用户名: 密码: 验证码:
驱动转向一体化车轮转向特性分析与结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深空探测具有重大的经济和军事意义,世界上很多国家对此展开了深入的研究。进行着陆探测,一辆性能优异的探测车是必不可少的装备。探测车的运动性能在很大程度上取决于月球车车轮的转向与驱动性能,因而对此进行深入研究就显得非常重要。
     目前,国内一些高校和科研院所研制了多种采用不同转向及驱动方式的探测车原理样机,但是对这些驱动与转向方式的优劣并没有进行深入的分析与测试。本文将基于地面力学和土力学的相关理论,对刚性车轮与土壤相互作用的转向力学特性进行了深入的分析和研究,并设计出探测车转向驱动一体化布置于轮内的转向及驱动装置。
     基于土壤的承压和剪切特性模型,以及推土模型,建立车轮的转向力学特性分析模型,为研究车轮与土壤作用的力学特性奠定理论基础。为了分析不同车轮在不同转向方式下的转向性能,对圆柱轮、鼓形轮在正交偏心和非正交转向情况下建立力学模型。
     在现有的车轮转向力矩测试系统的基础上,设计出新的能够实现正交偏心转向和非正交转向的实验装置。利用该实验装置,测量圆柱车轮和鼓形轮在正交及非正交情况下的转向力矩,并分析比较不同车轮在不同转向方式下,转向性能的优劣,并对模型进行修正。
     根据模型计分析和实验测试的结果,分析在非正交情况下,鼓形轮转向性能的特点。根据结构及性能指标确定合适的非正交角度,设计出驱动转向一体化车轮非正交转向结构。分析其关键部件的受力情况,并对一体化驱动转向结构进行改进。
Deep space exploration plays an important role in national economical and military development. Many countries in the world begin to do research on this project. In order to land on celestial body and carry out science experiments, a wheel robot with high performance is necessary. The performance of the wheel robot depends mostly on the performance of the it’s wheel’s driving and steering performance, so it is crucial to study about this.
     Now some universities and institutes have made some prototypes of the exploration rover which use different driving and steering mode in China, but the driving and steering mode’s performance is seldom studied and tested until now. This paper will analyze the mechanic performance of the wheel’s driving and steering mode and design a integrated system which put the wheel’s driving and steering device inner the wheel.
     A mechanic model when the rigid wheel of exploration rover steering on soft soil was constructed based Bekker’s press-sinkage and Janosi’s shear-displacement models.
     Design new testing device which can test Perpendicular-Offset steering moment and Non-Perpendicular steering moment based on the testing system we have. And use the new testing system we designed test different wheel’s steering moment on different steering mode. And compare their steering performance to decide which wheel and which steering mode to be used.
     Base on the model’s analysis result and testing date, we choose the right wheel and right steering mode is drum wheel non-perpendicular steer. Finally, we design a wheel’s steering and driving device which Non-Perpendicularly put them inner the wheel.
引文
1褚桂柏.论我国深空探测技术的发展.第一届全国深空探技术研究与发展研讨会论文集. 2001, (1):10~18
    2欧阳自远.我国月球探测的总体科学目标与发展战略.地球科学进展. 2004, (3): 351~358
    3徐伟彪,赵海斌.小行星深空探测的科学意义和展望.地球科学进展. 2005, (11):1183~1185
    4 L. Richtera, P. Costeb, Development and testing of subsurface sampling devices for the Beagle 2 lander, Planetary and Space Science. 2002, (5): 903~913
    5 Hickey, G. S, Integrated Lightweight Structure and Thermal Insulation for Mars Rover, International Conference on Environmental Systems. 1995, (7): 73~79
    6 By John wright, Frank Hartman. Driving on Mars with RSVP. IEEE Robotics & Automation Magazine. 2006, (6):37~45
    7 Randel A. Lindemann, Chris J. Voorhees. Mars Exploration Rover Mobility Assembly Design, Test and Performance. California Institute of Technology. 2005,(10):78~86
    8 Chris Voorhees, Satish Krishnan. The use of harmonic drives on NASA's Mars Exploration Rover. Jet Propulsion Laboratory-California Institute of Technology. 2005:115~120
    9 Baumgartner, Eric T Bonitz. The Mars Exploration Rover instrument positioning system. Jet Propulsion Laboratory. 2005 IEEE Aerospace Conference, Big Sky, MT, United States. 2005. Institute of Electrical and Electronics Engineers Computer Society, United States, 2005:1559~1567
    10 Randel Lindemann, Lisa Reid, and Chris Voorhees. Mobility Sub-system for the Exploration Technology Rover, Jet Propulsion Laboratory-California Institute of Technology. 2005:173~179
