用户名: 密码: 验证码:
ZnO薄膜材料及其相关声学器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Study on ZnO Thin Films and Related Acoustic Devices
  • 作者:王艳
  • 论文级别:博士
  • 学科专业名称:声学
  • 学位年度:2012
  • 导师:张淑仪
  • 学科代码:070206
  • 学位授予单位:南京大学
  • 论文提交日期:2012-11-01
摘要
本文主要从事Zn0薄膜材料的制备及其相关声学器件等方面的研究。全文共分为七章,除第一章序言和第七章结论之外,主要包括三部分内容:(1)一维ZnO纳米材料的制备以及Love波氢气传感器的研制和传感测试;(2)(1120)ZnO压电薄膜的制备及HBAR和SAW器件的声学特性研究;(3)基于(1120)Zn0压电薄膜生长于不同衬底结构的SAW器件的理论分析。
     1、ZnO纳米材料的制备及Love波氢气传感器
     ZnO薄膜和纳米材料具有体材料所不具备的优异特性,在紫外激光器、声表面波器件、太阳能电池等诸多领域得到广泛应用。高质量Zn0薄膜及纳米阵列的制备是一个重要的研究课题,也是当前的研究热点。
     对于SAW气体传感器而言,敏感膜是非常重要的部分。一维Zn0纳米材料的表面积随着直径尺寸的下降而急剧扩大,其活性迅速提高,作为气敏材料而言,气体吸附量也迅速增加,因此大大改善了其气敏性能,是气敏材料的良好选择。
     Love波传感器灵敏度高,应用范围广,既可用于气体环境中有毒、有害气体的泄漏检测,也可用于液体环境中水污染,化学、生物物质,甚至病毒、DNA等的检测。Love波传感器体积小、易于集成,适合大批量生产,易于远程监控。近年来Love波传感器的研究也迅速开展。
     论文第二章研究了RF磁控溅射法和水热合成法两步制备一维ZnO纳米材料。利用XRD, SEM和XPS方法,详细表征制备条件对ZnO纳米棒晶体结构、形貌和化学组分的影响。分析表明,利用RF磁控溅射ZnO晶种生长的纳米棒呈现更好的c轴取向。纳米棒端面六角分明,尺寸均匀,垂直于衬底生长。然后以RF磁控溅射法制备晶种,分析了水热合成条件,如前驱液pH值,衬底材料,水热溶质以及杂质离子等因素的不同对ZnO纳米棒的影响,优化得到最佳生长条件。最后分析了ZnO纳米棒的生长机理。
     论文第三章研究利用RF磁控溅射ZnO导波层(晶种)和水热合成ZnO纳米棒敏感层的两步方法,研制ZnO nanorods/36°YX-LiTa03结构的Love波氢气传感器。传感结果显示,室温下,ZnO晶种层1μm, ZnO纳米棒敏感膜2μm, Pt催化剂层7nm时氢气传感效果最佳。利用闭环振荡电路测得Love波氢气传感器在氢气浓度为0.04%,0.08%,0.16%,0.32%,0.76%,1%时传感器的频率偏移分别为8kHz,11.5kHz,14kHz,19.4kHz,26kHz,27.9kHz。该氢气传感器灵敏度高,重复性和稳定性好且反应迅速(30s内)。XPS结果显示ZnO薄膜中存在明显的氧空位缺陷,因此氢气传感机理用氧空位缺陷模型解释。
     2、(1120)ZnO压电薄膜的制备及应用
     随着现代移动通讯行业的迅猛发展,工作频率超过1GHz的SAW器件在高频无线通讯中有着广泛的需求。但是工作频率在2.5GHz以上的SAW器件,叉指电极的宽度将达到光刻技术的极限。因此,为了降低制作工艺的难度,需要通过提高SAW器件相速度的方法得到更高的工作频率,例如沉积ZnO压电薄膜于高相速度的衬底(如蓝宝石)。
     (0002)晶面表面能较低,故ZnO薄膜往往呈现(0002)择优取向生长,(0002)ZnO压电薄膜已得到广泛的研究和应用。ZnO薄膜材料各向异性的声波性质在声波器件中得到充分的应用,如R面蓝宝石衬底上的(1120)ZnO薄膜,该压电薄膜在剪切模式薄膜体声波谐振器(FBAR),高频剪切换能器及水平剪切SAW器件等方面得到广泛的应用。剪切声波波速约为纵波波速的一半,因此获得相同的工作频率,剪切模式FBAR薄膜厚度是纵波FBAR的一半,从而减小器件的尺寸。ZnO压电薄膜(1120)面的机电耦合系数高于(0001)面,可用于制备高性能SAW器件,还可利用Rayleigh波的高阶模式(Sezawa波)获得更高的相速度,而且Sezawa波具有更高的机电耦合系数,能减少高频器件的插入损耗。
     第四章利用RF磁控溅射技术及ZnO与R-蓝宝石的外延关系,制备单晶(1120)ZnO压电薄膜。详细研究了衬底温度,溅射气体及组分以及衬底位置等对(1120)ZnO薄膜结构和形貌的影响,优化(1120)ZnO薄膜的生长条件。另外,通过在ZnO粉靶中掺入Li+或A13+实现薄膜材料的p型或n型掺杂,从而控制ZnO薄膜材料的阻值,实现ZnO薄膜在绝缘性质(如压电器件)和导电性质(如透明电极)方面的应用需求。
     第五章,利用(1120)ZnO压电薄膜/R-蓝宝石衬底制作高次体波谐振器(HBAR)及SAW器件并讨论相关的声学特性。当溅射的衬底位置不同时,(1120)ZnO压电薄膜的晶体结构及声学特性亦不同。由于(1120)ZnO薄膜无法在金属材料上生长获得,实验中选择掺A13+的(1120)ZnO薄膜代替金属薄膜作为HBAR的底电极,掺入杂质离子A13+后(1120)ZnO薄膜电阻率达到10-3Ω·cm量级。制得HBAR的最终结构为:Pt电极/(1120)ZnO压电薄膜/Al-(1120)ZnO薄膜底电极/R-蓝宝石衬底。利用阻抗分析仪分析测试HBAR的阻抗特性,并计算声波相速度及机电耦合系数,表明最佳位置所激发单一模式水平剪切波的机电耦合系数k15=0.237,达到单晶ZnO(k15=0.26)机电耦合系数的91%。另外,利用(1120)ZnO压电薄膜/R-蓝宝石衬底结构SAW器件,研究当声波沿不同方向传播时声学特性的变化。声波传播方向不同所激发声波模式不同,当声波沿(0001)方向传播时为Rayleigh波模式,实验上可获得基波及一阶模式声波;声波沿(1100)方向传播时为Love波模式。同时利用矩阵传递法计算(1120)ZnO薄膜/R-蓝宝石的多层结构SAW器件的声学特性,包括声波相速度以及机电耦合系数,实验结果与理论结果很吻合。
     3、基于(1120)ZnO压电薄膜SAW器件的理论分析
     本论文第六章用部分波理论,通过数值计算分析研究(1120)ZnO/SiO2和(1120)ZnO/Si双层结构SAW器件的相速度、机电耦合系数同压电薄膜厚度的关系以及声波传播方向对声学性质的影响。根据叉指电极在薄膜上、下位置的不同以及是否有短路金属薄膜的存在,而将SAW延迟线分成的四种结构。计算表明,当Euler角为(0°,90°,0°)时,在(1120)ZnO/SiO2和(1120)ZnO/Si结构中,叉指电极的四种结构所制备的SAW器件所激发声波均为水平剪切模式,且相速度v均随着ZnO压电薄膜厚度h的增大从衬底速度开始逐渐减小。(1120)ZnO/SiO2所激发水平剪切SAW机电耦合系数k2随着ZnO压电薄膜厚度的增加而开始增大并达到最大值,再继续增大薄膜厚度,机电耦合系数则减小。ZnO压电薄膜厚度约0.26λ时,在延迟线A(叉指电极位于ZnO压电薄膜上表面且无短路金属膜存在)中取得机电耦合系数的最大值k2max=0.0317(1120)ZnO/Si结构SAW延迟线有类似的变化,不同的是在ZnO压电薄膜厚度约0.25λ处取得机电耦合系数最大值k2max=0.045。
     最后讨论了Euler角(α,β,γ)中第三个角度参数γ(即声波传播方向与(1120)ZnO晶体c轴之间的夹角)不同时声波特性的变化。以γ=30°和γ=60°为例,分析(1120)ZnO/SiO2和(1120)ZnO/Si结构SAW器件机电耦合系数的变化。计算发现γ不同,SAW器件机电耦合系数有很大变化且与γ=0°相比,机电耦合系数均降低。
     文章的最后(第七章)是对全文的总结以及今后工作的展望。
The thesis studies on the preparation and acoustic properties as well as applications of ZnO thin films. The full text is divided into seven chapters, in addition to Chapter I and Chapter VII give Introduction and Conclusion respectively, the contents mainly include three parts:(1) The preparation of1D ZnO nano-material, the development and sensing experiment of Love wave hydrogen sensors;(2) The preparation of (1120) ZnO thin films and the research on acoustic properties of HBAR and SAW devices;(3) Theoretical analysis of SAW devices based on bi-layered structures of (1120) ZnO thin films on different substrates. The main contents are described briefly as follows:
