用户名: 密码: 验证码:
矿井通风系统优化调控算法与三维可视化关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机及信息技术的高速发展,数字与可视化等信息技术越来越广泛应用于工业化生产的各个领域,传统产业的信息化改造与技术升级成为大势所趋。矿业行业作为国家能源与原材料供应提供者,把握着国民经济发展的命脉。我国矿业经过半个世纪的快速发展,已建成国有矿山近万座,集体矿山和非国有矿山20多万座,年开采矿石量超过50亿t。因此,数字矿山技术已成为矿山企业技术进步的必由之路。
     矿井通风系统是传统的地下开采八大系统之一,与地下开采的生产安全息息相关。我国金属矿井自50年代以来逐步建立了机械通风系统,但风机的运转效率一直较低。据统计,国内矿山风机运转效率仅为40%左右,比设计的风机效率低一半以上。通风能耗约占矿井总能耗的1/3,通风电费约占通风能耗的70%。大型矿井的风机装机功率高达数千千瓦,年通风电费达数百万元。随着矿井服务年限的增长、开采深度的增加、生产规模的扩大,地下矿通风系统日益复杂,为满足井下各用风场所的风量需求,对通风系统的调控管理要求越来越高。
     矿井通风系统空间层位关系及网络拓扑结构复杂、通风动力设备及通风构筑物数量多、分布广,普遍存在设计与生产实际产能要求不相匹配的现象,且目前的通风管理手段及工具无法很好地满足实际需要。
     矿井通风系统的设计及调控作为矿山建设及日常管理的重要环节,是保障井下安全生产的基础。设计及管理方案的优劣直接影响到井下生产的安全性、生产成本、生产能力和整体经济效益。矿井通风系统是一个真三维的地理/地质环境,因此,要实现矿井通风系统的数字化设计及管理,其手段也应在真三维环境下进行的。因此,对于矿井通风优化调控系统的研究也必须在真三维环境下进行。
     本文着重对矿井通风系统优化调控算法与三维可视化关键技术展开研究,主要内容包含以下几个方面:
     (1)矿井通风优化调控系统软件体系构架的研究。针对矿山数字化软件涉及多专业、多功能、需求多样性等特点,提出“层次式平台+插件”的结构体系,有效地实现框架和构件的共享与复用,实现专业功能模块的任意扩展;将矿井通风优化调控系统作为矿山数字化系统平台的一个插件模块,并提出数据一体化管理机制,与平台以及其他专业功能模块共享基础数据,大大降低了通风系统建模难度,提高工作效率。
     (2)在全面分析二维及三维绘图环境下进行交互操作优缺点的基础上,结合矿井通风系统设计的特点,提出了“绘图工作面”的概念,大大提高了设计人员在真三维环境下矿井通风系统设计工作的精确性和便捷性。
     (3)对复杂矿井通风网络解算问题进行了系统、深入的研究,分析了现有通风网络解算算法的局限性,结合回路风量法和节点风压法的优点,提出了一种新的网络解算算法——INSA算法。该算法具有收敛速度快、能解决含有单向回路的通风网络等优点。
     (4)对矿井通风系统调控工作中的两大关键问题——风机选优和风网调节,进行了深入的研究。①提出构建风机数据库,用以存储较为全面的风机数据信息,为风机选型提供必须的基础数据;②提出了用于风机优化选型的FOMR模型,利用风网按需分配解算的结果来计算待选风机的工况点,然后搜索风机数据库查找匹配的风机;③提出了用于搜索通路的GAFP算法,降低了搜索通路算法的时间复杂度。为矿井通风系统调控工作提供了新的解决方法和更加行之有效的管理手段。
     (5)对全矿的污染物动态模拟进行了深入的研究,提出了DVNTM模型,将通风系统抽象成一个离散的拓扑结构模型,便于表达通风网络中任意位置的污染物浓度值;再结合流体扩散理论对井下污染物的扩散模拟算法进行了研究,并详细阐述了其基本原理及具体实现步骤。为全矿的污染物动态模拟提供了一种新的有效方法;
     (6)提出了CMCA算法,充分利用矿井通风系统单线图的节点—正向弧—反向弧网络拓扑结构图,采用最外层闭合轮廓线优先的逆时针搜索方法,在巷道顶底板间插入若干与巷道底板平行的面,从而得到多层闭合轮廓线;对这些闭合轮廓线进行三维重建,从而生成三维联通巷道表面模型;
     (7)已将本文的研究成果集成于DIMINE矿山数字化软件平台中,并应用于云南大红山铜矿的实际优化调控工作中,该矿通风系统非常复杂,通风网络中分支数达1014条,采用5级机站通风方式,同时运行的风机数达90台,极具代表性。应用结果表明:解算结果与井下实测结果吻合度较高,优化调控及污染物扩散模拟计算结果对生产实际起到较好的指导作用。
     本文的研究成果解决了真三维环境下矿井通风优化调控工作中存在的关键技术和难点问题,为复杂矿井通风系统设计及管理工作提供了理论基础和技术支持。
With the rapid development of computer and information technology, digital technology is widely used in different fields of industrial production. It is a trend that traditional industry should be transformed and improved based on informationization. As a supplier of national energy and raw materials, mining industry holds the lifeline of national economic development. The half a century witnessed the rapid development of mining industry, with about ten thousand of state-owned mines and more than200,000collective-owned mines and non-state-owned mines built. The annual mining amount exceeds5,000,000,000tons. Therefore, digital informationization of mining industry has become an inevitable tendency.
