用户名: 密码: 验证码:
供水系统压力管路停泵水力过渡过程的计算机仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业化、城镇化的快速发展和人们对供水量需求的不断加大,并且我国水资源分布时空不均匀,因此越来越多的城市为了解决日趋尖锐的水资源供需矛盾,不得不兴建长距离输水工程。现代长距离输水管线向着大型化、管网化方向发展,输送过程日益复杂。
     在供水工程有压管路输水系统中,闸阀的启闭、泵的启动以及突发性事故停泵等都会引起管路中水流流速的急剧变化,从而造成瞬时压力大幅度上升或下降的现象,称为水力过渡过程或水锤。供水系统工程的安全运行受停泵水锤的影响最大,停泵水锤引起的水锤压力要比正常运行状况下的压力高1.5-4倍,当发生多处水柱分离并形成断流弥合水锤时,其产生的水锤压力将会更大。突发性事故停泵会导致供水系统工程供水中断,从而对人们的生产和日常生活造成重大损失。因此,对压力管路停泵水力过渡过程进行理论分析、准确预测和控制研究,并采取适当的水锤防护措施,确保供水工程的安全和稳定运行,具有重大的理论意义和实用价值。
     本文研究的主要内容如下:
     (1)分析供水泵站稳态运行特性。通过对供水泵站稳态运行特性仿真,分析供水泵站在水泵的不同组合和进出水池水位不断变化的条件下水泵的工作点,以及相对应的泵站系统的各种水力要素,以确定水泵的稳定工作范围,泵站的流量、扬程和效率等,尽量使水泵保持在高效区运行,以实现节能降耗。
     (2)详细介绍了管道中水流流动的数学物理模型,包括了运动方程和连续方程的推导。论述了水锤特征线法以及水泵的边界条件,为后文有关水力过渡过程计算机仿真的工作奠定了相应的理论基础。
     (3)对水力过渡过程计算模型的改进。在介绍恒定流摩阻系数计算及分析水锤方程中阻力项对水锤计算影响的基础上,采用MIAB变摩阻模型代替以往传统的摩阻处理方法,建立了基于MIAB变摩阻模型的水锤特征方程,探索优化水力过渡过程计算的方法。改进的水力过渡过程计算模型,应用于供水系统压力管路水力过渡过程计算机仿真,具有方法先进,计算精度高、收敛速度快的特点。这是本研究的创新所在。
     (4)根据空气阀进排气工作原理,在传统空气阀数学模型的基础上,采用实际气体的范德瓦尔方程的修正形式——R—K方程代替原空气阀数学模型中所假设的理想气体的状态方程,建立了新的空气阀数学模型,该新模型能满足工程计算的要求,可以优化空气阀防护水锤的计算,从而为空气阀的选型和设置提供理论依据和技术支持。这是本研究的另一个创新所在。
     (5)采用Visual Basic 6.0语言和SQL Server 2000数据库,开发出功能齐全、性能可靠、界面友善、操作简单的泵站水力过渡过程计算机仿真系统。通过对工程实例进行水力过渡过程的计算机仿真,给出合理的水锤防护措施,蝶阀的优化关闭程序以及空气阀的设置位置等,从而提供了供水工程安全经济合理的运行方式。
With the rapid development of the industrialization and the urbanization, the demand for water supply is increasing. Meanwhile, the time and space distribution of water resource is uneven in China. More and more Long-distance water supply projects had to be built to solve increasingly sharp contradiction between the supply and demand of water. At present, moving toward large-scale and network development, the long-distance water supply projects are becoming more complex.
     The sudden changes of the flow velocity is caused by opening or closing the valve and starting or stopping suddenly the pump in the pressure water supply system, which can lead to the rapid spread of pressure wave along the line and the sharp increase or reduce of the pressure within the water pipe. This phenomenon is called water hammer or hydraulic transition process. The water hammer caused by stopping pump due to an accident has an important effect on the safe operation of water supply projects, which can result in the present 1.5-4 times higher than normal. The pressure generated by the cavities collapsing water hammer is greater. Many water supply projects have been severely damaged by pump-stopping water hammer due to an accident. It caused great losses of the people's production and daily life. Therefore, the theoretical analysis, the forecast and control study of hydraulic transition process within the water pipe have great theoretical significance and practical value.Then the appropriate water hammer protection measures must be taken to ensure the safety and stable operation of water supply projects.