     1. Preparation of ZnO nano-material and Love wave hydrogen sensor
     ZnO thin films and nano-materials have much more outstanding properties, which differ from the bulk materials. They have wide applications, such as UV laser, surface acoustic wave devices, solar cells and so on. So the preparation of ZnO thin films and nano-arrays with high quality is an important research topic as well as the current research focus.
     Meanwhile, the sensitive layers are the key parts for SAW gas sensors, so the improvement of the absorption (or adsorption) capacity of the sensitive layers is important. The surface areas of1D ZnO nano-material expand strongly with the decrease of diameter size, which results in the improvement of activity as well as the gas absorption capacity, thus the gas sensing property is also improved greatly. Therefore,1D ZnO nano-material is one of the best candidates for the gas sensitive layers.
     Because of the high sensitivity, Love wave sensors have wide applications. They are not only used for the leakage detection of hazardous and noxious gases, but also for the detection of the water contamination, chemical and biological substances, even virus and DNA in liquid environments. Additionally, Love wave sensors have the advantages of small sizes, easiness of large scale production and easiness of remote monitoring, etc. Therefore, the researches on Love wave sensors have attracted much more attention recent years.
     In chapter Ⅱ,1D ZnO nanorods are prepared and studied, which are prepared by two steps of RF magnetron sputtering and hydrothermal synthesis. The effects of preparation conditions on crystal orientations, morphologies and chemical compositions of ZnO films are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). It is found that the seeds prepared by RF magnetron sputtering are better, on which the as-grown ZnO nanorods are well oriented along c-axis, perpendicular to the substrate, with hexangular end planes and uniform sizes. In order to explore the optimal conditions for ZnO nanorods grown by hydrothermal synthesis, the effects of hydrothermal conditions on ZnO nanorods are studied, such as trying for different pH values of solutions, different substrates, impurities and solutes. The grown mechanism of ZnO nanorods is discussed.
     In chapter Ⅲ, Love wave hydrogen sensors based on ZnO nanorod layers deposited on36°YX-LiTaO3substrates have been studied. The ZnO nanorod layers are prepared by two steps similar to the description as before:first, the seed layers, as well the guiding layers of the Love wave devices, are deposited by RF magnetron sputtering; second, the nano-structural layers, as well the sensing layers of the sensors, are grown by hydrothermal synthesis. The hydrogen sensing responses of the Love wave sensors activated by Pt catalysts are measured for various concentrations of hydrogen in synthetic air at room temperature. The results show that the sensors, with the optimized nanorod layers, have high sensitivity, repeatability and quick response (less than30s). The frequency shifts of8kHz,11.5kHz,14kHz,19.4kHz,26kHz,27.9kHz towards0.04%,0.08%,0.16%,0.32%,0.76%,1%of H2in synthetic air are obtained while the height of the nanorod layer is about2.1μm and the central frequency of the sensor is about125.5MHz. The XPS analyses of the sensitive layers show that there are oxygen vacancies in the layers, so the oxygen vacancy model is used to explain the hydrogen sensing mechanism of the Love wave sensors.
     2. Preparation and application of (1120)ZnO piezoelectric thin films
     With the progress of modern mobile communication, there is an increasing interest in SAW devices operating at frequencies near1GHz or higher. For SAW devices with such high frequency, a substrate with high acoustic velocity is desirable in order to reduce the difficulty of fabricating fine electrode patterns of IDTs, such as the ZnO piezoelectric thin films deposited on sapphire substrate. The SAW devices with frequency higher than2.5GHz are the limitation of photoetching technique.
