用户名: 密码: 验证码:
航空生物燃料高效制备实验研究与机理分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,包括中国在内的世界各国航空公司都在积极寻求解决方案来应对航空燃料价格急剧波动和航空碳减排的双重压力。开发第二代可再生航空生物替代燃料是航空业减排和降低燃油成本的重要出路。
     本文简要分析了航空燃料制备的典型技术(主要包括常规炼制工艺、非传统原料炼制工艺、费托合成技术、氢化处理技术、生物合成烃技术、裂解工艺、转酯化技术以及其它发酵工艺),并对各种工艺进行了对比。同时,本文以生物柴油和脂肪酸为原料,采用柯尔贝电解联合催化裂化工艺制得可再生航空生物燃料,该产品具有优良的稳定性、低温流动性以及安全性能,完全可以作为现有航空燃料的替代产品或调合组分,而且不需要对现有的燃料设施进行改造。
     柯尔贝电解工艺主要是去除原料中的氧。研究结果表明:铂电极具有较好的稳定性能,较高的电解温度和电压有利于该反应的进行,优化的电解温度为45±5°C;乙醇溶剂适用于酸性电解体系,而甲醇更适于弱酸性或者中性电解体系;当采用甲醇作溶剂时,电解电压不能低于7.5V。标准三电极体系电化学测试(循环伏安测试、线性伏安扫描、塔菲尔曲线测试)结果表明:柯尔贝电解是完全不可逆的合成过程,且电解过程中的电子转移数是1。
     NKC-7、NKC-11、HY、NKC-12催化剂用于催化裂化/异构化实验来制备碳链个数在5~15的宽切割组分航空燃料。通过催化剂的表征及失活特性分析表明NKC-7具有较好的催化裂化稳定性。优化的催化裂化反应条件为:反应温度485°C,物料流量0.600mL/min,催化剂用量15g (质量空速为2.2h-1)。该反应条件下航空燃料组分的产率在90%以上。本文还建立了集总反应动力学模型并利用龙格库塔方程和非线性最小二乘法对催化裂化工艺进行了动力学参数的估算。
     本文建立了成本分析模型对航空生物燃料的生产进行技术经济性评估,该模型以废弃油脂为原料,生产规模为年产1万吨航空燃料。分析结果表明:采用该工艺技术生产航空燃料的总投资额为2410万元,生产成本为7780万元每年,其中原料价格所占比重接近88%。
     本文以能源微藻等能源作物为原料,对可再生航空生物燃料进行全生命周期评价。结果表明:虽然以微藻为原料生产并使用1MJ的生物燃料所产生的二氧化碳当量值最低,但是仍达到0.285kg eq-CO_2/MJ生物燃料。开发废弃油脂资源作为我国发展可再生生物燃料的主要原料将会带来极大的环保效益和社会效益。
The world is changing and so is the aviation industry. Now with decliningpetroleum resources, shocking surge in the price of fuel, combined with the increasein political and environmental concerns, it is imperative for aviation industries todevelop clean and energy-efficient technologies of producing sustainable alternativebiofuels. In present study, an innovative but simple and effective method wasdeveloped for the production of aviation biofuels by Kolbe electrosynthesis coupledwith catalytic cracking reaction from fatty acid methyl esters (biodiesel) or saturatedfatty acids. The aviation biofuels produced showed good properties even at extremelycritical conditions.
     For the preparation of long carbon chain hydrocarbons by Kolbe reactions fromsaturated fatty acids. Several reaction conditions (such as potential, solvent, supportelectrolyte, reaction time, and electrode materials) were evaluated to optimize theKolbe electrosynthesis. The optimum conditions for Kolbe reaction were: thepotential higher than7.5V and20wt.%of KOH used as the support electrolyte withtemperature of45±5oC, while the methanol as solvent. Besides, the mechanism wasalso proposed according to the electrochemical tests (cyc1ic voltammetry tests, linearsweep voltammetry tests, and tafel tests). The results show that it is a very promisingchoice for the preparation of aviation jet fuel by Kolbe processes, which are energyefficient as the reactions are conducted mostly at ambient pressure and temperature.