     The main contents of this study are as follows:
     (1) Analysis of the steady-state operation characteristics on water supply pump station. In different combination operation of pumps and variation water level of the access pool conditions, the operating point of pump and the various hydraulic elements of pump station corresponding to the operating point of pump were confirmed by the computer simulation of steady-state operation characteristics on water supply pump station. Thus the stable work area of pump and the pumping flow, head and efficiency were determined. Making the pumps running in high efficiency zone as far as possible is a good way to realize saving energy and reducing consumption.
     (2)The mathematical physics model of the pipeline flow was described in detail, including the derivation of motion equation and continuity equation. The method of characteristics used to calculate the water hammer and the pump boundary conditions were discussed. These laid the corresponding theoretical basis for the computer simulation of hydraulic transition process.
     (3)The Hydraulic transient model was improved. Based on introducing the calculation of friction coefficient on steady flow and analyzing the influence of resistance items to the calculation of water hammer by water hammer equations, the MIAB model was used instead of the traditional processing method of friction. The water hammer characteristic equations were established on the basis of the MIAB model. The optimum calculation method of hydraulic transition process was studied. Applied in the computer simulation of hydraulic transition process in the pressure water supply system, the improvement model of calculating hydraulic transition process has the characteristics of the methods is advanced, high precision and fast convergence. This is the innovation of this study.
     (4) According to the intake and exhaust principle of air valve and the traditional mathematical model of air valve, the R-K equation which is modified by van der Waals equation was used instead of the ideal gas equation. Thus the improved mathematical model of air valve was established. The new model can meet the engineering calculation requirements, and optimize the calculation of water hammer protection with air valve. Thereby it can provide the theory basis and the technical support for the selection and setting of air valve. This is another innovation of this study.
     (5) Combined with the engineering practice, Based on Visual Basic 6.0 and SQL Server 2000 database, the computer simulation system of hydraulic transition process on pump station was designed. The features of the computer simulation system are complete functions, reliable performance, friendly interface and easy operation. According to the computer simulation of hydraulic transition process on the example of practical engineering, the reasonable protection measures for water hammer were given. At the same time, the optimization program of butterfly valves and the setting position of air valve were confirmed. Thus the safety and economical operation mode was provided in the water supply system.
引文
[1]穆祥鹏,练继建,刘瀚和.复杂输水系统水力过渡的数值方法比较及适用性分析[J].天津大学学报,2008,41(5):515-521.
    [2]陈辉.水锤偏微分方程组有限元方法正反演[D].哈尔滨:哈尔滨工业大学理学硕士学位论文,2006.
    [3]曲世琳,袁一星,伍悦滨等.长距离输水管线的非恒定流动分析[J].中国给水排水,2005,21(12):59-61.
    [4]Brunone B, Karney W, Mecarelli M, et al. Velocity profiles and unsteady pipe friction in transient flows [J]. Journal of Water Resource Planning and Managent,2000, (4):236-244.
    [5]Wood D J, Kao T Y. Evaluation of quasi-steady approximation for viscous effects in unsteady liquid pipe flow [A]. ASME[C]. ASME,1968:33-68.
    [6]Streeter V L, Lai C. Waterhammer analysis including fluid friction [J]. Journal of the Hydra Devision, ASCE,1983,88(3):79-112.
    [7]Zielke W. Frequency-dependent friction in transient pipe flow [J]. Journal of Basic Engrg, ASME,1968,90(1):109-115.
    [8]Brunone B, Golia U M, Greco M. Some remarks on the momentum equation for fast transients [A]. Int Meeting on Hydraulic Transients with Column Separation,9th Round Table[C]. IAHR, Valencia, Spain,1991.140-148.
    [9]余代广,胡明,姚荣等.水锤计算中摩阻的处理方法[J].水利水电科技进展,2003,23(5):58-61.
    [10]Vardy A E, Hwang K L. A characteristic model of transient friction in pipes [J]. Journal of Hydraulic Research, Delft, Netherlands,1991,29(5):669-684.
