用户名: 密码: 验证码:
船舶与海洋平台三维参数化总体设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
总体设计是决定船舶与海洋平台安全性、功能性和经济性等各项性能的重要环节。目前,船舶与海洋平台的总体设计仍然采用传统的设计方法,即运用逐步近似、螺旋上升式的设计思想,在不同的软件平台上经过大量的重复建模、计算和分析完成一个设计方案。传统的方法通过设计螺旋,能够保证船舶与海洋平台的各项性能满足设计要求,但同时存在着技术落后、效率低和设计周期长等问题。因为设计效率低,传统的设计方法难以对方案进行优化设计,这不仅增加了建造成本,而且影响了船舶与海洋平台的安全性和营运经济性。所以,通过完善设计理论和改进设计方法,提高船舶与海洋平台的设计效率和质量,是缩短开发周期、降低建造成本和提高产品性能的重要途径,具有重要的工程实际意义。
     三维参数化设计是当前工业设计领域广泛应用的设计方法,能够显著改善产品的设计效率,提高设计质量。目前,参数化技术在船舶与海洋平台总体设计中的应用很少,更没有形成理论体系。本文将三维参数化设计应用于船舶与海洋平台的总体设计中,提出了系统的、符合船舶与海洋平台设计特点的三维参数化设计流程,并研究基于三维技术的、与参数化设计流程相适应的船舶与海洋平台设计方法,弥补了传统设计方法的不足。
     提出一种船体曲面参数化设计方法,采用NURBS表达船体曲面,通过统一的变换函数,完成船体曲面整体变换、局部变换和UV度变换等设计任务。实现了船体曲面的参数驱动,并能够在满足设计要求的前提下保证船体曲面的光顺性。根据主要结构构件型表面(TSPS)的特点,建立基于变量几何法的二维几何约束求解系统,实现TSPS草图的参数化设计。以草图为基础,通过三维特征造型的方法,实现船舶与海洋平台TSPS模型的三维参数化设计。
     通过由TSPS构成的外部模型和基于BRep表达的内部模型定义浮体和舱室的参数化模型。通过BRep的实体运算,计算船舶与海洋平台静水力性能和舱容要素。提出了基于BRep浮体模型的稳性通用计算方法,采用直接迭代的方法计算复原力臂,并基于BRep浮体模型完成破舱稳性计算。提出稳性曲面的概念、构造和基于稳性曲面校核海洋平台三维稳性的方法。
     根据船舶与海洋平台的结构特点,通过基于几何约束求解的参数化方法,建立船舶与海洋平台的参数化结构模型。提出一种网格划分算法,能够将各种复杂的参数化结构模型网格划分,得到满足不同分析目的的结构有限元模型。这种网格划分方法不仅能够实现网格的局部细化,并能保证高应力区域网格的质量。基于这种参数化结构有限元模型,提出两种结构优化设计方法。一是参数化结构形状优化方法,用于船舶与海洋平台主要尺度参数的优化设计;二是结构尺寸优化方法,用于构件板厚的优化设计。综合运用这两种优化方法,可以实现船舶与海洋平台结构优化设计,提高其结构安全性与经济性。
     船舶与海洋平台参数化总体设计方法支持自上而下的设计模式,具有尺度驱动、基于统一数据库和基于特征造型等特点。参数化模型具有较强的可变性和可重用性,适用于新船型开发、系列化设计和船型的优化设计。依据参数化设计流程及上述的各种基于三维技术的设计方法编制软件,并将其应用于工程实践,通过工程设计实例证明该方法具有较强的工程实用价值。
'General Design' is the determinants of ship and platform's performance, such as safety, functionality and economy etc. Currently, almost all of the ships and platforms are designed with traditional methods. Although traditional methods could ensure both functionality and safety of the products, problems exist such as lag in technology, low in efficiency etc. What's more, it is difficult to optimize the design scheme with traditional methods, which seriously affects both the cost and the operation economy of the ship and platform. Therefore, perfecting the design theory, improving the design method and increasing the design efficiency are of great importance to the engineering practice.
     The 3D parametric technology, which is widely used in the industrial design field, is able to improve the design efficiency and to raise the product quality significantly. However, there are very few applications of the parametric technology in ship and platform design field, and no systemic method has been proposed. The objective of this paper is to study how to apply the parametric technology in ship and platform design, and propose a systemic parametric design procedure. New methods based on 3D technology for the parametric design process are proposed to overcome the disadvantage of the traditional method. Those methods are as follows.