     Mine ventilation system, which is one of the eight traditional underground mining systems, is closely interrelated to production safety. Since1950s, mechanical ventilation systems were gradually set up in metal mines in China, but the running efficiency of fans is relatively low. According to statistics, fans' running efficiency of domestic mines is merely about40%, which is lower than the half of the designed fan effciency. Ventilation energy consumption takes up1/3of the total energy consumption of mines. As for its electricity of ventilation, it costs70%of ventilation energy consumption. Large mines'fans installed power reach up to one thousand kilowatts, with annual ventiliation eletricity bills up to millions of RMB. With the increasing services years, mining depth of mines and expansion of production scale, underground ventilation system got more and more complicated. To meet the requirements of enough air volume for each air-required place, the control management of ventilation system will be attached more and more attentions.
     Owing to complicated spatial relationship of mine ventilation system and network topology, and with a large amount of ventilation power equipments and ventilation buildings that are distributed broadly, the problem that the ventilation design can not meet the requirements of actual production is ubiquitous; what's more, the existing management tools of ventilation can not better serve for actual mining.
     As the important step of mine construction and daily management, the design and control of mine ventilation system are the foundation for ensuring mine safety. The quality of design and management scheme will directly influence security, production cost, production capacity of underground mining and its overall economic benefits. Mine ventilation system is a real3D geological environment,therefore, the digital design and management of mine ventilation system should be carried out under real3D enrionment.
     This paper focuses on the optimization control algorithm of mine ventilation system and key technologies of3D visulization. The main contents includes:
     (1)Researches on constructing the optimization control software of mine ventilation system. Mine digitization software covers multi-disciplinary, with multi-function and diversified needs, therefor, a system of "hierarchical platform+plug-in" was put forward. This system can effectively share and reuse frame and components for free expanding professional function modules. Optimization control system of mine ventilation is employed as a plug-in module in the mine digitization system platform, and management mechanism of data integration was proposed for sharing basic data together with platform and other professional function modules. In this way, the difficulties of ventilation system modelling will be greatly reduced, with work efficiency being improved.
     (2)Based on the overall analysis on the merits and demerits of interactive operation under2D and3D drawing environment and design features of mine ventilation system, the concept of "drawing working face" was put forward. It greatly increases the accuracy and convenience of designers'works on mine ventilayion system under real3D environment.
     (3)The problems of network solution for complicated mine ventilation had been studied systematically and thoroughly. Also, the limitation of the existing ventilation network solution had been analyzed. Combined with circuit air-quantity method and the method of node ventilation pressure, a novel network solution-INSA was put forward. With a high convergence rate, this algorithm can solve the problems of ventilation network that includes unidirectional circuit.
     (4)Two key problems in the work of mine ventilation system control, namely optimal selection of fans and ventilation adjustment, were studied thoroughly.1) constructing fan database for storing comprehensive data information of fans, and providing necessary basic data for selecting fans.2)FOMR model, which is used for selecting optimal fans, was proposed. By adopting the results of ventilation on-demand solution, the operating points of to-be-selected fans can be calculated; and then search the fan database to find the suitable fans.3) GAFP algorithm that is used for searching pathway was put forward. It reduces the time complexity of searching pathway algorithm and provides new solutions and effective management for mine ventilation control system.