     In general, the (0002) orientation is frequently observed for the deposited ZnO thin films. It is well understood since the (0002) plane of the ZnO crystallites corresponds to the densest packed plane, and the growth mechanism of the sputtered ZnO thin films is governed by Bravais'empirical law for crystal growth. Meanwhile, the (0002) orientated ZnO piezoelectric films have been widely studied and applied. However, ZnO thin films with other orientations have also been widely used for acoustic devices, such as (1120) ZnO films on R-sapphire substrate. This kind of films can be used for the shear mode film bulk acoustic resonator (FBAR) and shear wave transducer with high-frequency, which induces highly interesting applications. For instance, the temperature coefficient of frequency (TCF) of the shear-mode FBARs constructed of these films is a half of the longitudinal-mode FBAR owing to the small temperature coefficient of c44. Furthermore, the film thickness of shear-mode FBARs is a half of that for longitudinal-mode FBARs at the same operating frequency, which results in a smaller device package. The velocities of SAW excited by the layered structures of (1120)ZnO films/R-sapphire are high. However, the SAW devices with much more higher velocity can also be obtained by using higher-order mode of Rayleigh waves (Sezawa wave). Sezawa wave can reduce the insertion loss of devices operating at high frequency because of the larger electro-mechanical coefficient.
     In chapter IV, we have investigated the(1120) textured ZnO thin films deposited on R-sapphire by RF magnetron sputtering, the focusing study is on the effect of substrate temperature, substrate position, gas composition and partial gas pressure of oxygen during sputtering deposition, by which the optimized deposition conditions for (1120) textured ZnO thin films have been found. In addition, to change the resistance of the films, p-type or n-type doping of ZnO thin films can be realized by doping Li+or Al3+into the powder target during sputtering process. ZnO thin films doped with different impurities can satisfy the demands of insulating material (piezoelectric devices) or conducting material (transparent electrode).
     In chapter V, we have studied the acoustic characteristics of high overtone bulk acoustic resonators (HBAR) and SAW delay lines of the structures of (1120) ZnO thin films/R-sapphire substrates. The focusing investigation is the effect of substrate positions in the sputtering on structural and acoustic characteristics of the (1120) textured ZnO films.
     In order to investigate the variations of acoustic characteristics of these piezoelectric ZnO films, the multi-layered structures are prepared to fabricate shear-mode HBARs, in which the Al-doped ZnO films with low resistance deposited on R-sapphire substrates are used as the bottom electrodes instead of the metal electrodes. The piezoelectric ZnO films with (1120)-plane orientation are grown on Al-doped ZnO films/R-sapphire substrates. Last, Pt electrodes are deposited on the surface of piezoelectric ZnO films. Based on the shear-mode HBARs, it is found that the coupling factors k15of the optimized ZnO films is0.237, which is91%of the value of the single crystalline ZnO (k15=0.26).
     We also experimentally estimated the acoustic characteristics of SAW delay lines based on the structures of IDT/(1120) ZnO piezoelectric film/R-sapphire substrate. It is found that the wave modes are different as the acoustic waves propagate along different directions, for example, Rayleigh mode as well as higher-order mode (Sezawa) are excited along (0001) direction, while Love mode along (1100) direction. The phase velocities and coupling factors of both wave modes are characterized as functions of the film thickness to wavelength ratio (h/λ). Meanwhile, the acoustic properties of the bi-layered structure are calculated using partial wave theory and transfer matrix method. The experimental and theoretical results are consistent well with each other.
     3. Theoretical analysis of SAW devices based on (1120) ZnO films
     In chapter VI, theoretical studies on SAW devices based on (1120)ZnO/SiO2and (1120)ZnO/Si structures are carried out using partial wave theory and transfer matrix method. The results indicate that, when the Euler angle equals to (0°,90°,0°) for ZnO thin films, SH-SAW is excited and the velocities decrease with increasing of the thickness of ZnO thin films. For (1120)ZnO/SiO2sturcture, four types of SAW delay lines classified by the position of IDT and the existence or absence of metal films, the electromechanical coupling coefficient (k2) increase with the increase of film thickness and reach the maximum, while further increase of film thickness result in the decrease of k2. The maximum of k2is0.0317when the thickness of ZnO piezoelectric films is0.26λ for the SAW delay line A (IDT on the surface of (1120) ZnO piezoelectric films and there is no metal films). The SAW delay lines based on (1120) ZnO/Si structure are with the similar variations, however, the maximum value of k2=0.045appears at the thickness of ZnO film of0.25λ also for the SAW delay line A.
     The relations between the variations of propagation direction and acoustic properties are studied for the structures of (1120)ZnO/SiO2and (1120)ZnO/Si. It is well known that the propagated direction of acoustic waves is decided by the third angle γ of Euler angle (α,β,γ). In our case, the variations of k2with different γ are calculated, for example γ=30°and γ=60°. The results indicate that the maximum of k2for different types of SAW delay lines are different with the variation of y, and k2is largest as γ=0°.
     Finally, in Chapter VII, the conclusions and prospects are presented.
引文
[1]P. Brauer "The influence of water vapour on the conducitivity of cuprite crystals," Physikalische Zeitschrift.36(1935) 214-214.
    [2]T. J. Gray "Application of measurement of semi-conditivity to heterogeneous reactions," Nature 162(1948) 260-261.
    [3]余萍γ-Al2O3基气敏材料及气敏机理的研究[D].成都:四川大学博士学位论文2000
    [4]冯彩慧LaCoxFe1-xO3(x=0.0-1.0)纳米晶的制备、表征及气敏性能的研究[D].长春:吉林大学硕士学位论文
    [5]P. J. Shaver "Activited tungsten oxide gas detectors," Appl. Phys. Lett.11(1967) 255-257.
    [6]V. Sexena, D. K. Aswal, K. Manmeet, et al, "Enhanced NO2 selectivity of Hybrid poly (3-hexylthiophene):ZnO nanowire thin films," Appl. Phys. Lett.90(2007) 043516.
    [7]A. Srczurek, P. M. Szecowka, B. W. Licmmki. "Application of sensor amy and neural networks for quantification of organic solvents vapors in air," Sens. Actuators B:Chem.,58(1999) 427-432.
    [8]L. C. Clark, C. Lyons "Electrode systems for continuous monitoring in cardinovascular surgery," Ann NYAcad Sci,102(1962)29-45.
    [9]余龙.Sn02基传统气敏材料改性及对CO气体的气敏特性研究[D].重庆:重庆大学硕士学位论文,2004.
    [10]张志馄,崔作林著.纳米技术与纳米材料[M].北京:国防工业出版社,200033-65.