     A parametric hull surface design method is proposed, which expresses the hull with NURBS surface, and could accomplish the hull transform tasks with a uniform hull transformation function, such as global transformation, local transformation and UV degree transformation. The hull transformation function ensures that all design requirements are satisfied on the condition of hull surface fairness being unchanged. A 2D geometric constraint solving system is developed according to the characteristics of Theoretic Surface of Primary Structures (TSPS), which is able to complete parametric design of TSPS sketch. On the base of TSPS sketch, TSPS is created with 3D feature modeling.
     The floatation models and the tank models are expressed by two-layer parametric models, namely the outer model and the inner model. The outer model is consisted of TSPS, and the inner model is Boundary-Representation (BRep) solid model. The inner model is created automatically from the outer model. Hydrostatics and tank capacities are calculated based on the BRep model. A general stability calculation method base on BRep floatation model is presented, which calculates the righting lever with a direct iterative method. This method is applicable for both intact stability and damage stability calculation. The concept of stability surface is proposed as well as its creating method. The 3D stability of the platform is checked based on the stability surface.
     The structure model of ship and platform is created with parametric design method based on geometry constraint solving. A two-layer mesh generation method is developed, which is able to create the finite element model from complex parametric structure model for various finite element analysis. This mesh generator is very high efficient, and could generate fine mesh model with high quality. Two structure optimization methods, which are the shape optimization method and the plate thickness optimization method, are proposed based on the parametric finite element model. With these optimization methods, the structure strength is increased while the hull weight is reduced significantly.
     The ship and platform parametric design approach has the feature of dimension-driven, based on the unique database, feature modeling and top-down design procedure etc. The models created by this method are of great changeability and reusability, which make this method an excellent tool for variant design and series design. Softwares are developed in according with this method and were applied to the engineering practice, by which the engineering practicality of this method is proved.
引文
[1]Evans,J.H.Basic Design Concepts.Naval Engineers Journal,1959,71(4):671-678.
    [2]Mandel.P.and Chryssostomidis.C.A design methodology for ships and other complex systems.Philos.Trans.R.Soc,1972(273):85-98.
    [3]Snaith,G.R.and Parker,M.N.Ship design with computer aids.NE Coast Institute of Engineers and Shipbuilders,1972,88(5):151-172.
    [4]Buxton,I.L.Engineering Economics Applied to Ship Design.TRANS.RINA,1972(114):409-428.
    [5]Andrews,D.J.Creative ship design.Trans.RINA,1981(123):447-471.
    [6]Zheng Xuan-Liang,Lin Yan,Ji Zhuo-Shang.Collaborative Multidisciplinary Decision Making Based On Game Theory in Ship Preliminary Design.Journal of Marine Science & Technology.2009,14(3):334-344.
    [7]中国船舶行业协会.2008年全国船舶工业经济运行分析报告.2009,2,6.http://www.cansi.org.cn/cansi_jjyx/84553.htm.
    [8]F.Perez-Ardbas,J.A.Suarez-Suarez,L.Fernandez-Jambrina.Automatic surface modelling of a ship hull.Computer Aided Design,2006(38):584-594.
    [9]Konesky B.Newer Theory and algorithms for computer aided design of developable surfaces.Marine Technology,2005(42):71-85.
    [10]F.Perez-arribas,J.A.Suarez-Suarez,L.Fernandez-Jambrina.ParametTic Generation,Modeling,and Fairing of Simple Hull Lines With the Use of Nonuniform Rational B-Spline Surfaces.Journal of Ship Research,2008,52(1):1-15.
    [11]王世连,刘寅东.船舶设计原理.大连:大连理工大学出版社,2000.
    [12]陈明,林焰,纪卓尚,等.基于横剖面积曲线的船型变换法.大连理工大学学报,1998,38(4):387-391.
    [13]HOLL ISTER SM.Automatic hull variation and optimization.Presented at the meeting of the New England Section of the Society of Naval Architects and Marine Engineers,1996.
    [14]林焰,李铁骊,纪卓尚,戴寅生.一种船体UV度变换的设计方法.造船技术,1997(8),16-18.
    [15]刘阳,林焰.基于横向函数法的船体型线设计方法.大连理工大学学报.2008。48(1):95-97.
    [16]张萍,朱德祥,何术龙.参数化船型设计方法.中国造船,2008,49(4):26-35.
    [17]张萍,冷文浩,朱德祥,黄少锋.船型参数化建模.船舶力学,2009,13(1):47-54.
    [18]林焰,纪卓尚.船体型线设计方法研究.上海交通大学学报,1994,28(1):16-23.
