用户名: 密码: 验证码:
煤层气运移LBM模型与井间干扰模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
储层模拟是煤层气开发工程中的一个必要环节,通过储层模拟可以获得煤层气井的生产特征,对煤层气的采收做出预测。在储层模拟中,描述煤层气运移的控制方程通常采用数值方法进行求解,如有限差分法,求解的关键步骤是连续方程的离散化和求解网格的划分,不同的离散方法和网格划分方法,解算时的计算量和求解精度不同。本文对煤层气运移控制方程求解方法进行了探索,引入计算流体力学中的格子Boltzmann方法(LatticeBoltzmann Method,LBM)来求解煤层气运移问题。有别于传统数值方法离散(物理现象抽象概括)——连续(建立宏观控制方程)——再离散(形成差分方程等)的求解思路,LBM方法的求解思路是用离散的控制方程模拟离散的物理现象,将离散到宏观的抽象及宏观到再离散的过程仅使用在理论建立阶段,而并不参与到流体运移的解算过程当中,相比数值方法省去了最困难的一步——连续的偏微分方程组离散化的步骤,从而可以降低求解难度、简化程序设计。
     与数值方法类似的是,LBM也需要建立解算网格。借鉴常规油藏数值模拟中的对储层使用PEBI网格划分的方法,采用分块控制单元影响因子的方法建立适用于煤储层的PEBI网格,该网格能够根据垂直井、水平井、断层、边界等控制单元对储层的影响程度和控制范围调整网格的疏密,近井区域易于进行网格加密形成小而密的单元,远离控制单元的区域则可形成大且稀疏的单元。在垂直井近井区域,PEBI网格形状类似于结构化网格中的径向网格,能够突出煤储层垂直井近井区域网格在储层模拟中的重要性,也能够对水平井近井区域的重要性予以凸显,并且消除了径向网格或笛卡尔网格等结构化网格方法难以对水平井、断层、边界等线性单元进行精确网格划分、非结构化网格生成网格数量过大的问题,同时包含结构化网格和非结构化网格的优点,在保证近井区域网格数量的同时,更少的储层网格数量意味着更少的计算量。结合煤储层PEBI网格非结构化及LBM的特点,对非规则网格运用LBM时,方程形式不需改变,仅需根据网格进行插值变换,提出了使用改进的LBM模型——有限体积LBM(Finite Volume LBM,FVLBM)模型进行煤层气运移模拟的方法。
     在深入探讨LBM求解物质运移问题的方法原理之后,基于二维LBGK模型和煤层气扩散所遵循的Fick第二定律,建立了微观尺度下煤层气扩散作用的二维非稳态LBM模型;结合Darcy定律,建立了宏观尺度下的煤层气单组分单相渗流的二维LBM模型,并分别通过计算机程序予以实现。
     随后,假设煤储层网格单元的边界是宏观裂隙,每个储层网格单元视为一个扩散单元,扩散单元之间只发生渗流作用,不发生扩散作用。采用四参数生长法(Quartet StructureGeneration Set,QSGS)根据煤基质单元的孔隙度生成扩散单元的二维随机多孔介质模型,运用建立的LBM模型对煤层气的扩散作用进行了模拟。模拟实例结果显示,所建立的模型能够反映煤储层压力、吸附气量在煤层气扩散过程中的实时动态变化,并且能够反映解吸气量、储层压力、吸附气量三者的动态关系。
     根据研究区的储层参数,运用建立的渗流LBM模型对煤层气垂直井井组开发中的井间干扰现象进行了模拟。模拟过程能够反映井间干扰对降低储层压力的促进作用,在设计的三种井间距中,布井方式和井间距对井间干扰产生的时间、对储层压降的贡献能够清晰展现,结合常规数值模拟软件Computer Modeling Group(CMG)的产能模拟结果,可以确定研究区的最佳井间距,以期在保证各单井的排采面积的同时充分利用井间干扰的积极作用促进煤层气采收。
Reservoir simulation is a vital link in coalbed methane (CBM) development project, and itskey technology and difficulty are the solutions to the governing equations of the CBM migration.The discretization of the equations and meshing of the reservoir determine the computationalcomplexity and the solution precision. Conventionally, numerical approaches like finitedifferential method (PDM) or finite element method (FEM) are the extensively employedmethods, and their solving ideas are "discretization"(the abstract of physical phenomena)--"continuum"(the macro governing equations)--"discretization"(the discrete differentialequations). In this dissertation, the authors involve the Lattice Boltzmann Method (LBM), aparticle method which has been extensively employed in the computational fluid dynamics, intothe solutions of the governing equations of the CBM migration.
     According to the coal reservoir characteristics, borrowing the idea of a reservoir meshingmethod from the conventional reservoir simulation, we involved an unstructured grid namelyperpendicular bisection (PEBI) grid in the CBM reservoir meshing to establish the solving lattice.Then, combined with the features of LBM, the finite volume LBM (FVLBM) method wasproposed based on PEBI grid. Considering the CBM migration laws and the LBM features,2Dunsteady-state diffusion model and single component single-phase seepage model for CBMdiffusion and flow are established and programmed respectively. Consequencely, the diffusionprocess was simulated in a2D stochastic porous medium model which generated by a porositycontrolled stochastic growth method--Quartet Structure Generation Set (QSGS). And wellinterference of the vertical well-group drainage was simulated as well. Under the premise ofmaximizing the drainage area of each single well while making full use of well interference'sacceleration for promote the CBM recovery, the optimal well spacing in the study area was fixedvia the simulations and in combination with the CBM productions resulted from the conventionalnumerical simulation software CMG.
引文
①http://exa.com/powerflow.html
    ②http://www.xflowcfd.com/
    ③http://www.ingrainrocks.com/
    ④http://www.opencimulation.org/
    ⑤http://www.futureenergy.ox.ac.uk/research/oil-gas
    ⑥粘性指进是油田开发中普遍存在的一种现象,指在两相不混溶流体驱替工程中,由于两相粘度的差异造成前沿驱替相呈分散液束形式(即像“手指”一样向前推进),是一种粘度小的流体驱替粘度较大的流体时产生的一种不稳定界面现象,是多相渗流的一个重要特性。
    [1] IEA. Coal Mine Methane In Russia: Capaturing the Safety and Environmental Benefits[R]. Paris, France.International Energy Agency,2009.
    [2]赵庆波,李贵中,孙粉锦,等.煤层气地质选区评价理论与勘探技术[M].北京:石油工业出版社,2009.
    [3] Robert, S. E. What's new in production[J]. World Oil,2005,226(2):21.
    [4]贾承造.煤层气资源量评估方法[M].北京:石油工业出版社,2007.
    [5]中联煤层气有限责任公司.21世纪中国煤层气产业发展与展望[M].北京:煤炭工业出版社,2003.
    [6] Gatens, M. Coalbed methane development: Practices and progress in Canada[J]. Journal of CanadianPetroleum Technology,2005,44(8):16-21.
    [7]傅雪海,秦勇,韦重韬.煤层气地质学[M].徐州:中国矿业大学出版社,2007.
    [8]戴金星.成煤作用中形成的天然气和石油[J].石油勘探与开发,1979,6(3):1-8.
    [9] Dai, Jinxing. Major developments of coal-formed gas exploration in the last30years in China[J].Petroleum Exploration and Development,2009,36(3):264-279.
    [10]申宝宏,刘见中,赵路正.煤矿区煤层气产业化发展现状与前景[J].煤炭科学技术,2011,39(1):6-10.
    [11] Young, G. B. C. Computer modeling and simulation of coalbed methane resources[J]. InternationalJournal of Coal Geology,1998,35(1):369-379.
    [12] Fanchi, John R. Principles of applied reservoir simulation[M]. USA: Gulf Professional Publication,2006.
    [13] Airey, E. M. Gas emission from broken coal: an experimental and theoretical investigation[J].International Journal of Rock Mechanics And Mining Sciences,1968,5(6):475-494.