     In order to get higher conversion ratio and higher jet fuel yield in the catalyticcracking reaction,15g NKC-7catalyst was used while the feedstock flow rate was0.600mL/min under485oC after1h when the catalyst has stable react activation. Also,a detailed lumping procedure for obtaining a kinetic model of catalytic crackingreaction is developed. The kinetic constants were estimated by nonlinear least squaresfitting method.
     In order to estimate the cost of producing aviation biofuel, technical andeconomic analysis on a conceptual design of an aviation biofuel production plant(with a capacity of10,000tonnes per year) was made. The estimated total capital costand annual operating cost were approximately RMB24.10million and RMB77.8million, respectively. The present results demonstrated that the industrial scale plant would be promisingly competitive in the market using waste cooking oils and animalfats as raw material.
     A life cycle assessment was carried out to quantify and compare theenvironmental impacts by producing and utilizing of biofuels derived from the bestfeedstock options available in the short and medium term (palm oil, jatropha oil, andmicroalgae oil) referring to China conditions. According to the well-to-pump (WTP)and pump-to-wheels (PTW) results, the total amount of CO_2emitted for both casescenarios is different, arranging from0.285kg eq-CO_2/MJ biofuel to0.730kgeq-CO_2/MJ biofuel based on the production of1MJ biofuel. The new generationrenewable materials (especially microalgae) and waste cooking oil appear to be themost likely feedstock for aviation biofuels in medium and long term of China.Considering the extensive application of microalgae and waste cooking oil forbiofuels production, new market will be opened up and there will be real andpotentially very promising impacts on ecosystems and on society.
引文
[1] Lee D.S., Fahey D.W., Forster P.M., et al., Aviation and global climate changein the21stcentury[J]. Atmospheric Environment,2009,43(22-23):3520-3537.
    [2] Sehra A.K.,Whitlow W., Propulsion and power for21stcentury aviation[J].Progress in Aerospace Sciences,2004,40(4-5):199-235.
    [3] Sausen R., Schumann U., Estimates of the climate response to aircraft CO2and NOx emissions scenarios[J]. Climatic Change,2000,44(1-2):27-58.
    [4] Hein K.R.G., Bemtgen J.M., EU clean coal technology-co-combustion ofcoal and biomass[J]. Fuel Processing Technology,1998,54(1-3):159-169.
    [5] Blakey S., Rye L., Wilson C.W., Aviation gas turbine alternative fuels: Areview[J]. Proceedings of the Combustion Institute,2011,33:2863-2885.
    [6] Gupta K.K., Rehman A., Sarviya R.M., Bio-fuels for the gas turbine: Areview[J]. Renewable&Sustainable Energy Reviews,2010,14(9):2946-2955.
    [7] Maurice L.Q., Lander H., Edwards T., et al., Advanced aviation fuels: a lookahead via a historical perspective[J]. Fuel,2001,80(5):747-756.
    [8] Nygren E., Aleklett K., Hook M., Aviation fuel and future oil productionscenarios[J]. Energy Policy,2009,37(10):4003-4010.
    [9] Corporan E., Edwards T., Shafer L., et al., Chemical, thermal stability, sealswell, and emissions studies of alternative jet fuels[J]. Energy&Fuels,2011,25(3):955-966.
    [10] IEA, Annual Energy Outlook2006[R].2006.
    [11] Naik C.V., Puduppakkam K.V., Modak A., et al., Detailed chemical kineticmechanism for surrogates of alternative jet fuels[J]. Combustion and Flame,2011,158(3):434-445.
    [12] Catalanotti E., Hughes K.J., Pourkashanian M., et al., Development of achemical reaction mechanism for alternative aviation fuels[J]. Energy&Fuels,2011,25(4):1465-1473.