    [19]盛振邦、杨尚荣、陈雪深.船舶静力学.上海:上海交通大学出版社,1992.
    [20]赵晓非,林焰.关于解船舶浮态问题的矩阵方法.中国造船,1985,(3):55-61.
    [21]马坤,张明霞,纪卓尚.基于菲线性规划法的船舶浮态计算.大连理工大学学报,2003,43(3):329-33 1.
    [22]林焰,李铁骊,纪卓尚.破损船舶自由浮态计算.大连理工大学学报,2001,41(1):85-89.
    [23]陆丛红,林焰,纪卓尚.遗传算法在船舶自由浮态计算中的应用.上海交通大学学报,2005. 39(5):701-710.
    [24]马坤,张明霞,纪卓尚,林焰.非线性规划法计算船舶稳性.中国造船,2003,44(2):81-84.
    [25]肖维维,李俊华,何刚,陶伟,冯佰威.船舶破舱稳性计算方法研究.中国水运,20064(11):12-14.
    [26]曹才轶,严家文,蔡新功.基于遗传算法的船舶破舱稳性扶正措施优化研究.中国造船。2008 49(2):36-40.
    [27]黄衍顺,郭振邦,王立新,徐慧.散货船破舱稳性计算.天津大学学报,1999-32(6):702-705.
    [28]王艳国,周瑞平.散货船破舱稳性计算研究及软件实现.江苏船舶,2008 25(6):1-7.
    [29]Xue Tao.An Investigation on Damage Stability and SafetyMeasures.Journal of Ship Mechanics,2002,6(6):30-34.
    [30]陆丛红,林焰,纪卓尚,古长江,程操红,李玉刚.基于ANSYS软件的船体外板有限元建模方法研究.船舶力学,2003(7):52-58.
    [31]Kullaa,J.(VTT),Klinge,P.Geometry based generation of a finite element model for stiffened shell structures.ComputersAnd Structures,1995,54(5):979-987.
    [32]YASUMI KAWAMURA,HIDEOMI OHTSUBO,KATSUYUKI SUZUKI.Development of a finite element modeling system for ship structures.J Mar Sci Technol,1999,2:35-51.
    [33]In-Il Kim.A development of data structure and mesh generation algorithm for whole ship analysis modeling system.Advances in Engineering Software,2006,37(2):85-96.
    [34]邵雄飞,俞铭华,郭小东.基于直接计算法的超大型油船整体舱段结构优化.中国造船,2008 49(2):41-49.
    [35]程远胜,孙莹,闫国强,田旭军,万鹏.基于神经网络与遗传算法的潜艇舱壁结构优化.中国造船.2008 49(4):81-87.
    [36]Light Robert,Gossard David.Modification of geometric models through variational geometry.CAD Computer Aided Design,1982,14(4):209-213.
    [37]孟祥旭.参数化设计模型的研究与实现.中国科学院计算技术研究所,1998.
    [38]高小山,蒋鲲。几何约束求解研究综述.计算机辅助设计与图形学学报,2004 116(14):385-396.
    [39]Ge J X,Chou S C,Gao X S.Geometric constraint satisfaction using optimization methods.Computer-Aided Design,2000,32(14):867-879.
    [40]Koichi Kondo,PIGMOD.Parametric and interactive geometric modeler for mechanical design.Computer-aided Design,1990,22(10):623-644.
    [41]K Kondo.Algebraic method for manipulation of dimensional relationships in geometric models.Computer-aided Design,1992,24(3):141- 147.
    [42]J S Aleedair Buchanan,Alan de Pennington.Constraint Definition System:Computer algebra based approach to solving geomerric constraint problems.Computer Aided Design,1993,25(2):711-750.
    [43]Kondo K.Algebraic method for manipulation of dimensional relationships in geometric models.Computer-Aided Design,1992,24(3):141-147.
    [44]吴文俊.几何定理证明的基本原理.北京:科学出版社,1994.
    [45]Gao X S,Chou S C.Solving geometric constraint systems Ⅱ.A symbolic approach and decision of rc-constructibility.Computer-Aided Design,1998 30(2):115-122.
    [46]Buchberger B.Grobner Basis:An Algorithmic Method in Polynomial Ideal Theory.Bose N K,edl Recent Trends in Multidimensional Systems Theory.Dl Reidel Publishing Company,1985.
    [47]A Verroust,F Schonek,D Roller.Rule-oriented method for parameterized computer-aided design.Computer-aided Design,1992,24(10):531-540.