    [14] Price, H. S., R. C. McCulloch, J. C. Edwards, et al. A computer model study of methane migration in coalbeds[J]. The Canadian Mining and Metallurgical Bulletin,1973,66(737):103-112.
    [15]张群.国外煤层气储层数值模拟技术的现状及发展趋势[J].煤田地质与勘探,2004,32(z1):18-25.
    [16] Energy, ICF Lewin. Coalbed Methane reservoir modeling[R]. Short Course for GRI,1987.
    [17] Sawyer, W. K., G. W. Paul. Development and application of a3D coalbed simulator[C]. SPE Paper No.CIM/SPE90-119, Presented at the International Technical Meeting of CIM Petroleum Society and SPE,Calgary,1990.1-9.
    [18] Advanced Resouces International Inc. COMETPC3-D user's guide[R]. Wanshington D.C.: ARI Inc,1994.
    [19] Paul, G. W., W. K. Sawyer, R. H. Dean. Validation of3D coalbed simulators[C]. Paper SPE20733,presented at the65th SPE Annual Technical Conference and Exhibition, New Orleans, LA,1990.203-210.
    [20] Inc., S. A. Holditch Associates. User's guide for SABRETM and COALGASTM petroleum reservoirsimulators[R],1993.
    [21]韩大匡,陈钦雷.油藏数值模拟基础[M].北京:石油工业出版社,1993.
    [22] Bybee, Karen. Coalbed Methane Reservoir Simulation: An Evolving Science[C]. The2003SPE AnnualTechnical Conference and Exhibition, Denver, USA,2004.
    [23] Seidle, J., L. Arri. Use of conventional reservoir models for coalbed methane simulation[C]. CIM/SPEInternational Technical Meeting, Calgary, Alberta, Canada,1990.
    [24]卢颖忠,黄智辉.煤层气储层的模拟方法[J].国外地质勘探技术,1997,(2):6-10.
    [25]王利,蔡云飞.煤层气储层描述技术及其应用[J].天然气工业,1997,17(6):28-31.
    [26]王利,蔡云飞.储集层参数对煤层气产出的影响[J].石油勘探与开发,1997(3):74-77.
    [27]张遂安.煤层气储层模拟原理及其应用[J].中国煤层气,1998,(1):34-36.
    [28]苏付义.煤层气储集层评价参数及其组合[J].天然气工业,1998,18(4):16-21.
    [29]许广明,武强,张燕君.非平衡吸附模型在煤层气数值模拟中的应用[J].煤炭学报,2003,28(4):380-384.
    [30]冯文光,梅世昕,侯鸿斌,等.煤层气藏三维数值模拟[J].矿物岩石,1999,19(1):43-48.
    [31]吴晓东,李安启.煤层气单井开采数值模拟的研究[J].石油大学学报:自然科学版,2000,24(2):47-49.
    [32]骆祖江,杨锡禄,赵俊峰,等.煤层气井数值模拟研究[J].中国矿业大学学报,2000,29(3):306-309.
    [33]宋文宁.吴堡地区煤层气开发评价[J].天然气工业,2000,20(6):72-76.
    [34]孙培德,鲜学福.煤层瓦斯渗流力学的研究进展[J].焦作工学院学报(自然科学版),2001,20(3):161-167.
    [35]韦重韬,秦勇,傅雪海,等.沁水盆地中南部煤层气聚散史模拟研究[J].中国矿业大学学报,2002,31(2):146-150.
    [36]韦重韬,秦勇,傅雪海,等.煤层气地质演化史数值模拟[J].煤炭学报,2004,29(5):518-522.
    [37]韦重韬,周荣福.煤层气多煤层扩散逸失地质历史模型及数值模拟[J].高校地质学报,2003,9(3):390-395.
    [38]唐书恒,蔡超,朱宝存,等.煤变质程度对煤储层物性的控制作用[J].天然气工业,2008,28(12):30-33.
    [39]唐书恒,韩德馨.煤对多元气体的吸附与解吸[J].煤炭科学技术,2002,30(1):58-60.
    [40]唐书恒,汤达祯,杨起.二元气体等温吸附-解吸中气分的变化规律[J].中国矿业大学学报,2004,33(4):86-90.
    [41]傅雪海,秦勇,张万红.高煤级煤基质力学效应与煤储层渗透率耦合关系分析[J].高校地质学报,2003,9(3):373-377.
    [42]王锦山,刘建军,刘明远,等.煤层瓦斯流固耦合渗流的二维数值模拟[J].河北科技师范学院学报,2004,18(3):19-23.
    [43]刘曰武,张大为,陈慧新,等.多井条件下煤层气不定常渗流问题的数值研究[J].岩石力学与工程学报,2005,24(10):1679-1686.
    [44]骆祖江.沁水盆地3#煤层气井三维数值模拟[J].吉林大学学报(地球科学版),2003,33(04):509-513.
    [45]骆祖江,叶建平.沁水盆地FZ煤层气井网三维数值模拟[J].成都理工大学学报(自然科学版),2005,32(3):271-277.
    [46]同登科,张先敏.致密煤层气藏三维全隐式数值模拟[J].地质学报,2008,82(10):1428-1431.
    [47]张先敏,同登科,胡爱梅.沁水盆地煤层气井网开采数值模拟[J].工程力学,2008,25(12):218-222.
    [48]汪志明,李晓益,张健.低渗透煤层气藏直井开采数值模拟研究[J].石油天然气学报,2009(3):144-147.
    [49]张冬丽.煤层气定向羽状水平井开采数值模拟方法研究[D].北京:中国科学院研究生院(渗流流体力学研究所),2004.
    [50]张冬丽,王新海.煤层气羽状水平井开采的影响因素分析及增产机理[J].科学通报,2005,50(z1):147-154.
    [51]张冬丽,王新海.煤层气羽状水平井开采数值模拟研究[J].煤田地质与勘探,2005,33(04):47-51.
    [52]鲜保安,高德利,王一兵,等.多分支水平井在煤层气开发中的应用机理分析[J].煤田地质与勘探,2005,33(6):34-37.
    [53]张健,汪志明,王开龙.煤层几何参数和渗透率对水平井开采煤层气的影响[J].石油钻探技术,2009,37(4):80-83.
    [54]唐书恒,杨起,汤达祯,等.注气提高煤层甲烷采收率机理及实验研究[J].石油实验地质,2002,24(6):545-549.
    [55]郑爱玲,王新海,刘德华.注气驱替煤层气数值模拟研究[J].石油钻探技术,2006,34(2):55-57.
    [56]孙可明.煤层气注气开采多组分流体扩散模型数值模拟[J].辽宁工程技术大学学报,2005,24(3):305-308.
    [57] Wei, Chongtao, Yong Qin, Geoff G. X. Wang, et al. Simulation study on evolution of coalbed methanereservoir in Qinshui basin, China[J]. International Journal of Coal Geology,2007,72(1):53-69.
    [58] Wei, Chongtao, Yong Qin, Geoff G. X. Wang, et al. Numerical simulation of coalbed methane generation,dissipation and retention in SE edge of Ordos Basin, China[J]. International Journal Of Coal Geology,2010,82(3-4, Sp. Iss. SI):147-159.
    [59]满磊.煤层气地质演化史数值模拟软件开发[J].煤炭科技,2004,(2):3-4.
    [60]满磊,韦重韬.煤层气地质演化历史数值模拟方法研究[J].江苏煤炭,2004,(2):8-10.
    [61]傅雪海,秦勇,姜波,等.山西沁水盆地中-南部煤储层渗透率物理模拟与数值模拟[J].地质科学,2003,38(2):221-229.
    [62]傅雪海,秦勇,李贵中.煤储层渗透率研究的新进展[J].辽宁工程技术大学学报:自然科学版,2001,20(3):739-743.