     (5) By researching dynamic simulation of pollutants in the whole mine, DVNTM model was put forward. Ventilation system is abstracted to a discrete topology model for conveniently expressing concentration value of pollutants anywhere in the ventilation network. By using the theory of fluid diffusion, diffusion simulation algorithm of underground pollutants was studied, with its fundamental principles and concrete steps elaborated in detail. This provides a freshly effective method for dynamic simulation of pollutants in the mine.
     (6) CMCA algorithm was proposed. The procedure is listed as follows: take full use of node-positive arc-reversed arc network topology diagram of single line diagram of mine ventilation system; adopt counterclock searching method of giving top priority to the outermost closed contour and insert several planes which are parallel to laneway's floor between laneway's roof and floor, to get multilayer closed contours; and then3D reconstruct these closed contours for generating surface model of3D connected laneway.
     (7) The research findings of this paper have been integrated in the DIMINE Digital Mine Software Platform and applied to the actual work of optimal control in Dahongshan Cooper Mine in Yunnan. It ventilation system is very complicated and typical, with more than1014of branches in the ventilation network. By adopting five-level machine station, the number of fans running at the same time is up to90. The application shows that ventilation network calculation and underground experimental results are in high degree of agreement; therefore, optimal control and results of pollutant diffusion simulation play a significant guiding role in the actual production.
     The research results of this paper proposed the key technologies of mine ventilation optimization control work under real3D environment and solved relevant problems. Also, this research provided theoretical basis and technological support for system design and management of complicated mine ventilation.
引文
[1]王从陆,吴超.复杂矿井通风网络分析的参数调节度数字实验[J].煤炭学报,2003,28(5):478-481.
    [2]王从陆,吴超.矿井通风系统与耗散结构理论[J].中国安全科学学报,2004,14(6):11-13.
    [3]赵梓成,谢贤平.矿井通风理论与技术进展评述[J].云南冶金,2002,31(3):23-37.
    [4]赵千里,高谦,贾进章等.通风网络中单向回路及其控制技术的探讨[J].矿业研究与开发.2006,26(6):92-95.
    [5]赵千里,高谦.控制通风网络中单向回路影响程度的方法探讨[J].矿业快报.2006.448(9)18-20.
    [6]刘剑,贾进章,于斌.通风网络含有单向回路时的通路算法[J].辽宁工程技术大学学报.2003,22(6):721-724.
    [7]刘剑,贾进章,郑丹.多级机站通风方式中的单向回路问题[J].有色金属.2004.56(1):104-107.
    [8]杨志强,赵千里.矿井通风三维仿真模拟理论与矿用空气幕理论[M].北京:冶金工业出版社,2008.
    [9]吴超.矿井通风与空气调节[M].长沙:中南大学出版社,2008.
    [10]刘杰,谢贤平.多风机多级机站通风节能原理初探[J].金属矿山.2010,62(5):71-74.
    [11]陈光柱,胡亚非.通风机选型软件的开发技术[J].流体机械.2002,30(4):17-19.
    [12]傅源方.通风机安全经济运行工况控制系统研究[D].青岛:山东科技大学.2000.
    [13]张水平,熊正明.矿井通风设计阶段主扇压力确定方法的研究[J].金属矿山.2001,305(11):51-54.
    [14]林建广,蒋仲安.具有网络图绘制与风机优选功能的矿井通风网络解算系统[J].矿冶工程.2007,27(3):20-27.
    [15]Hu Yu-nan, O I Koroleva, M Krstic. Nonlinear Control of Mine Ventilation Networks[J]. Systems & Control Letters.2003,49(4):239-254.
    [16]Zhao Dan, Liu Jian, Pan Jing-tao. Hybrid Genetic Algorithm for the Optimization of Mine Ventilation Network[J]. Journal of Coal Science & Engineering.2009,15(4): 389-393
    [17]M T Parra, J M Villafruela, F Castro. Numerical and Experimental Analysis of Different Ventilation Systems in Deep Mines[J]. Building and Environment.2005, 40(2):87-93.