    [48]Bhansali S,Kramer Glenn A,Hoar Tim Jl.Aprincipled approach towards symbolic geometric constraint Satisfaction.Journal of artificial Intelligence Research,1996,4:419-443.
    [49]Essert,Villard C,Schreck P,Dufourd J.Sketch-based pruning of a solution space within a formal geometric constraint solver.Artificial Intelligence,2000,124(1):139-159.
    [50]Jae Yeol Lee(?) and Kwangsoo Kim.A 2-D geometric constraint solver using DOF-based graph reduction.Computer-aided Design,1998,30(11),pp.883-896.
    [51]钱小平,向文,黄彤军,周济.基于规则求解的约束驱动的变量儿何造型系统.计算机辅助设计与图形学学报,1995,7(3):166-171.
    [52]Fudos I,Hoffmann C M.A graph-constructive approach to solving systems of geometric constraint.ACM Transactions on Graphics,1997,16(2):179-216.
    [53]William Bouma,Ioannis Fudos,Christoph Hoffmann,Jiazhen Cai,Robert Paige.Geometric constraint solver.Computer Aided Design,1995,27(6):487-501.
    [54]袁波,胡事民,孙家广.变量化设计中的多解性问题.计算机研究与发展,2000,37(1):86-94.
    [55]李彦涛,胡事民,孙家广.一个几何约束系统分解的新算法.计算机辅助设计与图形学学报,2000,12(12):926-930.
    [56]Gao X S,Hoffmann C M,Yang Weiqiang.Solving spatial basic geometric constraint configurations with locus intersection.Proceedings of ACM SM.New York,2002(1):95-104
    [57]Todd P.A k-tree generalization that characterizes consistency of dimensioned engineering drawings.Science and Industry advance with Mathematics Journal of Discrete Mathematics,1989,2(2):255-261.
    [58]孟样旭,汪嘉业,刘慎权.基于有向超图的参数化表示模型及其实现.计算机学报,1997,20(11):982-988.
    [59]马翠霞,孟祥旭,等.参数化设计中的对象约束模型及反向约束的研究.计算机学报,2000,23(9):991-995.
    [60]高青军,詹沛,陈卓宁,冯劲松.基于构造过程的参数化方法的研究.水利电力机,2000.8(1):17-21.
    [61]姜华,王涛,操晴,熊光楞.设计历史的建模方法.机械科学与技术,2000(2):197-207.
    [62]刘树青,周明虎.数控系统在卷簧机电气控制改造中的应用.中国制造业信息化,2009(19):23-26.
    [63]郭卫,张传伟.参数化液泵CAD系统的研究.机床与液压,2002(2):64-66.
    [64]李丹,常明,纪俊文.基丁参数化的无桥台斜腿刚架桥CAD系统的研究与开发.工程建设与设计,2002(6):6-8.
    [65]周军龙,陈立平,王波兴,周济.工程参数化设计的整体解决方法探讨.计算机工程与设计,1996,20(3):38-41.
    [66]彭力,陈顺怀.基于肥大型船舶球首的参数化设计.船海工程,2008,37(1):28-31.
    [67]金允龙.参数化技术在船舶结构CAD中的应用研究.交通部上海船舶运输科学研究所学,1997 12(2):32-35.
    [68]张伟东,沈金方,钱宏.基于构造过程的船舶节点参数化设计.计算机辅助设计,2000(2):26-31.
    [69]王鹏远.八叉树模型的改进及其实体表示方法.郑州轻工业学院学报(自然科学版),2005,20(4):61-63.
    [70]王世东,陈杨,张本福,孙光灵,黄晓梅.八叉树在三维建模中的应用.安徽建筑工业学院学报(自然科学版),2006,14(6):96-98.
    [71]黄正东,田韶鹏.参数化CSG模型之间等价参数域求解方法.华中科技大学学报(自然科学版),2004,32(3):1-4.
    [72]Suzanne Fuchele,Richard Hrawford.Three-dimensional halfspace constructive solid geometry tree construction from implicit boundary representations.Computer-Aided Design,2004,36(11):1063-1073.
    [73]杨静,姬雪敏,陈立忠,孙长嵩.基于面向对象方法的CSG建模.哈尔滨工程大学学报,2002 23(3)92-94.
    [74]孙长嵩,韩罡,刘金鑫.一个基于抽象类层次和扩展CSG结构的图形建模方法.哈尔滨工程大学学报,1998,19(1):55-59.
    [75]王新龙.谭光宇.袁哲俊.基于边界表示的曲面实体造型系统的数据结构.哈尔滨工程大学学报,1997,2(4):58-62.