    [11]Silva-Araya W F. Chaudhry M H. Computation of energy dissipation in transient flow [J]. Journal of Hydra Engrg, ASCE,1997,123(2):108-115.
    [12]Nash G A, Karney B W. Efficient inverse transient analysis in series pipe systems [J]. Journal of Hydraulic Engineering, American Society of Civil Engineering,1999,125(7):761-764.
    [13]Press W H, Teukolsky S A, Vetterling W T. Flannary B P. Numerical recipes in calibration, second edition[M]. Cambridge, England:Cambridge University Press,1992.
    [14]Vitkovsky J P, Simpson A R, Lambert M F. Leak detection and calibration using transients and genetic algorithms [J]. Journal of Water Resources Planning and Management,2000,126(4):262-265.
    [15]信昆仑,程声通,刘遂庆.实数型编码遗传算法校核管道摩阻系数[J].中国给水排水,2004,20(9):68-70.
    [16]戚蓝,谢国权,曾祥忠等.沿程阻力系数的神经网路计算方法[J].水利水电技术,2003,34(9):5-7.
    [17]Walid H. SHayya, Shyam S. Sablani. An artificial neural network for non iterative calculation of the friction factor in pipeline flow [J]. Computers and Electronics in Agriculture,1998:219-228.
    [18]才建,官敬,宋生奎.水力管网摩阻参数的辨识校正方法述评[C].第一届中国水利水电岩土力学与工程学术讨论会论文集,2006:1108-1110.
    [19]Wylie E B, Streeter V L, Suo L S. Fluid Transients in Systems. McGraw-Hill, New York,1993.
    [20]Qui D Q, Burrow R. Prediction of Pressure Transients with Entrapped Air in a Pipeline[C].7th International Conference on Pressure Surges. BHRA, Harrogate, England,1996:251-263.
    [21]Campbell A. The Effeet of Air Valves on Surge in Pipeline[C].4th International Conference on Pressure Surges, BHRA, Bath, United Kingdom, 1983:89-102.
    [22]Stephenson D. Effects of Air Valves and Pipework on Water Hammer Pressures [J]. Journal of Transportation Engineering, ASME,1997, (3):101-106.
    [23]郑源,屈波等.有压输水管道系统含气水锤防护研究[J].水动力学研究与进展,2005,20(4):436-441.
    [24]蒋劲,李继珊,赵红芳.泵系统管线局部凸起水锤防护措施的研究[J].华中科技 大学学报(自然科学版),2003,31(5):65-67.
    [25]刘梅清,孙兰凤,周龙才等.长管道泵系统中空气阀的水锤防护特性模拟[J].武汉大学学报(工学版),2004,37(5):23-27.
    [26]Tullis J P. Control of flow in closed conduits [M]. Colorado State University press, Fort Collin, CO,1971:315-340.
    [27]Lee T S. Air influence on Hydraulic Transients on fluid system with air valves [J]. Journal of Fluids Engineering, ASME,1999,121(9):646-650.
    [28]Lee T S, Leow L C. Numerical study on the effects of air valve characteristics on pressure surges during pump trip in pumping systems with air entrainment [J]. International Journal for Numerical Methods in Fluids,1999:645-655.
    [29]Lingeireddy S, Wood D J, Zloczower N. Pressure surges in pipeline systems resulting from air releases [J]. Joumal AWWA,2004, (7):88-94.
    [30]梁兴,王敏涛.空气阀流量特性对水锤防护效果的影响分析[J].水科学与工程技术,2008,(3):74-76.
    [31]刘志勇,刘梅清.空气阀水锤防护特性的主要影响参数分析及优化[J].农业机械学报,2009,40(6):85-89.
    [32]赵秀红.长距离压力输水工程水锤防护研究[D].西安:西安理工大学,2008.
    [33]Martin C S, Lee N H. Rapid expulsion of entrapped air through an orifice [C].8th International Conference on pressure surges, BHRA, Bury St, Edmunds, England,2000.
    [34]杨开林,石维新.南水北调北京段输水系统水力瞬变的控制[J].水利学报,2005,36(10):1176-1182.