    [11]Huarong Tang, Yaming Li, Chengbin Zheng et al. "An ethanol sensor based on catalumines on ZnO nanopaticles,"TALANTA,72(2007) 1593-1597.
    [12]M. S. Wagh, L. A. Patil, Tanay Seth, et al. "Surface Cupricate SnO2-ZnO Thick Films as a H2S Gas Sensor," Materials Chemistry and Physics,84(2004) 228-233.
    [13]T. Gao, T. H. Wang, "Synthesis and Properties of Multipod-Shaped ZnO Nanorods for Gas-Sensor Applications," Appl. Phys. A:Materials Science & Processing,2004 82-86.
    [14]Tao Gao, Qiuhong Li, T. H. Wang, "Sonochemical Synthesis, Optical Properties, and Electrical Properties of Core/Shell-Type ZnO Nanorod/CdS Nanoparticle Composites," Chem. Mater,17(2005) 887-892.
    [15]范新会,马雪红,于灵敏等.烧结温度对ZnO纳米线酒敏性能影响的研究.西安工业大学学报.27(2007)153-157.
    [16]Fan Zhi yong, Wang Dawel, Chang Pai-Chun, et al. "ZnO nanowire field-effect transisitor and oxygen sensing property," Appl. Phys. Lett.,85(2004) 5923-5925.
    [17]武以立,邓盛刚,王承德.声表面波原理及在电子技术中的应用[M]:国防工业出版社,1983.
    [18]Cheeke. "Surface Acoustic Wave humidity sensor based Oil the change in viscoelastic properties of a polymer film," IEEE Proc. Ultrasonics Symposium, 1(1996) 449-452.
    [19]X. Q. Bao, W. Burkhard and V. V. Varadan, "SAW Temperature sensor and remote reading system," IEEE Ultrasonic Symposium Proceedings. (1987) 583-585.
    [20]H. Wohltjen and R. Dcssy. "Surface Acoustic Wave Probe for Chemical Analysis," J. Anal. Chem.,51(1979) 1458-1475.
    [21]G. W. Wastort, R. D. Ketchpcl and E. J. Staples, "Thermal Conductivity gas Sensor based on LiNbO3 SAW resonators," IEEE Ultrasonics Symposium,1992. Proceedings,1(1992)253-256.
    [22]刘庆辉基于mems的声表面波器件设计与制作的关键技术研究[D].成都:国防科技大学学位论文2004
    [23]孙海山,余愚,蒋永华,浅谈SAW气敏传感器的发展.中国仪器仪表,6(2006).
    [24]吕俊锋声表面波气体传感器的研究及其检测系统的开发[D].天津:南开大学硕士学位论文2010
    [25]蔡起善,声表面波(SAW)传感器(一).压电与声光,3(1985)1-9.
    [26]陈明,范东远,李岁劳,声表面波传感器[M].西安:西北工业大学出版社,1997.
    [27]P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, "Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature," Solid State Commun.,103(1997) 459-463.
    [28]D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, T. Goto, "Optically pumped lasing of ZnO at room temperature," Appl. Phys. Lett., 70(1997)2230-2232.
    [29]R. F. Service, "Will UV lasers beat blues?" Science,276(1997) 895-897.
    [30]S Rackauskas, A. G. Nasibulin, H. Jiang, Y. Tian, G. Statkute, S. D. Shandakov, H. Lipsanen, and E. I. Kauppinen, "Mechanistic investigation of ZnO nanowire growth," Appl. Phys. Lett.95(2009) 183114.
    [31]K. Wasa, and S. Hayakawa, Handbook of Sputter Deposition Technology, pp.147, New Jersey:Academic,1992.
    [32]Y. Tajahashi, M. Kanamori, A. Kondoh, H. Minoura, Y. Ohya, "Photoconductivity of Ultra-thin Zinc Oxide Films," Jpn. J. Appl. Phys.,33(1994) 6611-6615.
    [33]D. H. Zhang, "Fast photo response and the related change of cystallite cariers for ZnO films deposited by RF sputtering," J. Phys. D:Appl. Phys.,28(1995) 1273.
    [34]D. H. Zhang, D. E. Brodie, "Photoresponse of polycrystalline ZnO films deposited by r. f. bias sputtering," Thin Solid Films,261(1995) 334-339.
    [35]Y. Liu, C. R. Gorla, S. Liang, N. Emanetoglu, Y. Lu, H. Shen, M. Wraback, "Ultraviolet detectors based on epitaxial ZnO films grown by MOCVD," J. Electron. Mater.,29(2000) 69-74.
    [36]H. Nakahata, K. Higaki, A. Hachigo, S. Shikata, N. Fujimori, Y.Takahashi, T. Kajihara, Y. Yamamoto, "High Frequency Surface Acoustic Wave Filter Using ZnO/Diamond/Si Structure," Jpn. J. Appl. Phys.,33(1994) 324-328.
    [37]陈湘渝,余承杰,何峰,低电压氧化锌压敏电阻器,压电与声光19(1997)325.
    [38]P. Chatterjee, P. Mitra, A. K. Mukhopadhyay, "Chemically deposited zinc oxide thin film gas sensor," J. Mater. Sci.,34(1999) 4225-4231.
    [39]J. B. Baxter, E. S. Aydil, "Nanowire-based dye-sensitized solar cells," Appl. Phys. Lett.,86(2005)053114.
    [40]E. Hosono, S. Fujihara, I. Honma, H. Zhou, "The Fabrication of an Upright-Standing Zinc Oxide Nanosheet for Use in Dye-Sensitized Solar Cells," Adv. Mater.,17(2005) 2091-2094.
    [41]K. J. Kim, Y. R. Park, "Large and abrupt optical band gap variation in In-doped ZnO," Appl. Phys. Lett.,78(2001) 475-477.
    [42]P. Nunes, E. Fortunato, R. Martins, "Influence of the post-treatment on the properties of ZnO thin films," Thin Solid Films,383(2001) 277-280.
    [43]张立德,牟季美,纳米材料与纳米结构[M],科学出版社2001.
    [44]Z. L. Wang, J. Song, "Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays," Science,312(2006) 242-246.
    [45]R. Yang, Y. Qin, C. Li, G. Zhu, Z. L. Wang, "Converting Biomechanical Energy into Electricity by a Muscle-Movement-Driven Nanogenerator," Nano Lett., 9(2009) 1201-1205.
    [46]Y. B. Li, Y Bando, D. Golberg, "ZnO nanoneedles with tip surface perturbations: Excellent field emitters," Appl. Phys. Lett.,84(2004) 3603-3605.
