用户名: 密码: 验证码:
仿人机器人关节用永磁球形步进电机的转子位置检测及控制策略
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
球形电动机的研究近年来受到了广泛的重视,原因在于它的球形结构可以在空间的任意点处进行定位、工作,尤其是用于仿人型机器人的肘、肩关节和手臂的运动控制中时,有着不可比拟的优点。另外,在智能仪表中的三维空间测量、工业控制中的多维空间等高精度场合,也有着不可替代的作用。作为多自由度驱动元件的球形电动机简化了系统机构,提高了系统的稳态性能,成为当前机电驱动元件的一个研究前沿。本文在分析多自由度电机发展的现状与趋势的基础上,针对一种新型仿人机器人关节用永磁球形步进电动机进行了相关的分析和研究。
     永磁球形步进电动机是一种新型的球形电动机,具有结构简单、体积小、重量轻、力能指标高、控制相对简单等优点。本文基于美国Hopkins大学Gregory S.Chirikjian等人提出的永磁球形步进电机的模型,首先介绍了该电机的物理结构,给出了三维气隙磁场的分析结果,以及永磁球形步进电机的转矩特性,同时在建立的磁场与转矩分析结果基础上分析该电机的运动机理。
     本文提出了三种永磁球形步进电机的位置检测方法。由于球形电机结构和运动的特殊性,保持原点不变的所有的转动变换构成三维转动群,本文引入球体转动的群描述作为该电机运动的基本描述方法,在转子球面上采用随机编码方式,利用96个光电传感器对转子的位置进行检测,确保有限的离散的光电传感器能达到尽可能高的分辨率。在这种编码规则下,对传感器检测的分辨率进行了研究,通过仿真实验,传感器的分辨率可以达到≤1°。建立状态空间作为表述问题的数据结构,采用图搜索方式对未知节点进行单点搜索,并建立评价函数进行启发式搜索,大大缩小了搜索空间,有效的防止“组合爆炸”现象,误差取决于当前位置的传感器的分辨率。这种方法对于近距离的目标节点搜索效率最佳,适用于步距角较小的步进电机的位置检测。为了提高远距离目标节点的搜索效率,本文利用混合遗传算法进行了全局优化的研究,由于混合遗传算法本身具有的计算量与迭代过程非常可观,本文又提出了一种全局优化的简便方法,避免了初始种群中随机节点的盲目搜索和巨大的计算量。
     本文介绍了一种基于查表法的永磁球形步进电动机的控制方法,求解出当前位置下符合旋转条件的永磁体对/线圈对记录在表中,建立一张位于球形步进电动机转子上某一位置的物体所有可能的运动轨迹点的表,最终确定球形步进电机的通电线圈对,达到控制球形步进电机沿轨迹运动的目的。由于表格需要巨大的存储量以及计算和查找的低效率性,本文提出了一种球形电机开环控制的简便方法,利用四元数作为描述电机转动的数学工具,计算简单,在进行多次组合旋转中容易提取旋转的几何要素(旋转轴或旋转角度),并推导出电机定子线圈换相与转动要素的数学关系,查找能产生与给定转轴相近旋转的永磁体对/线圈对。多次组合旋转的误差为累积误差,当误差超过一个阈值,进行一次位置补偿。同时结合转子的位置检测方法提出了闭环控制方法,对于存在扰动和电机参数变化情况下转子旋转偏离预定路径时,可以进行转子的迅速定位,重新查找符合旋转条件的永磁体对/线圈对。
In recent years, the research of spherical motors has attracted wide attention, because the spherical structure could work at any orientation in three-dimensional (3D) space, especially when used to control the elbow, shoulder joints and arms of the humanoid robots. In addition, spherical motors also play an irreplaceable role in 3D space measurement of intelligent instruments and industrial control in multi-dimensional space where high precision is essential. As a drive organ with many freedoms, spherical motors could simplify the system structure and improve the system performance in steady state, thus becoming a frontier in the current research of mechanic-electrically driven elements. Based on the analysis of the development and trend of motors with many freedoms, this dissertation has made a deep study on a new permanent magnet (PM) spherical motor for humanoid robot joint application.