    [18]I S Lowndes, T Fogarty, Z Y. Yang. The Application of Genetic Algorithms to Optimise the Performance of a Mine Ventilation Network:the Influence of Coding Method and Population Size[J]. Soft Computing.2005,9(7):493-506.
    [19]李江,陈开岩,林柏泉.遗传算法在矿井通风网络优化中的应用[J].中国矿业大学学报.2007,36(6):789-793.
    [20]徐瑞龙,施圣荣.矿井通风按需调节的通路法[J].阜新矿业学院学报.1984,3(3):21-30.
    [21]高随祥.图论与网络流理论[M].北京:高等教育出版社,2009.
    [22]刘剑.流体网络理论[M].北京:煤炭工业出版社,2002.
    [23]吴超.矿井通风系统污染实时模拟程序[J].中南矿冶学院学报.1990,21(5):460-466.
    [24]王文,桂祥友,王国君.煤矿井下粉尘污染与防治[J].煤炭技术.2002,21(1):43-45.
    [25]王鹏飞,黄俊歆,朱卓慧等.普采工作面呼吸性粉尘浓度分布的数学模型[J].湖南科技大学学报(自然科学版).2010,25(4):21-24.
    [26]王从陆.非灾变时期金属矿复杂矿井通风系统稳定性及数值模拟研究[D].长沙:中南大学,2007.
    [27]吴慧欣.三维建模技术的研究与应用[D].西安:西安建筑科技大学:2004
    [28]李仲学,李翠平.矿床仿真及体视化技术[J].计算机仿真,2000,17(5):6-8.
    [29]程世杰.计算机图形学的发展状况与应用前景[J].黑龙江八一农垦大学学报,2000,12(1):65-68.
    [30]D Gerst,傅庆瑜.金属矿地下开采的计算机辅助设计[J].国外金属矿山,1990(11):89-92.
    [31]张幼蒂,王玉浚.采矿系统工程研究现状与展望[J].中国矿业,1994(2):68-71.
    [32]林在康,燕雪峰.采矿CAD软件包体系模型[J].中国矿业大学学报,2000,29(1):308-311.
    [33]陈建宏,周智勇,古德生.采矿CAD系统研究现状与关键技术[J].金属矿山,2004(10):5-8.
    [34]吕文生,蔡嗣经,杨鹏.矿山现代设计方法探讨[J].矿冶,2003,12(4):16-18.
    [35]毕林.数字采矿软件平台关键技术研究[D].长沙:中南大学.2010.
    [36]孙昌爱,金茂忠,刘超.软件体系结构研究综述[J].软件学报.2002,13(7): 1228-1237.
    [37]D E Perry. Software Engineering and Software Architecture. In:Feng, Yu-lin, ed. Proeeedings of the International Conference on Software:TheoryandPractiee[M]. Beijing:Eleetronic Industry Press,2000.
    [38]B Boehln. Engineering Context(for Software architecture), invited talk, In:Garlan D., ed. Proeeedings of the 1st International Workshop on Architecture for Software Systems Seattle[M]. New York:ACM Press,1995.
    [39]Zhang Shi-kun, wang Li-fu, Yang Fu-qing. Architecture based Software Develpoment Model[J]. Research and Development of World Technology,1999,21(3):31-35.
    [40]Sun Chang-ai, Jin Mao-zhong, Liu Chao. Overviews on Software Architecture Research[J], Journal of SoftWare,2002,13(7):1228-1237.
    [41]Zhang Guang-quan, Zhu Xue-yang, Zheng Jian-dan. Researeh of Software architecture based on the Temporal Logic Language XYZ/E(Ⅱ)-a description of Typical Arehitecture Style [J]. Journal of Chongqing Normal University(Natural Science Edition),2002,19(1):1-3.
    [42]张友生,陈松乔.层次式软件体系结构的设计与实现[J].计算机工程与应用.2002,38(22),154-156.
    [43]张友生.层次式软件体系结构模型[J].计算机工程与应用.2004,40(30),20-23.
    [44]尚建嘎,刘修国,张宝一.层次风格固体矿产储量估算软件体系结构设计[J].计算机应用研究,2007,24(8):255-261.
    [45]张友生.软件体系结构[M].北京:清华大学出版社,2004.