    [47]C. Y. Geng, Y. Jiang, Y. Yao, X. M. Meng, J. A. Zapien, C. S. Lee, Y. Lifshitz, S. T. Lee, "Well-Aligned ZnO Nanowire Arrays Fabricated on Silicon Substrates," Adv. Funct. Mater.,14(2004) 589-594.
    [48]B. P. Zhang, N. T. Binh, K. Wakatsuki, Y. Segawa, Y. Yamada, N. Usami, M. Kawasaki, H. Koinuma, "Formation of highly aligned ZnO tubes on sapphire (000l)substrates," Appl. Phys. Lett.,84(2004) 4098-4100.
    [49]L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. F. Zhang, R. J. Saykally, P. D. Yang, "Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays," Angew. Chem. Int. Ed.,42(2003) 3031-3034.
    [50]M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. Yang, "Nanowire dye-sensitized solar cells," Nat. Mater.,4(2005) 455-459.
    [51]L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, P. D. Yang, "General Route to Vertical ZnO Nanowire Arrays Using Textured ZnO Seeds," Nano Lett.,5(2005) 1231-1236.
    [52]L. E. Greene, B. D. Yuhas, M. Law, D. Zitoun, P. Yang, "Solution-Grown Zinc Oxide Nanowires," Inorg. Chem.,45(2006) 7535-7543.
    [53]M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, P. D. Yang, "Room-Temperature Ultraviolet Nanowire Nanolasers," Science, 292(2001) 1897-1899.
    [54]M. Aslam, V. A. Chaudhary, I. S. Mulla, S. R. Sainkar, A. B. Mandale, A. A. Belhekar, and K. Vijayamohanan, "A highly selective ammonia gas sensor using surface-ruthenated zinc oxide," Sens. Actuators A,75(1999) 162.
    [55]Y. Min, H. L. Tuller, S. Palzer, J. Wollenstein, and H. Bottner, "Gas response of reactive sputtered ZnO films on Si-based micro array," Sens. Actuators B:Chem., 93(2003)435-441.
    [56]S. Basu and A. Dutta, "Room-temperature Hydrogen sensors based on ZnO," Mater. Chem. Phys.,47(1997) 93-96.
    [57]N. Koshizaki and T. Oyama, "Sensing characteristics of ZnO-based NOx sensor," Sens. Actuators B:Chem.,66(2000) 119-121.
    [58]J. Xu, Q. Pan, Y. Shun, and Z. Tian, "Grain size control and gas sensing properties of ZnO gas sensor," Sens. Actuators B:Chem.,66(2000) 277-279.
    [1]O. Lupan, V. V. Ursaki, G. Chai, L. Chow, G. A. Emelchenko, I. M. Tiginyanug, A. N. Gruzintsev, A. N. Redkinf, "Selective hydrogen gas nanosensor using individual ZnO nanowire with fast response at room temperature," Sens. Actuators B:Chem.,144(2010) 56-66.
    [2]L. H. Nguyen, A. Eunseong, P. Seongyong, J. Hooncheol, K. Hyojin, H. Soon-Ku, K. Dojin, "Synthesis and hydrogen gas sensing properties of ZnO wirelike thin films," J. Vac. Sci. Technol. A,27(2009) 1347-1351.
    [3]O. Eugene, C. Ho-Yun, J. eung-Ho, C. Seungho, J. C. Kim, L. Kun-Hong, K. Sang-Woo, K. Jint, Y. Ju-Young, J. Soo-Hwan, "High-performance NO2 gas sensor based on ZnO nanorod grown by ultrasonic irradiation," Sens. Actuators B:Chem.,141(2009) 239-243.
    [4]S. G. Ansari, R. Wahab, Z. A. Ansari, K. Young-Soon, K. Gilson, Al-Hajry, S. Hyung-Shik, "Effect of nanostructure on the urea sensing properties of sol-gel synthesized ZnO," Sens. Actuators B:Chem.,137(2009) 566-573.
    [5]B. Sunandan, D. Joydeep, "Effect of seeded substrates on hydrothermally grown ZnO nanorods," J. Sol-Gel Sci. Technol.,50(2009) 456-464.
    [6]Y. Jinhu, L. Guangming, L. Jun, Q. Yongfu, and Y. Shihe, "Electrochemical route to the synthesis of ultrathin ZnO nanorod/nanobelt arrays on zinc substrate," Appl. Phys. Lett.,90(2007) 103109.
    [7]H. Ting-Jen, C. Shoou-Jinn, H. Cheng-Liang, L. Yan-Ru, C. Cherng, "Highly sensitive ZnO nanowire ethanol sensor with Pd adsorption," Appl. Phys. Lett., 91(2007)053111.
    [8]王湘艳.微纳结构光电极的制备及其在染料敏化太阳电池中的应用研究[D].南京:南京大学博士学位论文2011.
    [9]仲维卓,华素坤.负离子配位多面体生长基元与晶体表面结构(Ⅰ)水晶(Si02),闪锌矿(ZnS),碘化镉(CdI2)[D].中国科学院上海冶金研究所博士论文2000.
    [10]D. Polsongkram, P. Chamninok, S. Pukird, L. Chow,O. Lupan, G. Chai, H. Khallaf, S. Park, A. Schulte, "Effect of Synthesis Conditions on the Growth of ZnO Nanorods via Hydrothermal Method," Physica B,403(2008) 3713-3717.
    [11]张克从近代晶体学基础(上)[M]北京:科学出版社1987256
    [1]A. D'Amico, E. Verona, "Saw sensors," Sens.& Actuators 17 (1989) 55-66.
    [2]M. J. Vellekoop, "Acoustic wave sensor and their technology," Ultrasonics,36 (1998)7-14.
    [3]S. J. Ippolito, S. Kandasamy, K. Kalantar-Zadeh, W. Wlodarski, "Layered SAW hydrogen sensor with modified tungsten trioxide selective layer," Sens. Actuators B:Chem.,108 (2005) 553-557.
    [4]F. M. Zhou, Z. Li, L. Fan, et al., "Experimental study of Love-wave immunosensors based on ZnO/LiTaO3 structures," Ultrasonics,50(2010) 411-415.
    [5]L. Al-Mashat, H. D. Tran, W. Wlodarski, R. B. Kaner, K. Kalantar-zadeh, "Polypyrrole nanofiber surface acoustic wave gas sensors," Sens. Actuators B: Chem.,134(2008)826-831.
    [6]R. Arsat, X. F. Yu, Y. X. Li, W. Wlodarski, K. Kalantar-zadeh, "Hydrogen gas sensor based on highly ordered polyaniline nanofibers," Sens. Actuators B:Chem., 137(2009)529-532.
