用户名: 密码: 验证码:
基于运动小平台的矢量信号处理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在水声信号处理技术中,确定目标到达方向是信号处理的一个关键环节。传统的声压水听器是通过形成大型的水听器阵进行测向,而新型的矢量水听器能同时拾取声压和振速分量,振速是矢量,振速方向就是目标方位,利用单个水听器就可以完成测向功能。另外,仅利用声压信息的水听器阵的常规自导系统,其水听器阵的尺度至少要大于声波的波长方能测定目标方位。小尺度的运动平台由于基阵孔径小,只能工作在高频,高频声波传不远,作用距离短,从而限制了平台的自导作用距离,而矢量水听器不需要很大的基阵即可在低频工作,低频传播损失小,且几乎不受水文条件的影响,因而作用距离远。
     论文是在运动的小平台背景下,以矢量水听器接收的信号为基础,运用平均声强器及其它方位估计方法进行目标测向。探讨了五种方位估计的方法,同时对这几种方法分别进行了理论分析和计算机仿真实验。每种方法有一定的适用范围,使用时可根据噪声和信号的不同形式选择不同的方位估计方法。同时介绍了矢量水听器的偶极子指向性及各种组合指向性,其中由声压和振速组合形成的单边指向性可以抗各向异性干扰,这也是文章中叙述的自适应噪声抵消器参考信号选取的理论依据。
     针对运动平台的自噪声,提出了两种基于矢量传感器的自适应噪声抵消的方法,以提高信号检测和方位估计能力。针对所建立的两种自适应信号处理模型,进行了系统的计算机仿真,并对仿真结果进行了分析。
The direction of arrival is of great importance in underwater signal processing. The vector-sensor can simultaneously measure pressure and particle velocity. The particle velocity filed is vector, and its direction is the direction of target. So we can get the azimuth angle of a target with a single vector-sensor. For locating the target, big hydrophone array must be constructed if using the traditional acoustic pressure hydrophone. Also, the usual self-guiding system which merely makes use the pressure information can measure the target direction only when its dimension is bigger than half of wavelength. Then some small system must work in status of high frequency. Because of its severe attenuation, the operating range of system is limited. The vector sensor can work in status of low frequency which has small transmission attenuation and is free of water condition so it is able to operate far away.
     The dissertation works in backgrounds of small moving system. On basis of signals received by vector-sensor, the thesis discusses five methods of azimuth estimation, and their principles are analyzed and simulated by computer. For the different condition of method, different azimuth estimation is selected by the signal and noise. The dipole and combined directivity are studied. Acoustic pressure and particle velocity combined processing can form the single side directivity, which is functionary to suppress the coherent interference. And it is the base of selecting reference signal in adaptive noise cancelling.
     Two methods of noise canceling based on vector sensor are set forth according to the reference signal. They can increase the signal delectability and the accuracy of azimuth estimation. The computer simulations are done and the results are analyzed for both methods.
引文
[1]田坦,刘国枝,孙大军.声纳技术.哈尔滨工程大学出版社,1999:42-122页
    [2]王郁,房克家,刘文帅.矢量传感器校准方法研究.第十届船舶水下噪声学术讨论会,2005.8
    [3]孟洪.矢量水听器及联合信号处理研究.哈尔滨工程大学硕士学位论文.2002:3-7页
    [4]Warminster P.A.Acquisition,Reduction,and analysis of Acoustical Data.Department of the Navy Naval Air Development Centor.1974
    [5]Leslie C.B.,Kendall J.M.and Jones J.L.Hydrophone for measuring particle velocity.J.Acoust.Soc.Amer..1956,28(4):711-715P