     PM spherical stepper motor is a new kind of spherical motor, which is characterized by simple structure, small size, lightweight, high torque and easy control. This paper is based on the PM spherical stepper motor model introduced by Gregory S. Chirikjian et al of American Hopkins University. First, it introduces the physical structure of the motor; then it gives the analyzing result of the 3D air-gap magnetic field and the typical torque characteristic, and meanwhile it analyzes its movement mechanism based on the above results.
     The paper presents three methods to detect the rotor orientation in 3D space. Due to its particular structure and rotational character, all rotational transforms around the invariable origin constitute into 3-D rotation group, which the paper uses as the basic tool of description. According to random encoder on the surface of the sphere, 96 optoelectronic sensors are used to identify the rotor orientation in order to insure the highest resolution with the finite and discrete sensors. Under this encoder rule, the paper investigates the resolution of the optoelectronic sensors and the result shows
     that the resolution could be as much as to≤1~0 . The paper also establishes state space as datastructure to describe the problem, uses graph search method to start single-node search, and establishes evaluation function to start heuristic search, thus greatly reducing the search space greatly and avoiding effectively "combination explosion", thus error lies on the sensor resolution in the current rotor orientation. This method has higher efficiency for the goal node with nearer distance, accordingly suitable for the stepper motors with smaller step angle. In order to improve the search efficiency of remote goal node, however, the paper investigates the global optimization with hybrid genetic algorithm (HGA). To overcome its considerable calculation and iterative course, the paper presents a simple method for global optimization, avoiding a blind search and enormous calculation of random nodes in the origin group.
     This paper introduces a control method of the PM spherical stepper motor based on table-lookup, calculates the magnet / coil pairs that meet the command of rotation in the current orientation and have them recorded. It also establishes a table that contains all possible rotational trajectory of a certain object located on the surface of the sphere and makes sure that the electrified coils drive the spherical motor along a given trajectory. However, the table needs relatively large memory, which results in the low efficiency of table-calculating and table-lookup. To avoid this, the paper presents a simple of open loop control method of the spherical motor, uses quaternion as the mathematical tool to describe the rotation. The calculation is simple and it is easy to obtain the rotational factors (rotational axial and rotational angle) in several rotation combinations. Thus the paper deduces the mathematical relation between the coil commutation and the rotational factors, and look up the magnet / coil pairs nearest to the given axis. Errors of several rotation combinations are cumulative error. When the error is beyond the angle threshold, orientation correction is needed. Meanwhile, closed loop control is investigated with the feedback signal of rotor orientation. When noise occurs or motor parameter varies, the rotor could be rapidly oriented, and then the magnet/coil pairs that meet the command of rotation are calculated again.
引文
[1] 殷际英 何广平 关节型机器人[M].北京.化学工业出版社,2003.8
    [2] 黄声华.三维电动机及其控制系统[M].武汉:华中理工大学出版社,1998.
    [3] 诸静.机器人球关节电机及其控制器研究[J].中国电机工程学报.1994.05
    [4] 诸静.球形电机及其运动轨迹控制,中国电机工程学报,1993,13(5):51-56
    [5] 范承志.球形关节电动机概述,微电机,1996,29(1):31-33
    [6] 黄声华,万山明.基于电压运算的三维电动机矢量控制,电气传动,1998,(2):8-10
    [7] 黄声华,万山明.三维电动机的能量回馈控制.电力电子技术,1998,(1):37-39
    [8]万山明,黄声华,傅光洁,等.三维电动机矢量控制及驱动电路.华中理工大学学报,1997,25(1):44-46
    [9] 万山明,黄声华,傅光洁,等.空间坐标系中的三维电动机,中国电机工程学报,1998,18(5):305-309
    [10] 黄声华,陶醒世,等.三自由度电动机自适应控制,电工技术学报,1998,2(1):10-12
    [11] 阮江军,黄声华.球形电动机磁场和电磁转矩计算,武汉水利电力大学学报,1998,18(5):305-309
    [12] 苏仲飞,刘昌旭.机器人关节用三自由度球形直流伺服电机[J].高技术通讯.1994,(8)
    [13] 崔淑梅,柴风,程树康.正交圆柱结构三维电动机磁系统分析,微特电机,1999,(6):26-28
    [14] 程树康,崔淑梅,等.正交圆柱结构双气隙共磁钢三自由度电动机初探[J].中国电机工程学报.1997,17(5):294-298.