    [63]傅雪海,秦勇,薛秀谦,等.煤储层孔、裂隙系统分形研究[J].中国矿业大学学报,2001,30(3):225-228.
    [64]傅雪海,秦勇,张万红,等.基于煤层气运移的煤孔隙分形分类及自然分类研究[J].科学通报,2005,50(S1):51-55.
    [65] Fu, Xuehai, Yong Qin, Geoff G. X. Wang, et al. Evaluation of gas content of coalbed methane reservoirswith the aid of geophysical logging technology[J]. Fuel,2009,88(11):2269-2277.
    [66] Fu, Xuehai, Yong Qin, Geoff G. X. Wang, et al. Evaluation of coal structure and permeability with the aidof geophysical logging technology[J]. Fuel,2009,88(11):2278-2285.
    [67]王文峰,徐磊,傅雪海.应用分形理论研究煤孔隙结构[J].中国煤田地质,2002,14(2):26-27.
    [68]郑宪宝.人工裂缝井生产动态模拟研究[D].大庆:大庆石油学院东北石油大学,2006.
    [69]刘振宇.有限元法在油藏渗流中的理论和应用[D].大庆:大庆石油学院东北石油大学,2003.
    [70]贾红丽.多角形区域上偏微分方程混合非齐次边值问题的谱元方法和区域分解拟谱方法[D].上海:上海师范大学,2011.
    [71]王建瑜.谱方法在计算流体力学中的应用研究[D].西安:西北工业大学,2007.
    [72]徐翔.谱方法在一类数学物理反问题中的应用[D].上海:复旦大学,2010.
    [73]张云.多孔介质中流动的格子Boltzmann模拟[D].东营:中国石油大学(华东),2011.
    [74] Satoh, Akira. Introduction to Practice of Molecular Simulation: Molecular Dynamics, Monte Carlo,Brownian Dynamics, Lattice Boltzmann and Dissipative Particle Dynamics[M]. Burlington, USA:Elsevier,2011.
    [75] Chen, Sheng, Zhiwei Tian. Simulation of microchannel flow using the lattice Boltzmann method[J].Physica A: Statistical Mechanics and its Applications,2009,388(23):4803-4810.
    [76] Chen, Sheng, Zhiwei Tian. Simulation of thermal micro-flow using lattice Boltzmann method withLangmuir slip model[J]. International Journal of Heat and Fluid Flow,2010,31(2):227-235.
    [77] Pelliccioni, O., M. Cerrolaza, R. Suros. A biofluid dynamic computer code using the general latticeBoltzmann equation[J]. Advances in Engineering Software,2008,39(7):593-611.
    [78] Hirabayashi, M., Y. Chen, H. Ohashi. Lattice Boltzmann kinetic scheme for electro-optical andmagneto-optical effects in ferronematic liquid crystals[J]. Molecular Crystals and Liquid Crystals,2003,401:201-209.
    [79] Joshi, A. S., K. N. Grew, A. A. Peracchio, et al. Lattice Boltzmann modeling of2D gas transport in asolid oxide fuel cell anode[J]. Journal of power sources,2007,164(2):631-638.
    [80] Suzue, Y., N. Shikazono, N. Kasagi. Micro modeling of solid oxide fuel cell anode based on stochasticreconstruction[J]. Journal of Power Sources,2008,184(1):52-59.
    [81] Guo, Zhao Li, T. S. Zhao. Lattice Boltzmann model for incompressible flows through porous media[J].Physical Review E,2002,66(3):36304.
    [82] Ahrenholz, B., J. Niessner, R. Helmig, et al. Pore-scale determination of parameters for macroscalemodeling of evaporation processes in porous media[J]. Water Resources Research,2011,47.
    [83] Leonardi, C. R., D. R. J. Owen, Y. T. Feng. Numerical rheometry of bulk materials using a power lawfluid and the lattice Boltzmann method[J]. Journal of Non-Newtonian Fluid Mechanics,2011,166(12-13):628-638.
    [84] Tang, G. H., W. Q. Tao, Y. L. He. Gas slippage effect on microscale porous flow using the latticeBoltzmann method[J]. Physical Review E,2005,72(5):56301.
    [85] Zhao, Ye. Lattice Boltzmann based PDE solver on the GPU[J]. Visual Computer,2008,24(5):323-333.
    [86]何雅玲,王勇,李庆.格子Boltzmann方法的理论及应用[M].北京:科学出版社,2011.
    [87] Sikaneta, Sakalima. Novel lattice Boltzmann methods for modelling fracture and flow[D]. Halifax, NovaScotia, Canada: Dalhousie University,2009.
    [88] Adhvaryu, Chinmay H. The lattice Boltzmann method for computational fluid dynamics applications[D].Arlington: The University of Texas at Arlington,2008.
    [89] Jiao, Jianwu. Microscopic and macroscopic cellular-automaton simulations of fluid flow and wavepropagation in rocks[D]. Saskatoon, Canada: University of Saskatchewan,1996.
    [90] Anwar, Shadab. Lattice Boltzmann modeling of fluid flow and solute transport in karst aquifers[D].Miami, Florida: Florida International University,2008.
    [91]段雅丽.格子Boltzmann方法及其在流体动力学上的一些应用[D].合肥:中国科学技术大学,2007.
    [92]许友生.用晶格Boltzmann方法研究多孔介质内流体的复杂动力学特征[D].上海:华东师范大学,2006.
    [93] Soll, W. E., K. E. Eggert, D. W. Grunau, et al. A study of multiphase flow in fractured porous mediausing a microscale lattice Boltzmann approach[C]. Heidelberg: Computional Methods in Water Resource,1994.
    [94]肖晓春,潘一山.考虑滑脱效应的煤层气渗流数学模型及数值模拟[J].岩石力学与工程学报,2005,24(16):2966-2970.
    [95]张力,何学秋,李侯全.煤层气渗流方程及数值模拟[J].天然气工业,2002,22(1):23-26.
    [96]朱益华,陶果,方伟,等.低渗气藏中气体渗流Klinkenberg效应研究进展[J].地球物理学进展,2007,22(5):1591-1596.
    [97]滕桂荣,谭云亮,高明.基于lattice Boltzmann方法对裂隙煤体中瓦斯运移规律的模拟研究[J].岩石力学与工程学报,2007,26(S1):3503-3508.
    [98]滕桂荣,谭云亮,高明,等.基于LBM方法的裂隙煤体内瓦斯抽放的模拟分析[J].煤炭学报,2008,33(8):914-919.
    [99]邢玉飞.基于LBM地下煤层瓦斯运移仿真实现[D].西安:西安建筑科技大学,2009.
    [100]朱益华,陶果,方伟.基于格子Boltzmann方法的储层岩石油水两相分离数值模拟[J].中国石油大学学报(自然科学版),2010,34(3):48-52.
    [101]Sung, W., T. Ertekin. An Analysis of Field Development Strategies for Methane Production From CoalSeams [M]. Dallas, Texas:1987Copyright1987, Society of Petroleum Engineers,1987.
    [102]Close, J. C. Natural fracture in coal[M]: AAPG, Studies in Geology,1993:119-132.
    [103]Gamson, P., B. Beamish, David Johnson. Coal microstructure and secondary mineralization: their effectson methane recovery[J]. Geological Society,1996,109:165-179.
    [104]Laubach, S. E., R. A. Marrett, J. E. Olson, et al. Characteristics and origins of coal cleat: A review[J].International Journal of Coal Geology,1998,35(1-4):175-207.
    [105]Karacan, C., E. Okandan. Fracture/cleat analysis of coals from Zonguldak Basin (northwestern Turkey)relative to the potential of coalbed methane production[J]. International Journal of Coal Geology,2000,44(2):109-125.
    [106]傅雪海,秦勇,姜波,等.煤割理压缩实验及渗透率数值模拟[J].煤炭学报,2001,26(6):573-577.