    [35]杨开林,陈景富.淮水北调临涣工业园输水工程空气阀的合理配置[J].水利水电技术,2010,41(3):53-58.
    [36]朱满林.泵供水系统水锤防护及节能研究[D].西安:西安理工大学,2007.
    [37]吴建华.供水泵站工程新技术[M].北京:中国水利水电出版社,2002:24-45.
    [38]刘竹溪,刘光临.泵站水锤及其防护[M].北京:水利电力出版社,1985:13.
    [39]杨开林.电站与泵站中的水力瞬变及调节[M],北京:中国水利水电出版社,2000.
    [40]栾鸿儒.水泵及水泵站[M].北京:中国水利水电出版社,1993:256-264.
    [41]吴持恭.水力学[M].北京:高等教育出版社,2003:143-146.
    [42]E B怀利,V L斯特里特.瞬变流[M].北京:水利电力出版社,1983.
    [43]Streeter V L, Lai C. Waterhammer analysis including fluid friction[J]. J. of the Hydraulic Devision, ASCE, Vol.88:79-112.
    [44]余代广.水锤计算中摩阻的处理方法综述[J].水电站设计,2004,20(2):3-6.
    [45]陈明,蒲家宁.长输管道瞬变流摩阻的实用计算法[J].油气储运,2008,27(11):17-21.
    [46]刘刚.瞬变流摩阻计算及摩阻对水力瞬变的影响[J].力学与实践,2003,25(1):13-15.
    [47]Trikha A K. An efficient method for simulating frequency-dependent friction in transient liquid flow [J]. Journal of Fluids Engineering,1975, 97(1):97-105.
    [48]Vardy A E, Brown J M. On turbulent unsteady, smooth-pipe-friction [C]. Proc of the 7th International Conf on Pressure Surges BHR Group, Harrogate, United Kingdom,1996:289-311.
    [49]Vardy A E, Brown J M. Transient turbulent friction is smooth pipe flows [J]. Journal of Sound and Vibration,2003,259(5):1011-1036.
    [50]Zarzycki Z. Hydraulic resistance of unsteady turbulent liquid flow in pipelines [C]. Proc 3rd Int Conf on Water Pipeline Systems BHR Group, the Hague, the Netherlands,1997:163-178.
    [51]Bergant A, Simpson A R and Vitkovsky J P. Review of unsteady friction models in transient pipe flow[C]. Proc.9th Int. Meeting of the Work Group on the Behavior of Hydraulic Machinery under Steady Oscillatory Conditions, IAHR, Brno, Czech Republic.1999.
    [52]Bergant A, Simpson A R and Vitkovsky J P. Developments in unsteady pipe flow friction modeling [J]. Journal of Hydraulic Research.2001, 39(3):249-257.
    [53]Vitkovsky J P, Bergant A, Simpson A R, et al. Systematic evaluation of one-dimensional unsteady friction models in simple pipelines [J]. Journal of Hydraulic Engineering,2006, (132):696-708.
    [54]袁健,胡明,树锦.基于EIT摩阻模型与随机摩阻模型的水击随机分析[J].水动力学研究与进展,2009,24(2):250-256.
    [55]Brunone B, Ferrante M and Calabresi F. High Reynolds number transients in a pump rising main[C], Field tests and numerical modeling,4th International Conference on Water Pipeline Systems, York, UK, BHR Group, 2001.
    [56]张旭.空气阀在输水工程中的应用[J].核工程研究与设计,2007,8:18-20.
    [57]石建杰.空气阀在长距离输水工程中的应用[J].广西水利水电,2009(2):35-38.
    [58]张玉先,陈欣,张硕等.常州市大口径输水钢管爆管原因与对策研究[J].给水排水,2006,32(7):89-93.
    [59]Wylie E B, Streeter V L, Suo Lisheng. Fluid Transient in Systems [M]. Prentice Hall, Englewood Cliffs, New Jersey,1993,130-132.
    [60]Y Dvir. Flow control devices [M]. Lehavot Habashan. Israel:1997.
    [61]严海军,刘竹青,吕娟妃.灌溉工程中空气进排气阀的选型计算[J].节水灌溉,2006,(3):10-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700