    [7]M. Z. Atashbar, A. Z. Sadek, W. Wlodarski, S. Sriram, M. Bhaskaran, C. J. Cheng, R. B. Kaner, K. Kalantar-zadeh, "Layered SAW gas sensor based on CSA synthesized polyaniline nanofiber on AlN on 64°YX LiNbO3 for H2 sensing," Sens. Actuators B:Chem.,138 (2009) 85-89.
    [8]F. C. Huang, Y. Y. Chen and T. T. Wu, "A room temperature surface acoustic wave hydrogen sensor with Pt coated ZnO nanorods," Nanotechnology 20 (2009) 065501.
    [9]R. C. Chang, S. Y. Chu, P. W. Yeh, C. S. Hong, P. C. Kao, Y. J. Huang, "The influence of Mg doped ZnO thin films on the properties of Love wave sensors,' Sens. Actuators B:Chem.,132 (2008) 290-295.
    [10]M. H.Yaacob, M. Breedon, K. Kalantar-zadeh, W. Wlodarsk, "Absorption spectral response of nanotexturedWO3 thin films with Pt catalyst towards H2," Sens. Actuators B:Chem.,137 (2009) 115-120.
    [11]E. Oh, H. Y. Chio, S. H. Jung, S. Cho, J. C. Kim, K. H. Lee, S. W. Kang, J. Kim, J. Y. Yun, S. H. Jeong, "High-performance NO2 gas sensor based on ZnO nanorod grown by ultrasonic irradiation," Sens. Actuators B:Chem.,141(2009) 239-243.
    [12]F. S. Hickernell, H. D. Knuth, R. C. Dablemont, T. S. Hickernell, "The surface acoustic wave propagation characteristics of 64°YX-LiNbO3 and 36°YX-LiTaO3 substrates with thin-film SiO2", Proc. IEEE Ultras. Symp., (1995) 345-348.
    [13]K. Nakamura, M. Kazumi, H. Shimizu, "SH-type and Rayleigh-type surface waves on rotated Y-cut LiTaO3," Proc. IEEE Ultras. Symp., (1977) 819-822.
    [14]S. Y. Chu, W. Water, J. T. Liaw, "An investigation of the dependence of ZnO film on the sensitivity of Love mode sensor in ZnO/quartz structure," Ultrasonics 41 (2003) 133-139.
    [15]C. Battistoni, J. L. Dormann, D. Fiorani, E. Paparazzo, S. Viticoli, "An XPS and mossbauer study of the electronic-properties of ZnCrxGa2-xO4 spinel solid-solutions," Solid State Communications 39 (1981) 581-585.
    [16]J. C. C. Fan, J. B. Goodenough, "X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films," J. Appl. Phys.48 (1977) 3524-3531.
    [17]S. J. Ippolito, S. Kandasamy, K. Kalantar-zadeh, W. Wlodarski, K. Galatsis, G. Kiriakidis, N. Katsarakis, M. Suchea, "Highly sensitive layered ZnO/LiNbO3 SAW device with InOx selective layer for NO2 and H2 gas sensing," Sens. Actuators B:Chem.,111-112 (2005) 207-212.
    [18]J. N. Zemel, "Theoretical description of gas-film interaction on SnOx," Thin Solid Films 163 (1988) 189-202.
    [19]G. D. Mahan, "Intrinsic defects in ZnO varistors," J. Appl. Phys.54 (1983) 3825-3832.
    [20]N. Al-Hardan, M. J. Abdullah, A. Abdul Aziz, "The gas response enhancement from ZnO film for H2 gas detection," Applied Surface Science 255 (2009) 7794-7797.
    [21]V. I. Anisimkin, I. M. Kotelyanskii, V. I.Fedosov, C. Caliendo, P. Verardi, E.Verona, "Analysis of the different contributions to the response of the SAW sensors," IEEE Ultrasonics Symposium (1995) 515-518.
    [22]J. Li, H. Q. Fan, X. H. Jia, et al. "Enhanced blue-green emission and ethanol sensing of Co-doped ZnO nanocrystals prepared by a solvothermal route," Applied Physics A,98 (2010) 537-542.
    [23]S. S. Badadhe, I. S. Mulla, "H2S gas sensitive indium-doped ZnO thin films: Preparation and characterization," Sensors and Actuators B,143 (2009) 164-170.
    [1]R. Ruby, P. Bradley, J. D. Larson, III, and Y. Oshmyansky, "PCS 1900 MHz duplexer using thin film bulk acoustic resonators (FBAR)," Electron. Lett., 35(1999) 794-795.
    [2]Y. Wang, S. Y. Zhang, F. M. Zhou, L. Fan, Y. T. Yang, and C. Wang, "Love wave hydrogen sensors based on ZnO nanorod film/36° YX-LiTaO3 substrate structures operated at room temperature," Sens. Actuators B:Chem.,158(2011) 97-103.
    [3]G. Saraf, Y. Lu, T. Siegrist, "In-plane anisotropic strain in a-ZnO films grown on r-sapphire substrates," Appl. Phys. Lett.93(2008) 041903.
    [4]D. G Thomas, "The exciton spectrum of Zinc Oxide," J. Phys. Chem. Solids Pefgamon Press,15(1960) 86-96.
    [5]J. J. Hopfield, "Fine structure in the optical absorption edge of anisotropic crystals,"J. Phys. Chem. Solids,15(1960) 97-107.
    [6]T. Shiosaki, S. Ohnishi, and A. Kawabata, "Optical properties of single-crystalline ZnO film smoothly chemical-vapor deposited on intermediately sputtered thin ZnO film on sapphire," J. Appl. Phys.,50(1979) 3113-3117.
    [7]C. R. Gorla, N. W. Emanetoglu, S. Liang, W. E. Mayo, Y Lu et al., "Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (012) sapphire by metalorganic chemical vapor deposition," J. Appl. Phys. 85(1999)2595-2602.
    [8]T. Mitsuyu, S. Ono, and K. Wasa, "Structures and SAW properties of rf-sputtered single-crystal films of ZnO on sapphire," J. Appl. Phys.,51(1980) 2464-2470.
    [9]H. Ieki, H. Tanaka, J. Koike, and T. Nishikawa,1996 IEEE MTT-S Digest, (IEEE,NJ,1996)409
    [10]T. Yanagitani, M. Kiuchi, M. Matsukawa and Y. Watanabe, "Shear mode electromechanical coupling coefficient k15 and crystallites alignment of (1120) textured ZnO films," J. Appl. Phys.,102(2007) 024110.