    [107]王红岩,刘洪林,赵庆波,等.煤层气富集成藏规律[M].北京:石油工业出版社,2005.
    [108]傅雪海,秦勇.多相介质煤层气储层渗透率预测理论与方法[M].徐州:中国矿业大学出版社,2003.
    [109]傅雪海,秦勇,李贵中.沁水盆地中~南部煤储层渗透率影响因素分析[J].地质力学学报,2001,7(1):45-52.
    [110]张素新,肖红艳.煤储层中微孔隙和微裂隙的扫描电镜研究[J].电子显微学报,2000,19(4):531-532.
    [111]唐书恒,杨起,汤达祯.二元混合气体等温吸附实验结果与扩展Langmuir方程预测值的比较[J].地质科技情报,2003,22(2):68-70.
    [112]张松航,汤达祯,唐书恒,等.鄂尔多斯盆地东缘煤储层微孔隙结构特征及其影响因素[J].地质学报,2008,82(10):1341-1349.
    [113]赵志根,唐修义.低温氮吸附法测试煤中微孔隙及其意义[J].煤田地质与勘探,2001,29(5):28-30.
    [114]Smyth, M., M. J. Buckley. Statistical analysis of the microlithotype sequences in the Bulli Seam,Australia, and relevance to permeability for coal gas[J]. International Journal of Coal Geology,1993,22(3):167-187.
    [115]Smyth, M., M. Cameron. Organic petrology and source rock potential of sediments in the EromangaBasin, South Australia[J]. International Journal of Coal Geology,1982,1(4):263-281.
    [116]王生维,陈钟惠.煤储层孔隙、裂隙系统研究进展[J].地质科技情报,1995,14(1):53-59.
    [117]王生维,陈钟惠,张明,等.煤相分析在煤储层评价中的应用[J].高校地质学报,2003,9(3):396-401.
    [118]王生维,段连秀,陈钟惠,等.煤层气勘探开发中的煤储层评价[J].天然气工业,2004,24(5):82-84.
    [119]秦勇,张德民,傅雪海,等.山西沁水盆地中、南部现代构造应力场与煤储层物性关系之探讨[J].地质论评,1999,45(6):576-583.
    [120]段利江,唐书恒,刘洪林,等.煤储层物性对甲烷解吸及采出的影响[J].西安科技大学学报,2008,28(4):680-684.
    [121]张有生,秦勇,陈家良.煤层显微序列数学模拟及其在煤储层物性评价中初步应用[J].沉积学报,1998,16(4):118-123.
    [122]霍永忠,吴巧生.煤储层特性研究若干问题的思考[J].地质科技情报,1997,16(4):66-68.
    [123]李小彦.煤储层裂隙研究方法辩析[J].煤田地质与勘探,1998,26(A00):14-16.
    [124]童宏树,胡宝林.鄂尔多斯盆地煤储层低温氮吸附孔隙分形特征研究[J].煤炭技术,2004,23(7):1-3.
    [125]陈萍,唐修义.低温氮吸附法与煤中微孔隙特征的研究[J].煤炭学报,2001,26(5):552-556.
    [126]张松航,唐书恒,汤达祯,等.鄂尔多斯盆地东缘煤储层渗流孔隙分形特征[J].中国矿业大学学报,2009,38(5):713-718.
    [127]胡宝林,张志龙,车遥,等.鄂尔多斯盆地煤储层孔隙分形特征研究[J].淮南工业学院学报(自然科学版),2002,22(4):1-4.
    [128]张群.煤层气储层数值模拟模型及应用的研究[D].西安:煤炭科学研究总院,2002.
    [129]Morad, Kamal, Ray Mireault, Lisa Dean. Reservoir engineering for geologists: Coalbed MethaneFundamentals[J]. Reservoir,2008(9):23-26.
    [130]薄冬梅,赵永军,姜林.煤储层渗透性研究方法及主要影响因素[J].油气地质与采收率,2008,15(1):18-21.
    [131]Somerton, W. H., I. M. S ylemezo lu, R. C. Dudley. Effect of stress on permeability of coal[J].International Journal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts,1975,12(5):129-145.
    [132]邓泽,康永尚,刘洪林,等.开发过程中煤储层渗透率动态变化特征[J].煤炭学报,2009,34(7):947-951.
    [133]傅雪海,秦勇,李贵中.现代构造应力场煤储层孔裂隙应力分析与渗透率研究[J].地球学报,1999,20(z):623-627.
    [134]Durucan, Sevket, Ji-Quan Shi. Improving the CO2well injectivity and enhanced coalbed methaneproduction performance in coal seams[J]. International Journal of Coal Geology,2009,77(1):214-221.
    [135]Chatterjee, Rima, P. K. Pal. Estimation of stress magnitude and physical properties for coal seam ofRangamati area, Raniganj coalfield, India[J]. International Journal of Coal Geology,2010,81(1):25-36.
    [136]Liu, Jishan, Zhongwei Chen, Derek Elsworth, et al. Evaluation of stress-controlled coal swellingprocesses[J]. International Journal of Coal Geology,2010,83(4):446-455.
    [137]Palmer, Ian, John Mansoori. How permeability depends on stress and pore pressure in coalbeds: A newmodel[J]. SPE Reservoir Evaluation&Engineering,1998.
    [138]McKee, C. R., A. C. Bumb, R. A. Koenig. Stress-Dependent Permeability and Porosity of Coal and OtherGeologic Formations [J]. SPE Formation Evaluation,1988,3(1):81-91.
    [139]Walsh, J. B. Effect of pore pressure and confining pressure on fracture permeability[J]. InternationalJournal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts,1981,18(5):429-435.
    [140]Siriwardane, Hema J., Raj K. Gondle, Duane H. Smith. Shrinkage and swelling of coal induced bydesorption and sorption of fluids: Theoretical model and interpretation of a field project[J]. InternationalJournal of Coal Geology,2009,77(1-2):188-202.
    [141]张先敏,同登科.顶板含水层对煤层气井网产能的影响[J].煤炭学报,2009,34(5):645-649.
    [142]李洪波,韦重韬,张晓莉,等.煤层气井排采诱导渗透率变化模型研究[J].能源技术与管理,2009,(5):58-61.
    [143]Bustin, R. M., C. R. Clarkson. Geological controls on coalbed methane reservoir capacity and gascontent[J]. International Journal of Coal Geology,1998,38(1-2):3-26.
    [144]Diamond, William P., Steven J. Schatzel. Measuring the gas content of coal: A review[J]. InternationalJournal of Coal Geology,1998,35(1-4):311-331.
    [145]Kissell, F. N., C. M. McCulloch, C. H. Elder. The Direct Method of Determining Methane Content ofCoals for Ventilation Design[R]. U.S. Bureau of Mines Report of Investigation RI7767,1981.
    [146]苏现波,张丽萍.煤层气储层压力预测方法[J].天然气工业,2004,24(5):88-90.
    [147]张先敏,同登科,胡爱梅.基于裂隙分形维数的煤储层压力动态分析[J].天然气地球科学,2008,19(3):433-436.
    [148]黄华州,桑树勋,方良才,等.采动区远程卸压煤层气抽采地面井产能影响因素[J].煤田地质与勘探,2010,38(2):18-22.
    [149]黄华州,桑树勋,李国君,等.采动区远程卸压煤层气地面直井抽采机理分析[J].煤炭科学技术,2010,38(3):62-66.
    [150]Sang, Shuxun, Hongjie Xu, Liangcai Fang, et al. Stress relief coalbed methane drainage by surfacevertical wells in China[J]. International Journal of Coal Geology,2010,82(3-4):196-203.
    [151]Huang, Huazhou, Shuxun Sang, Liangcai Fang, et al. Optimum location of surface wells for remotepressure relief coalbed methane drainage in mining areas[J]. Mining Science and Technology (China),2010,20(2):230-237.