    [15] 邹继明,崔淑梅,宋凯,等.非球形正交圆柱结构两自由度电动机.高技术通讯,2000,(5):63—64
    [16] 金龙,胡敏强,顾菊平,等.一种新型圆柱定子3自由度球形压电超声电机.东南大学学报,2002,32(4):620-623
    [17] Williams, F., Laithwaite, E. and Eastham, J. F. Development and design of spherical induction motors. Proc. Ins. Elec. Eng., 1959, 106: 471-484.
    [18] Davey, K., Vachtsevanos, G. and Powers, R. The analysis of fields and torques in spherical induction motors, IEEE Trans. On Magn., 1987, 23(1), pp. 273—282.
    [19] 郭吉丰,傅平.多自由度球形超声波电机的研究进展.电工电能新技术,2005,24(2): 65-68
    [20] 刘俊标,黄卫清,赵淳生.多自由度球形超声电机的发展和应用.振动、测试与诊断,2001,21(2):85-89
    [21] Kanekon, K., Yamada, I. and Itao, K.. A spherical DC servo motor with three degrees of freedom[J]. Trans. ASME, J. Dyn., Syst., Meas. Control, 1989, 111: 198-402.
    [22] J. Wang, G. W. Jewell, D. Howe. A Novel Spherical Actuator: Design and Control. IEEE Trans. On Magnetics, 1997, 33(5): 4209-4211
    [23] J. Wang, W. Wang, G. W. Jewell, D. Howe. A novel spherical permanent magnet actuator with three degrees-of-freedom. IEEE Trans. On Magnetics, 1998, 34(4): 2078-2080
    [24] T. Busch, G. Henneberger. New Stator Pole Arrangement for a planar Multi-Coordinate Drive[C]. Proceedings of the International Conf. on Electrical Machines, 2000.
    [25] T. Bush, G.. Henneberger. Development of a planar multi-coordinate drive[C]. ISEM Conference Digest, Pavia/Italy, May 1999, p. 186
    [26] Gregory S. Chirikjian, and David Stein. Kinematic Design and Commutation of a Spherical Stepper Motor. IEEE Trans. Mechatronics, 1999, 4(4): 342-353.
    [27] David Stein, Chirikjian. Experiments in the Commutation and Motion Planning of a Spherical Stepper Motor[J]. ASME 2000 Design Engineering Technical Conferences and Computers and Information in Engineering Conference Baltimore, Maryland. 2000: September 10-13
    [28] David Stein, Edward R. Scheinerman, Gregory S. Chirikjian. Mathematical Models of Binary Spherical-Motion Encoders.IEEE/ASME TRANSACTIONS ON MECHATRONICS, 2003, 8(2): 234-244.
    [29] G. J. Vachtsevanos, K. Davey, K.-M. Lee. Development of a novel intelligent robotic manipulator. Control Systems Magazine, 1987, 6: 9-15
    [30] K.-M. Lee, G. J. Vachtsevanos, C.-K. Kwan. Development of a spherical wrist stepper motor[C]. Proceedings of IEEE International Conference on Robotics and Automation, 1988, 4: 267-272.
    [31] K.-M. Lee, C.-K. Kwan. Design concept development of a spherical stepper for robotic applications, IEEE Trans. On Robots and Autoation, 1991,7(1): 175-180
    [32] K.-M. Lee, J. Pei. Kinematic Analysis of a Three Degrees of Freedom Spherical Wrist Actuator. Proceedings of the Fifth International Conf. On Advanced Robotics, 1991:72-77
    [33] K.-M. Lee., Pei, J. and Roth, R.. Kinematic analysis of a three-degrees-of-freedom spherical wrist actuator [J]. Mechatronics, 1994, 4(6): 581-605.