    [11]G. Saraf, T. Siegrist, and Y. C. Lu, "Structural anisotropy in a-MgxZn1-xO (0≤x≤0.33) films on r-sapphire," J. Vac. Sci. Technol. B, Microelectron. Nanometer Struct.,27(2009) 1620-1624.
    [12]G. Saraf, Y. Lu, and T. Siegrist, "In-plane anisotropic strain in a-ZnO films grown on r-sapphire substrates," Appl. Phys. Lett.,93(2008) 041903.
    [13]G. Galli and J. E. Coker, "Epitaxial ZnO on sapphire," Appl. Phys. Lett.,16(1970) 439-441.
    [14]F. A. Kroger, "The Chemistry of Imperfect Solids," (North Holland Pub. Amsterdam,1974)
    [15]Y. I. Alivov, E. V. Kalinina, A. E. Cherenkov et al., "Fabrication and characterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrate, "Appl. Phys. Lett.83(2003) 4719-4721.
    [16]V. A. Nikitenko, S. V. Mukhin, S. P. Pivneva, and I. P. Kuz'mina, "Optical-properties of Low-voltage Cathodoluminophors and ZnO Single-crystals," Inorganic Materials,29(1993) 1253-1255.
    [17]J. K. Kwang and R. P. Young "Large and abrupt optical band gap variation in In-doped ZnO," Appl. Phys. Lett.78 (2001) 475-477.
    [18]K. Wasa, and S. Hayakawa, "Handbook of Sputter Deposition Technology.' New Jersey:Academic,1992,147.
    [19]W. D. Westwood, S. J. Ingrey, "Wave Electronics," 1:139(1974/1975).
    [20]T. Yanagitani, T. Nohara, M. Matsukawa, Y. Watanabe, and T. Otani, "Characteristics of (1010)and (1120) Textured ZnO Piezofilms for a Shear Mode Resonator in the VHF-UHF Frequency Ranges," IEEE Trans. Ultrason., Ferroelect. Freq. Contr.,52(2005) 2140-2145.
    [21]F. M. Zhou, Z. Li, L. Fan, S. Y. Zhang, X. J. Shui and K. Wasa, "Effects of TeOx films on temperature coefficients of delay of Love-type wave devices based on TeOx/36°YX-LiTaO3 structures," Vacuum,84(2010) 986-991.
    [22]Powder Diffraction File, Joint Committee on Powder Diffraction Standards, ASTM, Philadelphia, PA,1967, card no.36-1451.
    [1]T. Yanagitani, N. Mishima, M. Matsukawa, and Y. Watanabe, "Electromechanical Coupling Coefficient k15 of Polycrystalline ZnO Films with the c-Axes Lie in the Substrate Plane," IEEE transactions on Ultrasonics, Ferroelectrics, and Frequency Control,54(2007) 701-704.
    [2]J. S. Wang and K. M. Lakin, "c-axis inclined ZnO piezoelectric shear wave films," Appl. Phys. Lett.,4(1983) 352-354.
    [3]N. F. Foster, "Performance of shear mode zinc oxide thin-film ultrasonic transducer," J. Appl. Phys.,40 (1969) 4202-4204.
    [4]S. V. Krishnaswamy, B. R. McAvoy, and A. Moore, "Effect of RF bias on sputter deposition ZnO films for shear mode transducer," in Proc. IEEE Ultrason. Symp., (1983)531-534.
    [5]M. Kadota and T. Miura, "Shear bulk wave transducer made of (110)-plane epitaxial ZnO film on R-sapphire," Jpn. J. Appl. Phys.,41(2002) 3281-3284.
    [6]R. H. Wittstruck, X. Tong, N. W. Emanetoglu, P. Wu, Y. Chen, J. Zhu, S. Muthukumar, Y. Lu, and A. Ballato, "Characteristic of MgxZnl-xO thin film bulk acoustic wave devices," IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 50(2003) 1272-1277.
    [7]T. Shoji, K. Nakamura, and D. Yamazaki, "Propagation characteristics of the SH-SAW on (110) ZnO/(012) LiTaO3," in Proc. IEEE Ultrason. Symp., (2001) 215-219.
    [8]S. V. Krishnaswany, B. R. McAvoy, and R. A. Moore, "Effect of RF bias on sputter deposited ZnO films for shear mode transducers," Proc. IEEE Ultrason. Symp.,1(1983)531-534.
    [9]J. S. Wang, K. M. Lakin, and A. R. Landin, "Sputtered C-axis inclined piezoelectric films and shear wave resonators," Proc. IEEE Frequency Cont. Symp., (1983)144-150.
    [10]T. Yanagitani, T. Nohara, M. Matsukawa, Y. Watanabe, and T. Otani, "Characteristics of (1010) and (1120) Textured ZnO Piezofilms for a Shear Mode Resonator in the VHF-UHF Frequency Ranges," IEEE Trans. Ultrason., Ferroelect., Freq. Contr.,52(2005) 2140-2145.
    [11]M. Kadota, and T. Miura, "Shear Bulk Wave Transducer Made of (1120)-Plane Epitaxial ZnO Film on R-Sapphire," Jpn. J. Appl. Phys.41(2002) 3281-3284.
    [12]M. Arkawa, J. Kushibiki, and Y. Madani, "Ultrasonic Micro-Spectroscopy of Synthetic Sapphire Crystals," Jpn. J. Appl. Phys.,47(2008) 2285-2287.
    [13]N. F. Foster, G. A. Coquin, S. A. Rozgonyi, and F. A. Vannatta, "Cadmium Sulphide and Zinc Oxide Thin-Film Transducers," IEEE Trans. Sonics Ultrason., SU-15(1968) 28-40.
    [14]K. Wasa, and S. Hayakawa, Handbook of Sputter Deposition Technology, pp. 147, New Jersey:Academic,1992.
    [15]T. Mitsuyu, S. Ono, and K. Wasa, "Structures and SAW properties of rf-sputtered single-crystal films of ZnO on sapphire," J. Appl. Phys.,51(1980) 2464-2470.
    [16]A. Tanaka, T. Yanagitani, M. Matsukawa and Y. Watanabe, Propagation Characteristics of Shear Horizontal Surface Acoustic Waves in (1120) ZnO Film/Silica Glass Substrate Structures, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,55 (2008) 2709-2713.