    [46]张谦,贾永红.基于平台/插件软件架构的多源遥感影像融合系统设计[J].遥感技术与应用.2010,25(3):394-398.
    [47]姜振宇,全勇,汪光明.基于插件平台的软件开发过程研究[J].微机与应用.2007(S1):4-6.
    [48]李俊娥,周洞汝.“平台/插件”软件体系结构风格[J].小型微型计算机系统,2007,28(5):876-881.
    [49]Jerry Anderson. ActiveX Programming with VisualC++5.0[M].北京:清华大学出版社,1998.
    [50]Tom Armstrong, Ron Patton. ATL开发指南(第二版)[M].北京:电子工业出版社.2000.
    [51]D Box著,潘爱民译.COM本质论[M].北京:中国电力出版社,2001.
    [52]Edward Yourdon, Carl Aigha著,殷人昆等译.实用面向对象软件工程教程[M],电子工业出版社,1998.
    [53]陈建宏,周科平,古德生.新世纪采矿CAD技术的发展:可视化、集成化和智能 化[J].科技导报,2004(7):32-34
    [54]吕苗荣.信息提取与矿山信息系统的研究开发[D].长沙:中南大学,2003.
    [55]李壮阔.矿山信息系统体系结构研究与矿山数据集成与分析基础平台开发[D].昆明:昆明理工大学,2004.
    [56]李学锋.矿山企业数据仓库的应用研究[D].昆明:昆明理工大学,2005.
    [57]Wei Lian-jiang. Topology Theory of Mine Ventilation Network[J]. Procedia Earth and Planetary Science.2009,1(1):354-360.
    [58]李庆扬,王能超,易大义.数值分析[M].武汉:华中科技大学出版社,2006.
    [59]刘泽功.通风安全工程计算机模拟与预测[M].北京:煤炭工业出版社,1996.
    [60]D R Scott, F B Hinsley. Ventilation Network Theory. Coll.Engng.1953,324-326.
    [61]赵梓成.矿井通风复杂网路的解算[J].云南冶金.1975(2),70-76.
    [62]李恕和,王义章.矿井通风网络计算的牛顿法[J],煤炭学报.1982(4),22-25.
    [63]Bhamidipati. Nonlinear Programming Technique for Analysis of Mine Ventilation Networks. Transactions of the Institution of Mining and Metallurgy[J]. Section A: Mine Industry.1986,95(1):8-14.
    [64]T H Ueng. Analysis of Mine Ventilation Networks Using Non-linear Programming Techniques[J]. International Journal of Mining Engineering.1984, (2):245-252.
    [65]马心校.解算矿井通风网络不收敛的一种处理方法[J].煤炭工程师,1990(3):8-9.
    [66]刘志刚.应用四种类型风道法解算矿井通风网络[J].广西大学学报(自然科学版),1992,17(4):50-58.
    [67]陈海焱,张家达.实用通风网络优化调节的节点压力分析法[J].四川冶金,1998(1):12-15.
    [68]黄光球,陆秋琴,郑彦全.存在固定风量分支的通风网络解算新方法[J].金属矿山,2004(10):52-54.
    [69]李晓峰,魏连江,刘云岗.通风网络解算的改进研究及实现[J].矿业工程,2008(6):56-59.
    [70]刘驹生.节点风压法简介[J].煤炭工程.1982(6):16-17.
    [71]王中兵,郑丙建,王彦凯等.用节点法解算矿井通风网络的研究与应用[J].矿业安全与环保,1999(3):12-14.
    [72]谢贤平,冯长根,赵梓成.矿井通风网络模糊优化数学模型及其数值解法[J].中国安全科学学报,1999,9(6):23-28.
    [73]沈汉年,杨娟.矿井通风系统风流控制的改进算法[J].工业安全与防尘,2001,27(6):3-6.
    [74]王刚,毕于深,温永言等.应用贪心算法解算矿井通风网络的构想[J].煤矿安全, 2005,36(10):40-42.
    [75]陆秋琴,黄光球,姚玉霞.存在风阻未知分支的大规模复杂通风网络解算方法[J].湖南科技大学学报(自然科学版),2008,23(3):91-93.
    [76]黄光球,陆秋琴,姚玉霞.大规模复杂通风网络节点风压解算方法[J].计算机工程,2008,34(4):257-259
    [77]刘新王大尉.基于信赖域方法的矿井通风网络解算[J].辽宁工程技术大学学报(自然科学版),2008,27(A1):10-12.