    11 Lisa K. Reid, David F. Braun, Don E. Noon, Robotic Arm and Rover Actuator Systems for Mars Exploration. Jet Propulsion Laboratory. Man and Cybernetics Society, Waikoloa, HI, United States, Oct 10-12 2005. Institute of Electrical and Electronics Engineers Inc. 2005:1912~1920
    12 Brian D Harrington and Chris Voorhees. The Challenges of Designing theRocker-Bogie Suspension for the Mars Exploration Rover. Johnson Space Center.2004,(5):19~21
    13 Jeffrey J. Biesiadecki and Chris Leger. Tradeoffs Between Directed and Autonomous Driving on the Mars Exploration Rovers. International Symposium of Robotics Research, October 2005, San Francisco, California, USA. Jet Propulsion Laboratory. 2005:450~455
    14 Joel Krajewski, Kevin Burke, From Landing to Six Wheels on Mars, Jet Propulsion Laboratory. Man and Cybernetics Society, Waikoloa, HI, United States, Oct 10-12 2005. Institute of Electrical and Electronics Engineers Inc. 2005:1791~1798
    15 T. Neilson. Mars Exploration Rovers Surface Fault Protection. IEEE Robotics & Automation Magazine. 2005, (7):63~71
    16王经国.分箱体式月球车虚拟样机的设计和分析.上海交通大学硕士论文. 2007:12~22
    17付宜利,李寒,徐贺,马玉林.轮式全方位移动机器人几种转向方式的研究制造业自动化. 2005, (10):20~25
    18尚建忠,罗自荣,张新访,范大鹏.双曲柄滑块联动月球车设计及样机研制.中国机械工程. 2007, 18(3):348~351
    19 M. G. Bekker. Theory of land locomotion. The University of Michigan Press, Ann Arbor, Michigan, 1956:15~18
    20 Z. Janosi, Hanamoto B. Analytical Determination of Drawbar Pull as a Function of Slip for Tracked Vehicle in Deformable Soils. Proc. 1st Int. Conf. of ISTVS, Torino. 1961:707~736
    21 Kazuya Yoshida, Genya Ishigami. Steering Characteristics of a Rigid Wheel for Exploration on Loose Soil. Proceeding of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2004:2041~2046
    22刘聚德.车辆沙地行驶理论.机械工业出版社,1996:10~65
    23郑永春,欧阳自远.月壤的物理和机械性质.矿物岩石. 2004,(4):14~19
    24郑永春.模拟月壤研制的初步设想.空间科学学报. 2005, 25(1):70~75
    25王林.月球车车轮与土壤作用的力学特性分析与测试系统设计.哈尔滨工业大学硕士论文. 2006:30~31
    26 Kazuya Yoshida, Noriyuki Mizuno, Genya Ishigami. Terramechanics-Based Analysis for Slope Climbing Capability of a Lunar/Planetary Rover. EuropeanSpace Agency, 2005,(8):121~128
    27 Reece A. R. Problems of Soil-Vehicle Mechanics. U.S. Army L.L.L., ATAC, No. 8479 warren, Michigan. 1966: 23~27
    28庄继德.计算汽车地面力学.机械工业出版社, 2001:237~246 19~22 102~103 86~87
    29庄继德.汽车地面力学.机械工业出版社, 1980:14~51
    30张克健.车辆地面力学.国防工业出版社,2002:110~112
    31黄祖永.地面车辆原理.机械工业出版社,1985:47~74
    32松冈元(日)著,罗汀,姚仰平编译.土力学.中国水利水电出版社, 2001: 174~192
    33李杰,庄继德,叶楠.确定松软地面剪切特性模型参数的新方法.农业机械学报.2003, (3):5~7
    34樊慧文.地面—车辆系统模型及性能预测.物探装备. 1997, (4):7~12
    35陈炳聪.土壤-车辆系统力学.中国农业出版社,1981:62~102
    36 Genya Ishigami, Akiko Miwa. Terramechanics-Based Model for Steering Maneuver of Planetary Exploration Rovers on Loose Soil. Journal of Field Robotics , 2007, 24(3):233~250
    37 Kazuya Yoshida, Genya Ishigami. Steering Characteristics of an Exploration Rover on Loose Soil based on All-Wheel Dynamics Model. Intelligent Robots and Systems, Japan, October 2, 2004. Sendai, 2004:3995~4000
    38邓建松,彭冉冉. Mathematica使用指南.科学出版社, 2002:20~35
    39嘉木工作室, Mathematica应用教程.机械工业出版社, 2002:21~150
    40赵继源,石刚.数学工具软件及应用Mathematica几何画板.北京理工大学出版社, 2205:74~113
    41全齐全.月球车车轮与土壤作用的力学特性测试系统的研制与实验.哈尔滨工业大学硕士学位论文. 2007:18~30
    42 Edward Tunstel, Mark Maimone. Mars Exploration Rover Mobility and Robotic Arm Operational Performance. California Institute of Technology. Man and Cybernetics Society, Waikoloa, HI, United States, Oct 10-12 2005. Institute of Electrical and Electronics Engineers Inc. 2005:1807~1814
    43高耀东,郭喜平. ANSYS机械工程应用25例.电子工业出版社, 2007: 151~182
    44邵蕴秋. ANSYS8.0有限元分析实例导航.中国铁道出版社, 2004: 281~34

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700