    [17]S. Tatsuya, Y. Daisuke and N. Kiyoshi, "Propagation characteristics of the SH-SAW on (110) ZnO/RY-X LiTaO3," 309-313
    [1]T. Moriizumi, Y. Unno, and S. Shiokawa, "New sensor in liquid using leaky SAW," in Proc. IEEE Ultrason. Symp., N-4(1987) 579-582.
    [2]J. Kondoh and S. Shiokawa, "Shear surface acoustic wave liquid sensor based on acoustoelectric interaction," Electron. Commun. Jpn.,78(1995) 101-112.
    [3]J. Kondoh and S. Shiokawa, "Shear-horizontal surface acoustic wave sensors," Sens. Update,6(1999) 59-78.
    [4]K. Hashimoto and M. Yamaguchi, "Effective electromechanical coupling to leaky SAW on 36°YX-LiTaO3", Jpn. J. Appl. Phys.,26 (1987) 159-161.
    [5]E. Gizeli, A. C. Stevenson, N. J. Goddard, and C. R. Lowe, "A novel love-plate acoustic sensor utilizing polymer overlayers," IEEE Trans. Ultrason. Ferroelectr. Freq. Control,39(1992) 657-659.
    [6]G. Kovacs, M. J. Vellekoop, R. Haueis, G. W. lubking, and A. Venema, "A love wave sensor for (bio) chemical sensing in liquids," Sens. and Actuators A, 43(1994)38-43.
    [7]F. Herrmann, M. Weihnacht, and S. Buttgenbach, "Properties of sensors based on shear-horizontal surface acoustic waves in LiTaO3/SiO2 and quartz/SiO2 structures," IEEE Trans. Ultrason. Ferroelectr. Freq. Control,48(2001) 268-273.
    [8]K. K. Zadeh, A. Trinchi, W. Wlodarski, and A. Holland, A novel love-mode device based on a ZnO/ST-cut quartz crystal structure for sensing applications, Sens, and Actuators A,100(2002) 135-143.
    [9]S. Y. Chu, W. Water, and J. T. Liaw, "An investigation of the dependence of ZnO film on the sensitivity of love mode sensor in ZnO/quartz structure," Ultrason., 41(2003)133139.
    [10]S.J. Jian, S.Y. Chu, T.Y. Huang, and W. Water, "Study of preferred orientation of zinc oxide films on the 64°LiNbO3 substrates and their applications as liquid sensors," J. Vac. Sci. Technol. A,22(2004):2424-2430.
    [11]T. yanagitani, M. Matsukawa, Y. Watanabe, and T. Otani, "Formation of uniaxially (1120) textured ZnO film on glass substrates," J. Cryst. Growth, 276(2005) 424-430.
    [12]T. Yanagitani, M. Kiuchi, M. Matsukawa, and Y. Watanabe, "Characteristics of pure-shear mode BAW resonators consisting of (1120) textured ZnO films," IEEE Trans. Ultrason. Ferroelectr. Freq. Control,54(2007) 1680-1686.
    [13]T. shoji, K. Nakamura, and D. Yamazaki, "Propagation characteristics of the SH-SAW on (110) ZnO/(012) LiTaO3," in Proc. IEEE Ultrason. Symp., (1987) 215-219.
    [14]D. A. Powell, K. Kalantar-Zadeh, and W. Wlodarski, "Numerical calculation of SAW sensitivity:application to ZnO/LiTaO3 transducers," Sens. and Actuators A, 115(2004)456-461.
    [15]B. A. Auld, "Acoustic fields and waves in solids," Vol.1, John Wiley & Sons, New York,1973.
    [16]R. T. Smith and F. S. Welsh, "Temperature dependence of the elastic, piezoelectric, and dielectric constants of Lithium Tantalate and Lithium Niobate," Journal of applied physics,42(1971) 2219-2230.
    [17]"IEEE Standard on Piezoelectricity" ANSI/IEEE Std.176-1987.
    [18]J. J. Campbell and W. R. Jones, "A method for estimating optimal crystal cuts and propagation directions for excitation of piezoelectric surface waves," IEEE Trans. Sonics Ultrason., SU-15(1968) 209-217.
    [19]W. P. Mason and R. N. Thurston, "Physical acoustics," Vol. Ⅸ, Academic Press, New York and London,1972.
    [20]K. Nakamura and T. Hanaoka, "Propagation characteristics of surface waves in ZnO/LiNbO3 structures," Jpn. J. Appl. Phys.,32 (1993) 2333-2336.
    [21]A. Tanaka, T. Yanagitani, M. Matsukawa, and Y. Watanabe, "Propagation Characteristics of Shear Horizontal Surface Acoustic Waves in (1120) ZnO Film/Silica Glass Substrate Structures," IEEE Trans. Ultrason. Ferroelectr. Freq. Control,55(2008) 2709-2713.
    [22]周凤梅.Love波传感器的研制与理论分析[D].南京:南京大学博士学位论文,2010.
    [23]G. Kovacs, G. W. Lubking, M. J. Vellekoop and A. Venema, "Love wave for (bio)chemical sensing in liquids" in Proc. IEEE Ultrason. Symp., (1992) 281-285.
    [24]Y. V. Gulyaev, "Review of shear surface acoustic waves in solids," IEEE Trans. Ultrason. Ferroelect. Freq. Cont.45 (1998) 935-938.
    [25]A. A. Nassar and E. L. Adler, "Propagation and electromechanical coupling to plate modes in piezoelectric composite membranes," Proc. IEEE Ultrason. Symp., (1983) 369-372.
    [26]K. Nakamura and T. Hanaoka, "Propagation characteristics of surface acoustic waves in ZnO/LiNbO3 structures," Jpn. J. Appl. Phys.,32 (1993) 2333-2336.
    [27]X. Shang, X. Gong, J. Xiong, D. Zhang and J. Cheng, "Temperature stable amorphous-TeO2/36°-46°Y-X LiTaO3 substrates for surface acoustic wave applications," Appl. Phys. Lett.92(2008) 233501.
    [28]S. W. Wenzei and R. M. White, "Analytic comparison of the sensitivities of bulk-wave, surface-eave, and flexural plate-wave ultrasonic gravimetric sensors," Appl. Phys. Lett.,54(1989) 1976-1978.
    [29]J. Du, G. L. Harding, J. A. Ogilvy P. R. Dencher and M. Lake, "A study of Love-wave acoustic sensors," Sensors and actuators A,56 (1996) 211-219.
    [30]O. Tamarin, C. Dejous and D. Rebiere, "Study of acustic Love wave devices for real time bacteriophage detection," Sensors and actuators B,91(2003) 275-284.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700