    [78]王从陆,李树清.基于数值实验的分支阻力调节度研究[J].矿冶工程,2004(5),13-15.
    [79]刘秉正,彭建华.非线性动力学[M].北京:高等教育出版社,2005.
    [80]李建成.自然风压对煤矿通风的影响及治理[J].黑龙江科技信息,2004,(10):211-211.
    [81]王拓,王志扬,罗辉.自然风压在矿井通风中应用[J].山东煤炭科技,2004,(5):26-27.
    [82]刘振明,闰广祥.自然风压对矿井通风的影响分析山西焦煤科技[J].2003,(B06):1-2.
    [83]周静,刘剑,贾进章.矿井通风系统灵敏度分析[J].辽宁工程技术大学学报,2005,(s1):54-56
    [84]程志荣,宋伟.矿井自然风压计算方法探讨[J].陕西煤炭,2001,(3):20-24.
    [85]蒋增京.自然风压对矿井通风系统的影响[J].河北煤炭,2003,(5):3-4.
    [86]傅海亭,石绍海.矿山自然风压利用与探讨[J].山东冶金,2000,22(3):13-15.
    [87]Richard M Aynsley. Resistance Approach to Analysis of Natural Ventilation Airflow Networks[J]. Journal of Wind Engineering and Industrial Aerodynamics,1997,68: 711-719.
    [88]Yi Jiang, Donald Alexander, Huw Jenkins. Natural Ventilation in Buildings: Measurement in a Wind Tunnel and Numerical Simulation with Large-Eddy Simulation[J]. Journal of wind Engineering and Industrial Aerodenamics,2003,91(3): 331-353.
    [89]D W Etheridge. Nondimensional Methods for Natural Ventilation Design[J], Buildingand Environment,2002,37(11):1057-1072.
    [90]Gang Tan, Leon R Glicksman. Application of Integrating Multi-Zone Model with CFD Simulation to Natural Ventilation Prediction[J]. Energy and Buildings,2005, 37(10):1049-1057.
    [91]Geoffrey van Moeseke, Elisabeth Gratia, Sigrid Reiter, et al. Wind Pressure Distribution Influence on Natural Ventilation for Different Incidences and Environment Densities[J]. Energy and Buildings,2005,37(8):878-889.
    [92]Soteris Kalogirou, Mahroo Eftekhari, Ljiljana Marjanovie. Predicting the Pressure Coefficients in a Naturally Ventilated Test Room using Artificial Neural Networks[J]. Building and Environment,2003,38(3):399-407.
    [93]D W Etheridge. Unsteady Flow Effects due to Fluctuating Wind Pressures in Natural Ventilation Design-Instantaneous Flow Rates[J]. Building and Environment,2000, 35(4):321-337.
    [94]T Boulard, J Fmeneses, M Mermier, G Papadakis. The Mechanisms Involved in the Natural Ventilation of Greenhouses [J]. Agricultural and Forest Meteorology,1996, 79(2):61-77.
    [95]潘军义,董振民.多级机站通风局部阻力的研究[J].金属矿山,2001(9),49-51.
    [96]刘杨威,杜翠凤.多级机站通风网络解算系统的研究及开发[J].2010,30(6),49-52.
    [97]曹人靖,王超.等轴流通风机气动稳定性研究[J].流体机械,2001,29(4):5-8.
    [98]姬长发,徐炳坤,赵建会.多井口多风机矿井反风的非稳定流动模拟[J],西安科技学院学报,2003,23(3):241-244.
    [99]李庆军,侯国忠,黄晓波.浅谈多风井多风机分区并联通风[J].煤炭技术,2005,24(2):67-68.
    [100]S P Harrison, V S Kutay. An Analysis of Mining Fan Irregularities Relative to Underground Conditions, Ventilation and Poteniial Fan Defects[P]. In:A A Balkema, Rotterdam, Netherlands, eds. Proceedings of 2nd Mine Ventilation Symposium Volume 2. Mousset-Jones Press,1986:821-838.
    [101]G M Kamba, E Jacques, J Patigny. Application of the Simplex Method to the Optimal Adjustment of the Parameters of a Ventilation Network[P].In:Wala A M, eds. Proceedings of the 7th US Mine Ventilation Symposium. SME, Littleton, Co.,1995, 461-465.