    [13] IEA, World Energy Outlook2009[R].2009.
    [14] Bulzan D., Anderson B., Wey C., et al., Gaseous and particulate emissionsresults of the NASA alternative aviation fuel experiment[C]. Proceedings ofthe Asme Turbo Expo2010, Vol2, Pts a and B.2010,1195-1207.
    [15] Shaw S.L., Lu F., Chen J., et al., China s airline consolidation and its effectson domestic airline networks and competition[J]. Journal of TransportGeography,2009,17(4):293-305.
    [16] Lobo P., Hagen D.E., Whitefield P.D., Comparison of PM emissions from acommercial jet engine burning conventional, biomass, and Fischer-Tropschfuels[J]. Environmental Science&Technology,2011,45(24):10744-10749.
    [17] Bailis R.E., Bake J.E., Greenhouse gas emissions and land use change fromjatropha curcas-based jet fuel in Brazil[J]. Environmental Science&Technology,2010,44(22):8684-8691.
    [18] Cheze B., Gastineau P., Chevallier J., Forecasting world and regional aviationjet fuel demands to the mid-term (2025)[J]. Energy Policy,2011,39(9):5147-5158.
    [19] Geng R.S., Modern acoustic emission technique and its application in aviationindustry[J]. Ultrasonics,2006,44:1025-1029.
    [20] Lichtsinder M., Levy Y., Jet engine model for control and real-timesimulations[J]. Journal of Engineering for Gas Turbines andPower-Transactions of the Asme,2006,128(4):745-753.
    [21] Levy Y., Sherbaum V., Nadvany V., et al., Modified vaporizer for improvedignition in small jet engine[J]. Journal of Propulsion and Power,2006,22(4):828-834.
    [22] Williams V., Noland R.B., Majumdar A., et al., Reducing environmentalimpacts of aviation with innovative air traffic management technologies[J].Aeronautical Journal,2007,111(1125):741-749.
    [23] Uryga-Bugajska I., Pourkashanian M., Borman D., et al., Theoreticalinvestigation of the performance of alternative aviation fuels in anaero-engine combustion chamber[C]. Proceedings of the Institution ofMechanical Engineers Part G-Journal of Aerospace Engineering,2011,225(G8):874-885.
    [24] Lu X.C., Han D., Huang Z., Fuel design and management for the control ofadvanced compression-ignition combustion modes[J]. Progress in Energy andCombustion Science,2011,37(6):741-783.
    [25] Sgouridis S., Bonnefoy P.A., Hansman R.J., Air transportation in a carbonconstrained world: Long-term dynamics of policies and strategies formitigating the carbon footprint of commercial aviation[J]. TransportationResearch Part a-Policy and Practice,2011,45(10):1077-1091.
    [26] Bessou C., Ferchaud F., Gabrielle B., et al., Biofuels, greenhouse gases andclimate change. A review[J]. Agronomy for Sustainable Development,2011,31(1):1-79.
    [27] Gudmundsson S.V., Anger A., Global carbon dioxide emissions scenarios foraviation derived from IPCC storylines: A meta-analysis[J]. TransportationResearch Part D-Transport and Environment,2012,17(1):61-65.
    [28] Unger N., Global climate impact of civil aviation for standard anddesulfurized jet fuel[J]. Geophysical Research Letters,2011,38.
    [29] Rye L., Blakey S., Wilson C.W., Sustainability of supply or the planet: areview of potential drop-in alternative aviation fuels[J]. Energy&Environmental Science,2010,3(1):17-27.
    [30] Lamprecht D., Fischer-Tropsch fuel for use by the US Military asbattlefield-use fuel of the future[J]. Energy&Fuels,2007,21(3):1448-1453.