    [76]高飞,叶尚辉.边界表示的数学模型及其应用.计算机辅助设计与图形学学报,1996,8(5):374-380
    [77]Buchele,SF.Three-dimensional binary space partitioning tree and constructive solid geometry tree construction from algebraic boundary representations.The University of Texas at Austin,1999.
    [78]詹海生,李广鑫,马志欣.基于ACIS的几何造型技术与系统开发.北京:清华大学出版社,2002.
    [79]万凯,何援军.基于ACIS平台的大型三维CAD系统的设计与开发.计算机仿真,2004(10):178-181.
    [80]朱心雄.自由曲线曲面造型技术[M],北京:科学出版社,2000.
    [81]Shamsuddin,S.M.,Ahmed,M.A.,Samian,Y.NURBS skinning surface for ship hull design based on new parameterization method.International Journal of advanced Manufacturing Technology,2006,28(9):936-941.
    [82]Piegl La,Wayne T.The NURBS book,2nd edn.Springer-Verlag,1997,Berlin Heidelberg New York.
    [83]陈家远,黎瑞程.船体曲面组合理论和型线精光顺.广船科技,2003(2):1-4.
    [84]蒋伟.赵鹏,赵原明,刘靖业.应用LINES模块进行船体型线设计.船舶,1999(1):31-35.
    [85]Hyungjun P.An approximate lofting approach for B-spline surface fitting to functional surfaces.Int J adv Manuf Technol,2001(18):474-482.
    [86]熊鑫,夏德麟.非均匀三次B样条在船舶性能计算方面的应用.船舶工程,1994(1):24-29.
    [87]朱军,王晓侠,查友其.样条函数在船舶静力计算中的应用.船舶工程,2003(3):16-23
    [88]陆丛红,林焰,纪卓尚.基丁NURBS表达的船舶静水力特性精确计算.船舶力学,200311(5):691-701.
    [89]陆丛红,林焰,纪卓尚.基于曲面表达的几何特性计算及其在船舶静力性能计算中的应用.哈尔滨工程大学学报,2005,26(6).
    [90]潘斌,刘震,卢德明.自升式平台拖航稳性研究.海洋工程,1996 14(3):15-20.
    [91]中国船级社.海上移动平台入级与建造规范.北京:中国船级社,2005.
    [92]American Bureau of Shipping.RULES FOR BUILDING AND CLASSING MOBILE OFFSHORE DRILLING UNITS.New York,2006.
    [93]付志红,俞集辉,苏向丰.引入方向因子的最小回路、最大回路搜索算法.重庆大学学报(自然科学版),2002,25(3):64-72.
    [94]Hansbo,Peter.On advancing front mesh generation in three dimensions.International Journal for Numerical Methods in Engineering,1995,38(21):3551-3569.
    [95]Weidong Min,Zesheng Tang,Zhengming Zhang,Yu Zhou,Minzhi Wang.Automatic mesh generation for multiply connected planar regions based on mesh grading propagation.Computer-Aided Design,1996,9(28):671-681.
    [96]Shinobu Yoshimura,Yoshitaka Wada,Genki Yagawa.Automatic mesh generation of quadrilateral elements using intelligent local approach.Comput.Methods appl.Mech.Eng,1999,179:125-38.
    [97]Lee KY,Kim II,Cho DY,Kim TW.An algorithm of automatic 2D quadrilateral mesh generation with line constraints.Computer-aided Design,2003(35):1055-1068.
    [98]IACS.Common Structural Ruals For Bulk Carriers.2006.
    [99]IACS.Common Structural Ruals For Oil Tankers.2006.
    [100]Jang Chang Doo,SongHa Cheol,Hwangin Seop,ShinSang Hoon,Lee Jong Hwan,Choelck Hung,Park Jinsoo.Design optimization of a ship hull block based on finite element analysis.Proceedings of the International Conference on Offshore Mechanics and arctic Engineering.2005(1):399-403.
    [101]Rahman,M.K.Optimization of panel forms for improvement in ship structures Structural Optimization,1996 11(3):195-212.
    [102]Xu Changwen,Yu Minghua.On multi-objective fuzzy optimization of ship structures.International Shipbuilding Progress,1995,42(432):325-341.
    [103]中国船级社.散货船结构强度直接计算分析指南.北京:中国船级社,2003.
    [104]中国船级社.钢制海船入级与建造规范.北京:中国船级社,2001.
    [105]American Bureau of Shipping.Rules for building and classing steel vessels.New York,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700