    [102]G V Kumar, V R Sastry, G K Rao. Minimizing Power Consumption in Multiple Fan Networks by Optimum Fan Selection[P]. In:Wala A M, eds. Proceedings of the 7th US Mine Ventilation Symposium. SME, Littleton, Co.,1995,491-497.
    [103]C Huang, S Lin, Y J Wang. Constructing Subsystem Characteristic Curves for An Experimental Two-fan Network by Laboratory Measurement [J]. Trans SME,1993, 294:1858-1863.
    [104]I H Morris, F B Hinsley. Some Factors Affecting the Choice of Fans for Mine Ventilation[J]. Trans Inst. Mng Engr.,1951,111:489-524.
    [105]Y J Wang. Characteristic Curves for Multiple-Fan Ventilation Systems[J]. Trans SME Volume292,1992:1829-1836.
    [106]Y J Wang. Characteristic Curves for the Series-Parallel Ventilation Network with Multiple Fans[J]. Trans SME,1993, Volume294:1821-1827.
    [107]Khaled Ali El-Nagdy. Analysis of Complex Ventilation Networks in Multiple Fan Coal Mines[D]. Morgantown, West Virginia, College of Engineering and Mineral Resources at West Rirginia University,2002.
    [108]宁正元,王秀丽.算法与数据结构[M].北京:清华大学出版社,2006.
    [109]陈开岩.矿井通风系统优化理论及应用[M].徐州:中国矿业大学出版社,2003.
    [110]Wu Chao, A Rustan. Digital Simulation of Blast Fumes, Dust and Diesel Exhausts in Sublevel Caving[A]. Kostas Fytas. Computer Applications in The Mineral Industry[C]. Quebec Canada:A A Balkema,1988.631-640.
    [111]胡宇峰,陆志良.汽车隧道内气流及污染问题研究[J].中国公路学报,2004,17(4):109-113.
    [112]王海桥.掘进工作面射流通风流场研究[J].煤炭学报,1999,24(5):495-501.
    [113]王海桥,刘荣华,陈世强.独头巷道受限贴附射流流场特征模拟实验研究[J].中国工程科学,2004,6(8):45-49.
    [114]张大明,马云东,矿井粉尘污染防治新技术浅析[J].辽宁工程技术大学学报(自然科学版),2009,28(S1):22-24.
    [115]范辉.基于虚拟现实技术的可控可视化矿井通风研究[D].太原:太原理工大学,2007.
    [116]F S Hill.计算机图形学[M].北京:清华大学出版社,2006.
    [117]梁鹏帅,冯冬敬.三维可视化的研究现状和前景[J].科技情报开发与经济,2009,19(7):134-136.
    [118]王宝山.煤矿虚拟现实系统三维数据模型和可视化技术与算法研究[D].郑州:解放军信息工程大学,2006.
    [119]郭年琴,黄国平,王海宁.矿井通风网络三维仿真系统的开发[J].中国钨业,2005,20(5):42-45.
    [120]朱庆.3维地理信息系统技术综述[J].地理信息世界,2004,2(3),8-12.
    [121]陈海林,罗乐平,匡永江.矿井通风网络三维仿真与优化系统的开发[J].北京联合大学学报(自然科学版),2009,23(3):48-52.
    [122]熊祖强.工程地质三维建模及可视化技术研究[D].武汉:中国科学院武汉岩土力学研究所,2007.
    [123]Ventsim LTD. Ventsim VisualTM User Guide [EB/OL]. [2009-12-1]. http://www.ventsim.com/Manual.htm.
    [124]王德明,李永生.矿井火灾救灾决策支持系统的研究[M].北京:煤炭工业出版社, 1996.
    [125]李钢,陈开岩,聂百胜.矿井通风系统CAD技术研究[J].辽宁工程技术大学学报,2005,24(6):636-638.
    [126]李钢,陈开岩,何学秋等.矿井通风系统巷道自动绘制方法研究[J].煤炭科学技术,2006,34(6):797-800.
    [127]倪景峰.矿井通风仿真系统可视化研究[D].阜新:辽宁工程技术大学,2004.