    [6]Robert L.T.,Amherst N.H.Tilt Compensation for Acoustic Transuding System.United States Patent.4179682.Dec.18,1979
    [7]Thomas E.W.,Nashua N.H.Underwater Direction Finding System.United States Patent.3987404.Oct.19,1976
    [8]Aryc Nehorai,Eytan Paldi.Acoustic vector-sensor array processing.J.Acoust.Soc.Am.1994,42(9):2481-2491P
    [9]B.Hochwald,A.Nehorai.Identifiably in array processing models with vector-sensor applications.IEEE Transactions on Signal Processing.1996,44:83-95P
    [10]K.Wong,M.Zoltowski.Extended-aperture underwater acoustic multisource azimuth/elevation direction-finding using uniformly but sparsely spaced vector hydrophones.IEEE J.Oceanic Eng..1997,22:659-672P
    [11]K.Wong,M.Zoltowski.Closed-form underwater acoustic direction-finding with arbitrarily spacely vector-hydrophones at unknown locations.IEEE J.Oceanic Eng..1997,22:649-658P
    [12]M.Hawkes,A.Nehorai.Surface-mounted acoustic vector-sensor array processing.Proc.IEEE Intl Conf.On Acoust,Speech,and Sig.Proc.(ICASSP96),Atlanta.1996:3710-3713P
    [13]M.Hawkes,A.Nehorai.Acoustic vector-sensor beamforming and Capon direction estimation.IEEE Transactions on Signal Processing,1998,46(4):2291-2301P
    [14]Tichavsky P et al.Near-field azimuth and elevation angle estimation using a single vector hydrophone.IEEE Trans.On Signal Processing,2001,49(11):2498-2510P
    [15]惠俊英等.声压和振速联合信号处理抗相干干扰.声学学报.2000,25(5):389-394页
    [16]冯海泓等.目标方位的声压振速联合估计.声学学报.2000,25(6):516-520页
    [17]姚爱红.声矢量传感器信号处理技术研究.哈尔滨工程大学博士学位论文.2005:21-42页
    [18]姚直象.单矢量水听器信号处理研究.哈尔滨工程大学硕士学位论文.2005:33-53页
    [19]王伟.ESPRIT方法在矢量水听器多目标方位估计中的应用,声学与电子工程.2006,3:19-23页
    [20]姜达.基于矢量水听器自适应本舰噪声抵消技术研究.西北工业大学硕士学位论文.2006:49-59页
    [21]方世良,魏占海.声矢量传感器目标方位估计.东南大学学报.2002,32(5):388-691页
    [22]江南.基于水声矢量传感器阵的波达方向估计.贵州科学.2002,20(4):153-157页
    [23]喻敏.声矢量传感器的Capon方位估计.哈尔滨工程大学硕士学位论文.2004:20-22页
    [24]刘伯胜,雷家煜.水声学原理.哈尔滨工程大学出版社,1993:16-27页
    [25]陈新华.矢量阵信号处理技术研究.哈尔滨工程大学博士学位论文.2004:14-17页
    [26]Malcolm Hawkes,Arye Nehorai.Acoustic Vector-Sensor Correlations in Ambient Noise.IEEE J.Oceanic Eng.,Jul.2001,26(3):337-345P
    [27]陈宗岐.利用矢量传感器测量舰船辐射噪声技术.舰船科学技术.2002,24(1):19-23页
    [28]西蒙·赫金.自适应滤波器原理.电子工业出版社,2006:71-76页,160-162页,210-214页
    [29]沈福民.自适应信号处理.西安电子科技大学出版社,2001:136-154页
    [30]刘国勤等.声矢量传感器性能分析及应用.船舶电子信息工程.2003,5:80-84页
    [31]姚爱红.单矢量传感器倍频窄波束技术研究.哈尔滨工程大学学报.2004,25(1):50-52页
    [32]姚直象.基于单矢量水听器四种方位估计方法.海洋工程.2006,24(1):122-130页
    [33]江南.单矢量水听器DOA估计算法研究.仪器仪表学报.2004,25(4):87-90页
    [34]周正.统计与自适应信号处理.电子工业出版社,2003:476-482页
    [35]梅红芳.一种矢量水听器拖曳噪声简易抵消方法研究.西北工业大学硕士学位论文.2004:7-19页
    [36]江峰等.自适应线谱干扰抵消器的性能分析及其窄带实现.哈尔滨工程大学学报.1998,19(5):42-48页
    [37]陈新华等.声矢量阵指向性.声学学报.2003,28(2):141-144页
    [38]樊荣.张立毅.基于神经网络的自适应噪声抵消器的研究.太原理工大学学报.2006,39(5):524-526页
    [39]李舜酩.杨涛.盲源信号分离及其发展.传感器技术.2005,24(4):1-4页
    [40]张发启.盲源信号分离技术.现代电子技术.2004,20:81-83页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700