    [152]张胜利,李宝芳.煤层割理的形成机理及在煤层气勘探开发评价中的意义[J].中国煤田地质,1996,8(1):72-77.
    [153]毕建军,苏现波,韩德馨,等.煤层割理与煤级的关系[J].煤炭学报,2001,26(4):346-349.
    [154]Enever, J. R., A. Henning. The relationship between permeability and effective stress for austrlian coaland its implications with resport to coalbed methane exploration and reservoir modeling[C]. Proceedingsof the1997International Coalbed Methane Symposium, Alabama:The University of AlabamaTuscaloosa,1997.13-22.
    [155]Harpalani, S., G. L. Chen. Influence of gas production induced volumetric strain on permeability ofcoal[J]. Geotechnical and Geological Engineering,1997,15(4):303-325.
    [156]赵阳升,胡耀青.三维应力下吸附作用对煤岩体气体渗流规律影响的实验研究[J].岩石力学与工程学报,1999,18(6):651-653.
    [157]张泓,王绳祖,郑玉柱.古构造应力场与低渗透煤储层的相对高渗区预测[J].煤炭学报,2004,29(4):708-711.
    [158]员争荣.构造应力场对煤储层渗透性的控制机制研究[J].煤田地质与勘探,2004,32(4):23-25.
    [159]Zhou, Chun-mei, Ze-jun Zhang, Sheng-wei Wang, et al. Exploration of numerical simulation onpaleo-tectonic stress field[J]. Procedia Earth and Planetary Science,2009,1(1):875-881.
    [160]Zeng, Lianbo, Hongjun Wang, Lei Gong, et al. Impacts of the tectonic stress field on natural gasmigration and accumulation: A case study of the Kuqa Depression in the Tarim Basin, China[J]. Marineand Petroleum Geology,2010,27(7):1616-1627.
    [161]张新民,庄军,张遂安.中国煤层气地质与资源评价[M].北京:科学出版社,2002.
    [162]李斌.煤层气非平衡吸附的数学模型和数值模拟[J].石油学报,1996,17(4):42-49.
    [163]Guo, Xiao, Zhimin Du, Shilun Li. Computer modeling and simulation of coalbed methane reservoir[C].the SPE Eastern Regional/AAPG Eastern Section Joint Meeting, Pittsburgh, Pennesylvania, U.S.A.,2003.
    [164]Kolesar, J. E., Turgay Ertekin, S. T. Obut. The Unsteady-State Nature of Sorption and DiffusionPhenomena in the Micropore Structure of Coal[J]. SPE Formation Evaluation,1990(03).
    [165]Smith, Douglas M., Frank L. Williams. Diffusional Effects in the Recovery of Methane From Coalbeds[J].,1984(10).
    [166]Thimons, Edward D., Fred N. Kissell. Diffusion of methane through coal[J]. Fuel,1973,52(4):274-280.
    [167]聂百胜,马文芳.煤层甲烷在煤孔隙中扩散的微观机理[J].煤田地质与勘探,2000,28(6):20-22.
    [168]Smith, Douglas M., Frank L. Williams. Diffusional Effects in the Recovery of Methane From Coalbeds[J]. SPE Journal,1984,25(5):529-535.
    [169]Sawyer, W., G. Paul, R. Schraufnagel. Development And Application Of A3-D Coalbed Simulator[C].Annual Technical Meeting, Calgary, Alberta,1990.
    [170]Warren, J. E., P. J. Root. The Behavior of naturally fractured reservoirs[J]. SPE Journal,1963,3(3):245-255.
    [171]Kazemi, H., L. S. Merrill JR, P. R. Zeman. Numerical simulation of water-oil flow in naturally fracturedreservoirs[J]. SPE Journal. SPE5719,1976(11):317-326.
    [172]Mora, C. A., R. A. Wattenbarger. Analyst and Verification of Dual Porosity and CBM Shape Factors[M].Calgary, Alberta: Petroleum Society of Canada,2006.
    [173]Mora, C. A. Comparison of computation methods for CBM production performance[D]: Texas A&MUniversity,2007.
    [174]Lim, K. T., K. Aziz. Matrix-fracture transfer shape factors for dual-porosity simulators[J]. Journal ofPetroleum Science And Engineering,1995(13):169-178.
    [175]Gray, Ian. Reservoir Engineering in Coal Seams: Part1-The Physical Process of Gas Storage andMovement in Coal Seams [J]. SPE Reservoir Engineering,1987(02).
    [176]Gray, Ian. Reservoir Engineering in Coal Seams: Part2-Observations of Gas Movement in Coal Seams[J]. SPE Reservoir Engineering,1987(02).
    [177]Young, G. B. C., J. E. McElhiney, G. W. Paul, et al. An Analysis of Fruitland Coalbed MethaneProduction, Cedar Hill Field, Northern San Juan Basin[C]. SPE Annual Technical Conference andExhibition, Dallas, Texas,1991.
    [178]Ancell, K. L., S. Lambert, F. S. Johnson. Analysis of the coalbed degasification process at a seventeenwell pattern in the Warrior Basin of Alabama[M]. Pittsburgh, Pennsylvania,1980.
    [179]胡国忠,王宏图,范晓刚,等.低渗透突出煤的瓦斯渗流规律研究[J].岩石力学与工程学报,2009,28(12):2527-2534.
    [180]张新民,解光新.我国煤层气开发面临的主要科学技术问题及对策[J].煤田地质与勘探,2002,30(2):19-22.
    [181]倪小明,王延斌,接铭训,等.煤层气开采模式探讨[J].煤矿安全,2007,38(3):45-48.
    [182]蔚远江,杨起,刘大锰,等.我国煤层气储层研究现状及发展趋势[J].地质科技情报,2001,20(1):56-60.
    [183]李伟,吴建国.淮北矿区煤层气抽采技术与实践[C].煤层气勘探开发理论与实践,2007.
    [184]吴建国,李伟.淮北矿区煤层气抽采利用技术探讨[J].中国煤层气,2005,2(4):16-19.
    [185]袁亮,章立清,张炳光,等.淮南矿区煤层气井下抽放技术[J].中国煤层气,1998,(2):66-69.
    [186]袁亮.淮南矿区煤矿煤层气抽采技术[J].中国煤层气,2006,3(1):7-9.
    [187]Karimi, Kaveh. Coal Bed Methane Reservoir Simulation Studies[D]. Sydney: The University of NewSouth Wales,2005.
    [188]Terrald, L. S., S. Pauls, A. Richard. Coalbed methane reservoir engineering[M]. Chicago, Illinois, USA:Gas Research Institute,1996.
    [189]Aminian, K., S. Ameri. Predicting production performance of CBM reservoirs[J]. Journal of Natural GasScience and Engineering,2009,1(1-2):25-30.
    [190]LI, Jing-ming, Fei LIU, Hong-yan WANG, et al. Desorption characteristics of coalbed methanereservoirs and affecting factors[J]. Petroleum Exploration and Development,2008,35(1):52-58.
    [191]Ziarani, Ali S., Roberto Aguilera, Chris R. Clarkson. Investigating the effect of sorption time on coalbedmethane recovery through numerical simulation[J]. Fuel,2011,90(7):2428-2444.
    [192]李金海,苏现波,林晓英,等.煤层气井排采速率与产能的关系[J].煤炭学报,2009,34(3):376-380.
    [193]Aminian, K., S. Ameri, A. Bhavsar, et al. Type Curves for Coalbed Methane Production Prediction[C].2004SPE Eastern Regional Meeting, Charleston, West Virginia, U.S.A.,2004.
    [194]Puri, R., D. Yee. Enhanced Coalbed Methane Recovery [M]. New Orleans, Louisiana:1990Copyright1990, Society of Petroleum Engineers, Inc.,1990.
    [195]Jadhav, Madhavi Vitthal. Enhanced Coalbed Methane Recovery Using Microorganisms[M]. Kingdom ofBahrain: Society of Petroleum Engineers,2007.
