitochondrial 16S partial sequences, Molecular Phylogenetics and Evolution, 2001 18 (1): 66-73
    [173] Sanderson M. J., Wojciechowski M. F., Hu J-M., Sher Khan T., Brady S. G, 2000, Error, Bias, and long-branch attraction in data for two chloroplast photosystem genes in seed plants, Mol. Biol. Evol, 2000,17: 782-797
    [174] Seth M. B., Taylor S. D., Nelson C. R., Whiting M. F., A phylogeny of robber flies (Diptera: Asilidae) at the subfamilial level: molecular evidence Mol. Phyl. Evol. 2004,30: 789-797
    [175] Shaon Hossain and Srinivas Kambhampati Phylogeny of Cyptocercus species(Blattodea: Cryptocercidae) inferred from nuclear ribosomal DNA, Mol. Phyl. Evol. 2001, 21 (1): 162-165
    [176] Sharov A. G, Phlogeny of the Orthopteroidea., Trans. Paleontol> Instit. Acad. Sci. 1968,118: 1-216
    [177] Simmons, R. B., Weller, S. J., Utility and evolution of cytochrome oxidase b in insects, Mol. Phlogenet. Evol. 2001, 20: 196-210
    [178] Simon,C, Frati, F., Beckenbach, A., Crespi, B., Liu, H., and Flood, P., Evolution Weighting,and Phylogenetic Utility of Mitochondrial Polymerase ChainReactionPrimers,Ann.Entomol.Soc.Am.l994, 87 (6): 651-701
    [179] Smith AB, RNA sequences data in phylogenetic reconstruction: testing the limits of its resolution. Cladistics, 1989, 5, 321-344.
    [180] Sorenson M. D., and Fleishcer R. C. Cultiple independent transpositions of mitochondrial DNA control region sequences to the nucleus. Proc. Natl Acad. Sci. USA, 1996, 93: 15239-15234
    [181] Sperling F. A. H., Hicker D. A., Mitochodrial DNA sequence variation in the spruce budworm secies complex (Choristoneura: Lepidoptera) Mol. Biol. Evol., 1994,11:656-665
    [182] Springer MS, Hollar LJ and Burk A, Compensatory substitutions and the evolution of mitochondrial 12S rRN Agene in mammals, Mol. Biol. Evol. , 1995, 12(6):1138-1150
    [183] Stanger-Hall, K., Cunningham, C. W., Support for a monophyletic lemuriformes: overcoming incongruence between data partitions. Mol. Biol. Evol. 1998, 15: 1572-1577
    [184] Vogler A. P., Desalle R. Molecular population genetics of the endangered tiger beets, Cicindela dorsalis( Coleoptera: cicindelidae ) Ann Entom. Soc 1993, 86:142-152
    [185] Wheeler WC and Honeycutt RL, Paired sequence difference in ribosomal RNAs: evolutionary and phylogenetic implication, Mol. Biol. Evol., 1988, 5(1), 90-96
    [186] Wheeler WC, Michael Whiting, Quentin D. Wheeler, and James m. Carpenter, The phylogeny of the extant hexapod orders Cladistics 2001, 17: 113-169
    [187] Wiens J. J., Combining Data Sets with Different Phylogenetic Histories, Systemtic Biology, 1998, 47(4): 568-581
    [188] Williams S. T., Reid D. G, and Littlewood D. T. J., Amolecular phylogeny of the littorininae (Gastropoda: Littorinidae): unequal evolutionary rates, morphological parallelism, and biogeography of the Southern Ocean, 2003, Mol, Phyl. Evol. 28: 60-68
    [189] Vaclav Hypsa, David F. Tietz, Jan Zrzavy, Ryan O, M. Rego, Cleber Galvao, and Jose 3 Jurberg, Phylogeny and biogeography of Triatominae (Hemiptera: Reduviidae): molecular evidence of a New World origin of the Asiatic Clade, Molecular Phylogenetics and Evolution 2002, 23: 447-457
    [190] Vos P., Hogers R. M., Bleeker M., Reijians M., Lee T. V. de, Homes M., Frijters A., Rolfs A., Schuller I., Finckh U., Weber-Rolfs I. Detection of single base changes using PCR, in: PCR: Clinical Diagnotics and Research, Speinger-Verlag, berlin, Germany, 1992, 149-167
    [191] Xuhua Xia, Zheng Xie, Marco Salemi, Lu Chen, and Yong Wang, An index of substitution Saturation and its application, Molecular Phylogenetics and Evolution, 2003,26:1-7
    [192] Yuan Huang, Guillermo Orti, Marie Sutherlin, Amy Kuhachek, and Anthony Zera, Phylogenetic relationships of north American field crichets inferred from mitochondrial DNA data, Molecular Phylogenetics and Evolution, 2000, 17 (1): 48-57

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700