    [128]张富民.采矿设计手册(3)井巷工程卷[M].北京:中国建筑工业出版社,1989.
    [129]魏连江,郝宪杰,张宏捷等.矿井通风仿真系统区分井巷层位关系的新方法研究[J].金属矿山,2008,384(6):105-107.
    [130]马小虎,潘志庚,石教英.基于凹凸顶点判定的简单多边形Delaunay三角剖分[J].计算机辅助设计与图形学学报,1999,11(1):1-3.
    [131]M R Garey, D S Johnson, F P Preparata, et al. Triangulating a Simple Polygon[J]. Information Proceeding Letters,1978,7(4):175-179.
    [132]R A Seidel. Simple and Fast Incremental Randomized Algorithm for Computing Trapezoidal Decompositions and For Triangulating Polygons [J]. ComputGeom Theory Appl,1991,1(1):51-64.
    [133]B Chazelle. Triangulating a Simple Polygon in Linear Time[J]. Discrete Comp Geom, 1991,6(5):485-524.
    [134]Wu Liang. Fast and Robust Simple Polygon Triangulation with/without Holes by Sweep Line Algorithm[EB/OL]. [2007-03-18]. http://www.mema.ucl.ac.be/-wu/Poly 2Tri/poly2tri.Html
    [135]李学军,黄文清.平面区域三角化的快速算法[J].计算机辅助设计与图形学学报,2003,15(2):233-238.
    [136]刘海涛,张三元,叶修梓.一种快速相容三角剖分算法[J].计算机应用研究,2007,24(1):235-237.
    [137]毕林,王李管,陈建宏等.快速多边形区域三角化算法与实现[J].计算机应用研究.2008,25(10):3030-3033.
    [138]黄俊歆,王李管,张力等.一种新的矿井通风系统双线巷道自动生成算法[J].计算机工程与应用.2011,47(24):221-224.
    [139]谭正华,王李管,毕林等.平面连通巷道三维实体分层建模方法[J].武汉大学学报(信息科学版).2010,35(3):360-363.
    [140]E E Catmull. A Subdivision Algorithm for Computer Display of Curved Surfaces[D]. PhD Thesis.The University of Utah,1974.
    [141]J F Blinn, M E Newell. Texture and Reflection in Computer Generated Images[C]. //Proceedings of ACM SIGGRAPH 1976. NewYOrk, NY, USA:ACM,1976: 542-547.
    [142]E A Bier, K R Sloan. Two-part Texture Mappings[J]. IEEE Computer Graphics and Application,1986,6(9):40-53.
    [143]范波,吴慧中.多面体表面纹理映射方法的研究[J].计算机研究与发展,1999,36(4):446-450.
    [144]M Segal, K Akeley. The Opengl Graphics System:AsPeeifieation(version3.0). http://www.opengl.org/doeumentation/specs 2008.
    [145]韩建伟.基于样本的三维表面纹理快速合成技术[D].杭州:浙江大学,2009.
    [146]苏志勋,赵元棣,曹俊杰.约束纹理映射的自适应方法[J].计算机辅助设计与图形学学报,2009,21(12):1721-1728.
    [147]卢章平,丁立军,戴立玲.基于分类的纹理映射方法综述[J].江苏大学学报(自然科学版),2006,27(5A):13-16.
    [148]黄燕,关美清.基于立体投影算法的局部球面纹理映射技术[J].东莞理工学院学报,2009,16(5):49-54.
    [149]田峰,王海桥,黄俊歆.矿井立井提升设备活塞作用理论分析[J].黑龙江科技学院学报,2006,16(3):163-166.
    [150]《采矿手册》编辑委员会.采矿手册(第六卷)[M].冶金工业出版社,1999.
    [151]吕早生,王光华.炮烟中有毒气体含量的确定[J].爆破,2004,21(3):11-13.
    [152]陆鸣盛,沈成康.图的连通性快速算法[J].同济大学学报(自然科学版),2001,29(4):436-439.
    [153]殷志祥.泛连通圈的一个充分条件[J],工程数学学报,1996,13(3):123-126.
    [154]李元左.关于网培周广义连通性的探讨[J],系统工程,1995.13(3):55-61.
    [155]王子云,谢朝军,唐上明等.城市隧道双洞口污染物扩散模拟分析[J],铁道工程学报,2010,147(12):69-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700