    [196]Potluri, N. K., D. Zhu, Alfred Daniel Hill. The Effect of Natural Fractures on Hydraulic FracturePropagation [M]. Sheveningen, The Netherlands: Society of Petroleum Engineers,2005.
    [197]Gale, J. F. W., Robert M. Reed, Jon Holder. Natural fractures in the Barnett Shale and their importancefor hydraulic fracture treatments[J]. AAPG Bulletin-American Association of Petroleum Geologists.,2007,91(4):603-622.
    [198]Zhou, Jian, Chengjin Xue. Experimental Investigation of Fracture Interaction between Natural Fracturesand Hydraulic Fracture in Naturally Fractured Reservoirs[M]. Vienna, Austria: Society of PetroleumEngineers,2011.
    [199]Colmenares, Lourdes B., Mark D. Zoback. Hydraulic fracturing and wellbore completion of coalbedmethane wells in the Powder River Basin, Wyoming: Implications for water and gas production[J].AAPG Bulletin,2007,91(1):51-67.
    [200]Ross, Hannah E., Paul Hagin, Mark D. Zoback. CO2storage and enhanced coalbed methane recovery:Reservoir characterization and fluid flow simulations of the Big George coal, Powder River Basin,Wyoming, USA[J]. International Journal of Greenhouse Gas Control,2009,3(6):773-786.
    [201]Clarkson, C. R., R. M. Bustin. Coalbed Methane: Current Field-Based Evaluation Methods[J]. SpeReservoir Evaluation&Engineering,2011,14(1):60-75.
    [202]Remner, David, Turgay Ertekin, Wonmo Sung, et al. A Parametric Study of the Effects of Coal SeamProperties on Gas Drainage Efficiency[J]. SPE Reservoir Engineering,SPE13366,1986,1(6):633-646.
    [203]Wicks, D. E., F. C. Schwerer, M. R. Militzer, et al. Effective Production Strategies for Coalbed Methanein the Warrior Basin[C]. SPE Unconventional Gas Technology Symposium, Louisville, Kentucky,1986.
    [204]Young, G. B. C., G. W. Paul, J. E. McElhiney, et al. A Parametric Analysis of Fruitland CoalbedMethane Reservoir Producibility[C]. SPE Annual Technical Conference and Exhibition, Washington,D.C.,1992.
    [205]Chaianansutcharit, Thotsaphon, Her-Yuan Chen, Teufel Lawrence. Impacts of Permeability Anisotropyand Pressure Interference on Coalbed Methane (CBM) Production[C]. SPE Rocky Mountain PetroleumTechnology Conference, Keystone, Colorado,2001.
    [206]Bachu, Stefan, Didier Bonijoly, John Bradshaw, et al. CO2storage capacity estimation: Methodologyand gaps[J]. International Journal of Greenhouse Gas Control,2007,1(4):430-443.
    [207]Korre, Anna, Ji Quan Shi, Claire Imrie, et al. Coalbed methane reservoir data and simulator parameteruncertainty modelling for CO2storage performance assessment[J]. International Journal of GreenhouseGas Control,2007,1(4):492-501.
    [208]Korre, Anna, Ji-Quan Shi, Claire Imrie, et al. Modelling the uncertainty and risks associated with thedesign and life cycle of CO2storage in coalbed reservoirs[J]. Energy Procedia,2009,1(1):2525-2532.
    [209]Saghafi, A., M. Faiz, D. Roberts. CO2storage and gas diffusivity properties of coals from Sydney Basin,Australia[J]. International Journal of Coal Geology,2007,70(1-3):240-254.
    [210]Karacan, C. zgen. Swelling-induced volumetric strains internal to a stressed coal associated with CO2sorption[J]. International Journal of Coal Geology,2007,72(3-4):209-220.
    [211]Connell, L. D., C. Detournay. Coupled flow and geomechanical processes during enhanced coal seammethane recovery through CO2sequestration[J]. International Journal of Coal Geology,2009,77(1-2):222-233.
    [212]Vishnukumar, Joshi Neeti. Enhanced Coal Bed Methane Recovery Using Nitrogenase Enzyme[J].,2007.
    [213]Wolf-Gladrow, Dieter A. Lattice-Gas Cellular Automata and Lattice Boltzmann Models: AnIntroduction[M]: Springer,2005.
    [214]杜睿.不可压多松弛格子Boltzmann方法的研究及其应用[D].武汉:华中科技大学,2007.
    [215]Chopard, B., M. Droz. Cellular automata modeling of physical systems[M]. Cambridge: CambridgeUniversity Press Cambridge,1998.
    [216]Wolfram, S. Statistical mechanics of cellular automata[J]. Reviews of Modern Physics,1983,55(3):601-644.
    [217]周成虎,孙战利,谢一春.地理元胞自动机研究[M].北京:科学出版社,1999.
    [218]黎夏,叶嘉安.知识发现及地理元胞自动机[J].中国科学: D辑,2004,34(9):865-872.
    [219]黎夏,叶嘉安.基于神经网络的元胞自动机及模拟复杂土地利用系统[J].地理研究,2005,24(1):19-27.
    [220]Ermentrout, G. B., L. Edelstein-Keshet, Others. Cellular automata approaches to biological modeling[J].Journal of theoretical Biology,1993,160:97-133.
    [221]李元.格子Boltzmann方法的应用研究[D].合肥:中国科学技术大学,2009.
    [222]Zuse, Konrad. Rechnender Raum[M]. Braunschweig: Vieweg,1969.
    [223]De Pazzis, O., J. Hardy, Y. Pomeau. Time evolution of two-dimensional model system. invariant statesand time correlation functions[J]. J. Math. Phys,1973,14(12):1746-1760.
    [224]刘芳.格子Boltzmann方法求解偏微分方程的相关研究[D]:吉林大学,2011.
    [225]Frisch, U., D. D'Humières, B. Hasslacher, et al. Lattice gas hydrodynamics in two and threedimensions[J]. Complex systems,1987,1(4):649-707.
    [226]Higuera, F. J., S. Succi, R. Benzi. Lattice gas dynamics with enhanced collisions[J]. EPL (EurophysicsLetters),1989,9:345.
    [227]Chen, S., H. Chen, D. Martinez, et al. Lattice Boltzmann model for simulation ofmagnetohydrodynamics[J]. Physical Review Letters,1991,67(27):3776-3779.
    [228]Qian, Y. H., D. D'Humieres, P. Lallemand. Lattice BGK models for Navier-Stokes equation[J]. EPL(Europhysics Letters),1992,17(6):479.
    [229]Ancona, M. G. Fully-Lagrangian and lattice-Boltzmann methods for solving systems of conservationequations[J]. Journal of Computational Physics,1994,115(1):107-120.
    [230]王沁.格子Boltzmann方法理论及其在泥石流研究中的应用[D].成都:西南交通大学,2007.
    [231]He, X., L. S. Luo. Theory of the lattice Boltzmann method: From the Boltzmann equation to the latticeBoltzmann equation[J]. Physical Review E,1997,56:6811-6817.
    [232]He, X., L. S. Luo. A priori derivation of the lattice Boltzmann equation[J]. Physical Review E,1997,55:6333-6336.
    [233]Mohanmad, A. A. Lattice Boltzmann Method: Fundamentals and Engineering Applications withComputer Codes[M]. London: Springer,2011.
    [234]Sukop, M. C., D. T. Thorne Jr. Lattice Boltzmann Modeling: An Introduction for Geoscientists andEngineers[M]. Berlin Heidelberg: Springer,2006.
    [235]郭照立,郑楚光.格子Boltzmann方法的原理及应用[M].北京:科学出版社,2009.
    [236]王勇.格子Boltzmann方法在热声领域的应用及热声谐振管可视化实验研究[D].西安:西安交通大学,2009.