    [34] 吴立建.稀土永磁球形步进电动机的研究.合肥工业大学硕士学位论文.2002.4
    [35] 吴立建,王群京等.磁场积分法在永磁步进球形电动机场分析中的应用[J].中国电机工 程学报,2004,24(9):192—197.
    [36] 李争.仿人机器人关节用永磁球形步进电动机的基础研究,合肥工业大学博士学位论文.2006.11
    [37] 高国富 谢少荣 罗均 机器人传感器及其应用[M].北京.化学工业出版社,2005.9
    [38] 方建军 何广平 智能机器人[M].北京.化学工业出版社,2004.2
    [39] 王群京,李争,等.新型永磁球形步进电动机结构参数及转矩特性的计算与分析,中国电机工程学报,2006,26(10):158—165
    [40] 夏鲲.新型仿人机器人关节用永磁球形步进电机控制算法及驱动器研究,合肥工业大学博士学位论文.2007.5
    [41] 王群京,李争,陈丽霞,鲍晓华.一种永磁球形步进电动机的运动分析与仿真,系统仿真学报,2005,17(9):2260—2264
    [42] 陈荣,严仰光.永磁电机的转子位置检测与定位,中小型电机,2003,30(3):61-65
    [43] 张禾瑞.近世代数基础[M].北京.高等教育出版社.1978.5
    [44] 孟道骥.复半单李代数引论[M].北京.北京大学出版社.1998.1
    [45] 徐婉棠 喀兴林.群论及其在固体物理中的应用[M].北京.高等教育出版社
    [46] 马中骥.物理学中的群论[M].北京.科学出版社
    [47] 刘峻峰.三维转动的四元数表述[J].大学物理,2004,23(4):39-43.
    [48] 张帆,曹喜滨,邹经湘.一种新的全角度四元数与欧拉角的转换算法.南京理工大学学报,2002,26(4):376—380
    [49] 王群京,雍爱霞,陈丽霞,等.一种永磁球形步进电机转子位置的检测方法[J].中国电机工程学报,2006,26(22):92-96.
    [50] 林尧瑞 马少平 人工智能导论[M].北京.清华大学出版社
    [51] Zbigniew Michalewies,David B.Fogel著,曹宏庆 李艳 董红斌 吴志健译.如何求解问题—现代启发式方法[M].北京.中国水利水电出版社
    [52] George F.Luger著,史忠植,张银奎译.人工智能:复杂问题求解的结构和策略[M].北京:机械工业出版社,2004.
    [53] 杨宪泽.基于图搜索算法的探讨.西南民族学院学报,1998,24(2):117-122
    [54] 段国林,查建中,等.启发式算法及其在工程中的应用,机械设计,2006(6):1-5
    [55] 何星,许晓鸣,梁泉,等.基于启发式搜索的一类离散非线性系统优化控制算法,上海交通大学学报,1996,30(4)
    [56] 夏洁,高金源,余舟毅.基于禁忌搜索的启发式任务路径规划算法.控制与决策,2002,17(增):773-776
    [57] 王群京,陈丽霞等.基于光电传感器编码的永磁球形步进电机运动控制[J].中国电机工程学报,2005,25(13):113—117.
    [58] Qunjing Wang, Zheng Li et al. Calculation of Torque in a Permanent Magnet Spherical Stepper Motor Using Maxwell Stress Tensor Method, Proceedings of the 15th Conference on the Computation of Electromagnetic Fields, June, 2005, pp. 108-110
    [59] Qunjing Wang, Zheng Li et al. 3D Magnetic Field Analysis and Torque Calculation of a PM Spherical Motor. The Eighth International Conference on Electrical Machines and Systems, 2005, pp. 2116-2120
    [60] 尹泽明 丁春利.精通MATLAB6[M].北京.清华大学出版社
    [61] 雷英杰.MATLAB遗传算法工具箱及应用[M].西安.西安电子科技大学出版社
    [62] 张文修,梁怡.遗传算法的数学基础[M].西安:西安交通大学出版社,2000.