    [237]Zou, Q. S., X. Y. He. On pressure and velocity boundary conditions for the lattice Boltzmann BGKmodel[J]. Physics of Fluids,1997,9(6):1591-1598.
    [238]Inamuro, T., M. Yoshino, F. Ogino. A non-slip boundary condition for lattice Boltzmann simulations[J].Physics of Fluids,1995,7(12):2928-2930.
    [239]Chen, S. Y., D. Martinez, R. W. Mei. On boundary conditions in lattice Boltzmann methods[J]. Physicsof Fluids,1996,8(9):2257-2536.
    [240]Guo, Z. L., C. G. Zheng, BC Shi. Non-equilibrium extrapolation method for velocity and boundaryconditions in the lattice Boltzmann method[J]. Chinese Physics,2002,11(4):366-374.
    [241]Martinez, D., W. Matthaeus, S. Chen, et al. Comparison of spectral method and lattice Boltzmannsimulations of two-dimensional hydrodynamics[J]. Physics of Fluids,1994,6:1285-1290.
    [242]Yu, D., R. Mei, L. S. Luo, et al. Viscous flow computations with the method of lattice Boltzmannequation[J]. Progress in Aerospace Sciences,2003,39(5):329-367.
    [243]Shi, Ji-Quan, Sevket Durucan. Gas Storage and Flow in Coalbed Reservoirs: Implementation of aBidisperse Pore Model for Gas Diffusion in Coal Matrix [M]. Denver, Colorado: Society of PetroleumEngineers,2003.
    [244]Wang, M., J. Wang, N. Pan, et al. Mesoscopic predictions of the effective thermal conductivity formicroscale random porous media[J]. Physical Review E,2007,75(3):36702.
    [245]孟繁孔,李志信.多孔介质振荡流格子-Boltzmann模拟[J].清华大学学报(自然科学版),2008,48(11):1993-1996.
    [246]李仁民,刘松玉,方磊,等.采用随机生长四参数生成法构造黏土微观结构[J].浙江大学学报(工学版),2010,44(10):1897-1901.
    [247]赵凯.基于孔隙尺度的多孔介质流动与传热机理研究[D]:南京理工大学,2010.
    [248]Kang, Q., D. Zhang, S. Chen. Unified lattice Boltzmann method for flow in multiscale porous media[J].Physical Review E,2002,66(5):56307.
    [249]Kremer, Gilberto Medeiros. An introduction to the Boltzmann equation and transport processes ingases[M]. Verlag Berlin Heidelberg: Springer,2010.
    [250]Li, K., R. N. Horne. Numerical simulation without using experimental data of relative permeability[J].Journal of Petroleum Science and Engineering,2008,61(2):67-74.
    [251]Honarpour, M. M., F. Koederitz, A. Herbert. Relative permeability of petroleum reservoirs[M]: CRCPress Inc,Boca Raton, FL,1986.
    [252]Van Genuchten, M. T. A closed-form equation for predicting the hydraulic conductivity of unsaturatedsoils[J]. Soil Science Society of America Journal,1980,44(5):892-898.
    [253]Langaas, Kare, Paul Papatzacos. Numerical Investigations of the Steady State Relative Permeability of aSimplified Porous Medium[J]. Transport in Porous Media,2001(45):241-266.
    [254]Hao, Liang, Ping Cheng. Pore-scale simulations on relative permeabilities of porous media by latticeBoltzmann method[J]. International Journal of Heat and Mass Transfer,2010,53(9–10):1908-1913.
    [255]Ghassemi, Ali, Ali Pak. Numerical study of factors influencing relative permeabilities of two immisciblefluids flowing through porous media using lattice Boltzmann method[J]. Journal of Petroleum Scienceand Engineering,2011,77(1):135-145.
    [256]Aziz, K. Reservoir simulation grids: opportunities and problems[J]. Journal of Petroleum Technology,1993,45(7):658-663.
    [257]Zhang, K., Y. S. Wu, C. Ding, et al. Parallel computing techniques for large-scale reservoir simulation ofmulti-component and multiphase fluid flow[C]. SPE Reservoir Simulation Symposium, Houston, Texas,2001.
    [258]DeBaun, D., T. Byer, P. Childs, et al. An extensible architecture for next generation scalable parallelreservoir simulation[C]. SPE Reservoir Simulation Symposium, The Woodlands, Texas,2005.
    [259]Dogru, A., L. Fung, T. Al-Shaalan, et al. From Mega Cell to Giga Cell Reservoir Simulation[C]. SPEAnnual Technical Conference and Exhibition, Denver, Colorado,2008.
    [260]Dogru, A., L. Fung, U. Middya, et al. A next-generation parallel reservoir simulator for giantreservoirs[M]. The Woodlands, Texas,2009.
    [261]Klie, H., H. H. Sudan, R. Li, et al. Exploiting Capabilities of Many Core Platforms in ReservoirSimulation[C]. SPE Reservoir Simulation Symposium, The Woodlands, Texas,2011.
    [262]查文舒.基于PEBI网格的油藏数值计算及其实现[D].合肥:中国科学技术大学,2010.
    [263]Van Trier, J., W. W. Symes. Upwind finite-difference calculation of traveltimes[J]. Geophysics,1991,56(6):812-821.
    [264]Dormy, E., A. Tarantola. Numerical simulation of elastic wave propagation using a finite volumemethod[J]. JOURNAL OF GEOPHYSICAL RESEARCH-ALL SERIES-,1995,100:2123.
    [265]Piperno, S., M. Remaki, L. Fezoui. A nondiffusive finite volume scheme for the three-dimensionalMaxwell's equations on unstructured meshes[J]. SIAM Journal on Numerical Analysis,2002:2089-2108.
    [266]Hoffman, A. J., M. S. Martin, D. J. Rose. Complexity bounds for regular finite difference and finiteelement grids[J]. SIAM Journal on Numerical Analysis,1973:364-369.
    [267]Peraire, J., J. Peiro, L. Formaggia, et al. Finite element Euler computations in three dimensions[J].International Journal for Numerical Methods in Engineering,1988,26(10):2135-2159.
    [268]Makris, Evangelos, Panagiotis Neofytou, Sokrates Tsangaris, et al. A novel method for the generation ofmulti-block computational structured grids from medical imaging of arterial bifurcations[EB/OL],2012.http://www.sciencedirect.com/science/article/pii/S1350453311003183.
    [269]Ta dere, Ahmet, Feride Ercan. An alternative method in identifying misconceptions: structuredcommunication grid[J]. Procedia-Social and Behavioral Sciences,2011,15(0):2699-2703.
    [270]Peaceman, D. W. Interpretation of Well-Block Pressures in Numerical Reservoir Simulation (includesassociated paper6988)[J]. Old SPE Journal,1978,18(3):183-194.
    [271]Sarda, S., L. Jeannin, R. Basquet, et al. Hydraulic characterization of fractured reservoirs: simulation ondiscrete fracture models[J]. SPE Reservoir Evaluation\&Engineering,2002,5(2):154-162.
    [272]Quandalle, P., P. Besset. Reduction of grid effects due to local sub-gridding in simulations using acomposite grid[C]. SPE Reservoir Simulation Symposium, Dallas, Texas,1985.
    [273]Qi, D., P. M. Wong, K. Liu. An improved global upscaling approach for reservoir simulation[J].Petroleum science and technology,2001,19(7-8):779-795.
    [274]Glimm, J., B. Lindquist, O. A. McBryan, et al. Front tracking for petroleum reservoir simulation[M]. SanFrancisco, California,1983.
    [275]Sharpe, H. N., D. A. Anderson. A new adaptive othogonal grid generation procedure for reservoirsimulation[C]. SPE Annual Technical Coference and Exihibition, New Orleans, LA,1990.