    [63] 恽为民 席裕庚.遗传算法的全局收敛性和计算效率分析[J].控制理论与应用.1996,13(4).455—460
    [64] 陈莉.混合遗传算法及应用[J].四川师范大学学报.1998,21(5).553—558
    [65] 刘莉 周晓阳.混合遗传算法收敛分析[J].2004,17(增)111—113
    [66] 毕鹏翔,苗竹梅,刘健.浮点数编码的无功优化遗传算法.电力自动化设备,2003,23(9):42—45
    [67] 赵明旺.基于遗传算法和最速下降法的函数优化混合数值算法[J].系统工程理论与实践.1997,7.59—64
    [68] 赵明旺.连续可微函数全局优化的混合遗传算法[J].控制与决策,1997,12(5):589-592.
    [69] 陈丽霞.稀土永磁球形步进电机的控制方法研究.合肥工业大学硕士学位论文,2005,4
    [70] 王超,巫世晶,李晓斌,秦明.基于MATLAB的一种混合遗传算法的研究.制冷空调与电力机械,2005,26(3):37-39
    [71] 史荣昌.矩阵分析[M].北京.北京理工大学出版社.1996.1
    [72] 卜月华.图论及其应用[M].南京.东南大学出版社
    [73] 王晓东.数据结构与算法设计[M].北京.电子工业出版社
    [74] 严蔚敏 陈文博.数据结构及应用算法教程[M].北京.清华大学出版社
    [75] 李忠杰.步进电动机应用技术[M].北京.机械工业出版社,1984.
    [76] 王宇培 孔昌平.步进电机及其控制系统[M].哈尔滨.哈尔滨工业大学出版社.
    [77] 崔群.一种保证步进电机在变速运行中不失步的控制方法.机电工程,2000,17(4):61-63
    [78] 赵永瑞.一种先进的步进电机控制方法.电气传动,2004(4):52-54
    [79] 王群京,陈丽霞,李争,倪有源.永磁球形步进电机运动控制方法,微特电机,2005(12):5-7
    [80] 李文亮.四元数的矩阵[M].长沙:国防科技大学出版社,2002
    [81] 许毛跃,张登成,李嘉林.四元数在欧拉方程中的应用研究.飞行力学,2002,20(1):67-70
    [82] 张劲夫.操作机器人自由项的四元数算法.西北工业大学学报,1996,14(1):100-104
    [83] 李亚萍,黄崇超.实四元数组与三维旋转.武汉水利电力大学学报,1995,28(6):607-612
    [84] 雍爱霞,王群京,倪有源.基于四元数组的球形电机的控制.微电机,2006,26(2):97-101
    [85] 王群京,陈丽霞等.基于加权无向图的永磁球形步进电机运动控制[J].中国电机工程学报,2005 25(9):130—134.
    [86] 杨云,孙向军,曹立鑫,等.一种启发式遗传算法及其在最短路径求取中的应用,计算机工程与应用,2003,(1):12-14
    [87] 王伟,储林波,马玉林.一种改进的机器人路径规划算法.哈尔滨工业大学学报,1998,30(2):97-98
    [88] 金海,谢卫.A~*树搜索算法代价与误差关系的研究.软件学报,1995,6(3):155-158
    [89] 邰宜斌,席裕庚,李秀明.一种机器人路径规划的新方法.上海交通大学学报,1996,30(4):94-100
    [90] 李峻,李学全,胡德金.步进电机的运动控制系统及其应用.微特电机,2000(2):37-39
    [91] 任晓虹,周启炎,孟丽荣.步进电机闭环控制的研究.沈阳工业学院学报,2003,22(2):7-9
    [92] 李淑好.步进电机的核步法闭环控制原理.机电一体化,2001(3):42-44

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700