    [276]Sharpe, H. N., D. A. Anderson. Orthogonal curvilinear grid generation with preset internal boundariesfor reservoir simulation[C]. SPE Symposium on Reservoir Simulation, Anaheim, Cal.,1991.
    [277]Moczo, P. Finite-difference technique for SH-waves in2-D media using irregular grids-application to theseismic response problem[J]. Geophysical Journal International,1989,99(2):321-329.
    [278]Kalnay De Rivas, E. On the use of nonuniform grids in finite-difference equations[J]. Journal ofComputational Physics,1972,10(2):202-210.
    [279]Morgan, K., J. Peraire. Unstructured grid finite-element methods for fluid mechanics[J]. Reports onProgress in Physics,1998,61:569.
    [280]Peraire, J., J. Peiro, L. Formaggia, et al. Finite element Euler computations in three dimensions[J].International Journal for Numerical Methods in Engineering,1988,26(10):2135-2159.
    [281]Chen, C., H. Liu, R. C. Beardsley. An unstructured grid, finite-volume, three-dimensional, primitiveequations ocean model: application to coastal ocean and estuaries[J]. Journal of Atmospheric andOceanic Technology,2003,20(1):159-186.
    [282]Beckner, B. L., J. M. Hutfilz, M. B. Ray, et al. EM: New Reservoir Simulation System[C]. SPE MiddleEast Oil Show, Bahrain,2001.
    [283]Li, Baoyan, Zhangxin Chen, Guanren Huan. The sequential method for the black-oil reservoir simulationon unstructured grids[J]. Journal of Computational Physics,2003,192(1):36-72.
    [284]Li, Baoyan, Zhangxin Chen, Guanren Huan. Comparison of solution schemes for black oil reservoirsimulations with unstructured grids[J]. Computer Methods in Applied Mechanics and Engineering,2004,193(3-5):319-355.
    [285]Sonier, Fernand, Pierre Lehuen, Raouf Nabil. Full-field gas storage simulation using a control-volumefinite-element model [M]. Houston, Texas: Society of Petroleum Engineers, Inc.,1993.
    [286]Eymard, Robert, Fernand Sonier. Mathematical and numerical properties of control-volumelfinite-element scheme for reservoir simulation[J]. SPE Reservoir Engineering,1994,9(4):283-289.
    [287]Fung, L. S. K., A. D. Hiebert, L. X. Nghiem. Reservoir simulation with a control-volume finite-elementmethod[J]. SPE Reservoir Engineering,1992,7(3):349-357.
    [288]Fu, Y., Y. K. Yang, M. Deo. Three-dimensional, three-phase discrete-fracture reservoir simulator basedon control volume finite element (CVFE) formulation[C]. SPE Reservoir Simulation Symposium, TheWoodlands, Texas,2005.
    [289]Heinemann, Z. E., C. W. Brand, M. Munka. Modeling reservoir geometry with irregular grids[J]. SPEReservoir Engineering,1991,6(2):225-232.
    [290]Mlacnik, M. J., A. Harrer, Z. Heinemann. Locally streamline-pressure-potential-based PEBI grids[C].SPE Reservoir Simulation Symposium,2003.
    [291]Mlacnik, M. J., L. J. Durlofsky, L. J. Durlofsky, et al. Dynamic flow-based PEBI grids for reservoirsimulation[M]. Houston, Texas,2004.
    [292]谢海兵,桓冠仁,郭尚平,等. PEBI网格二维两相流数值模拟[J].石油学报,1999,20(2):65-69.
    [293]谢海兵,马远乐,桓冠仁,等.非结构网格油藏数值模拟方法研究[J].石油学报,2001,22(1):63-66.
    [294]刘立明,廖新维,陈钦雷.混合PEBI网格精细油藏数值模拟应用研究[J].石油学报,2003,24(3):64-67.
    [295]吴晓东,安永生,席长丰.煤层气羽状水平井数值模拟新方法[J].天然气工业,2007,27(7):76-78.
    [296]Schlumberger. FloGrid User Guide[EB/OL],2008. http://dc149.4shared.com/doc/5gxp3uSl/preview.html
    [297]Houzé, Olivier, Didier Viturat, Ole S. Fjaere. Dynamic flow analysis-v4.10.01[EB/OL],2008.http://www.kappaeng.com/news/Free_Dynamic_Data_Analysis_book/12.
    [298]Lawson, C. L. Generation of a triangular grid with applications to contour plotting[C]. Jet Propul. Lab.Techn. Memo, Pasadena, California,1972.
    [299]Rebay, S. Efficient unstructured mesh generation by means of Delaunay triangulation andBowyer-Watson algorithm[J]. Journal of Computational Physics,1993,106(1):125-138.
    [300]Lawson, C. L. Software for C1interpolation[M]. Mathematical Sofrware III.New York: Academic Press,1977.
    [301]Zheng, H. W., C. Shu, Y. T. Chew. A platform for developing new lattice Boltzmann models[J].International Journal of Modern Physics C,2005,16(1):61-84.
    [302]Nannelli, F., S. Succi. The lattice Boltzmann equation on irregular lattices[J]. Journal of statisticalphysics,1992,68(3):401-407.
    [303]He, X., L. S. Luo, M. Dembo. Some Progress in lattice Boltzmann method. Part I. Nonuniform meshgrids[J]. Journal of Computational Physics,1996,129(2):357-363.
    [304]He, X., G. D. Doolen. Lattice Boltzmann method on a curvilinear coordinate system: vortex sheddingbehind a circular cylinder[J]. Physical Review E,1997,56(1):434-440.
    [305]He, X. Error analysis for the interpolation-supplemented lattice-Boltzmann equation scheme[J].International Journal of Modern Physics C-Physics and Computer,1997,8(4):737-746.
    [306]Peng, Gongwen, Haowen Xi, Comer Duncan, et al. Lattice Boltzmann method on irregular meshes[J].Physical Review E,1998,58(4):4124-4127.
    [307]van der Sman, R. G. M., M. H. Ernst. Convection-Diffusion Lattice Boltzmann Scheme for IrregularLattices[J]. Journal of Computational Physics,2000,160(2):766-782.
    [308]Ubertini, S., G. Bella, S. Succi. Lattice Boltzmann method on unstructured grids: Furtherdevelopments[J]. Physical Review E,2003,68(1):16701.
    [309]Ubertini, S., S. Succi. Recent advances of lattice Boltzmann techniques on unstructured grids[J]. Progressin Computational Fluid Dynamics, an International Journal,2005,5(1):85-96.
    [310]Sch nherr, M., K. Kucher, M. Geier, et al. Multi-thread implementations of the lattice Boltzmann methodon non-uniform grids for CPUs and GPUs[J]. Computers&Mathematics with Applications,2011,61(12):3730-3743.
    [311]Peng, G., H. Xi, C. Duncan, et al. Finite volume scheme for the lattice Boltzmann method onunstructured meshes[J]. Physical Review E,1999,59(4):4675-4682.
    [312]古英,韩大匡.油藏模拟的新方法——改进的快速自适应组合网格[J].石油学报,1999,20(4):39-45.
    [313]卢泉杰.油藏数值模拟中复杂网格系统生成技术研究[D].东营:中国石油大学(华东),2008.
    [314]Avis, D., G. T. Toussaint. An efficient algorithm for decomposing a polygon into star-shaped polygons[J].Pattern Recognition,1981,13(6):395-398.
    [315]李玉坤,姚军.复杂断块油藏Delaunay三角网格自动剖分技术[J].油气地质与采收率,2006,13(3):58-60.
    [316]罗金辉,杨永国,秦勇,等.基于组合权重的煤层气有利区块模糊优选[J].煤炭学报,2012,37(2):242-247.
    [317]陈玉华.基于DEA的煤层气经济评价模型研究[D].江苏徐州:中国矿业大学,2010.
    [318]史进,吴晓东,韩国庆,等.煤层气开发井网优化设计[J].煤田地质与勘探,2011,39(6):20-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700