    [31] Oefelein J.C., Chen J.H., Sankaran R., High-fidelity simulations for clean andefficient combustion of alternative fuels, in Scidac2009: Scientific Discoverythrough Advanced Computing[M]. H. Simon, Editor.2009.
    [32] Kehayas N., Propulsion system of jet-flapped subsonic civil transport aircraftdesign[J]. Journal of Aircraft,2011,48(2):697-702.
    [33] Santoni G.W., Lee B.H., Wood E.C., et al., Aircraft emissions of methane andnitrous oxide during the alternative aviation fuel experiment[J].Environmental Science&Technology,2011,45(16):7075-7082.
    [34] Pucher G., Allan W., LaViolette M., et al., Emissions from a gas turbine sectorrig operated with synthetic aviation and biodiesel fuel[J]. Journal ofEngineering for Gas Turbines and Power-Transactions of the Asme,2011,133(11).
    [35] Sayal A., Erdem O., Eken A., et al., The biomonitoring of naphthols in urineand some oxidative stress parameters in workers exposed to jet fuel (JP-8)[J].Drug Metabolism Reviews,2011,43:71.
    [36] Law C.K., Fuel options for next-generation chemical propulsion[J]. AiaaJournal,2012,50(1):19-36.
    [37] Bernabei M., Reda R., Galiero R., et al., Determination of total and polycyclicaromatic hydrocarbons in aviation jet fuel[J]. Journal of Chromatography A,2003,985(1-2):197-203.
    [38] Srivastava A.N., Greener aviation with virtual sensors: a case study[J]. DataMining and Knowledge Discovery,2012,24(2):443-471.
    [39] Agusdinata D.B., Zhao F., Ileleji K., et al., Life cycle assessment of potentialbiojet fuel production in the united states[J]. Environmental Science&Technology,2011,45(21):9133-9143.
    [40] Lee B.H., Santoni G.W., Wood E.C., et al., Measurements of nitrous acid incommercial aircraft exhaust at the alternative aviation fuel experiment[J].Environmental Science&Technology,2011,45(18):7648-7654.
    [41] IATA, IATA Annual Report2009[R].2009.
    [42] Stratton R.W., Wolfe P.J., Hileman J.I., Impact of aviation Non-CO(2)combustion effects on the environmental feasibility of alternative jet fuels[J].Environmental Science&Technology,2011,45(24):10736-10743.
    [43] Cane-based jet fuel sourced by Boeing and Embraer in Brazil[J].International Sugar Journal,2011,113(1356):835-835.
    [44] Shih H.Y., Hsu J.R., A computational study of combustion and extinction ofopposed-jet syngas diffusion flames[J]. International Journal of HydrogenEnergy,2011,36(24):15868-15879.
    [45] Saffaripour M., Zabeti P., Kholghy M., et al., An experimental comparison ofthe sooting behavior of synthetic jet fuels[J]. Energy&Fuels,2011,25(12):5584-5593.
    [46] IATA, IATA2008Report on Alternative Fuels[R].2008.
    [47] Ricci A., Chekhovskiy K., Azhaguvel P., et al., Molecular characterization ofjatropha curcas resources and identification of population-specific markers[J].Bioenergy Research,2012,5(1):215-224.
    [48] Vaknin Y., The significance of pollination services for biodiesel feedstocks,with special reference to jatropha curcas L.: A review[J]. Bioenergy Research,2012,5(1):32-40.
    [49] Jha C.K., Patel B., Saraf M., Stimulation of the growth of Jatropha curcas bythe plant growth promoting bacterium Enterobacter cancerogenus MSA2[J].World Journal of Microbiology&Biotechnology,2012,28(3):891-899.
    [50] Shivani P., Khushbu P., Faldu N., et al., Extraction and analysis of Jatrophacurcas L. seed oil[J]. African Journal of Biotechnology,2011,10(79):18210-18213.
    [51] Cisneros-Lopez E., Gonzalez-Quintero J., Moreno-Medina V.R., et al., Firstreport of curvularia lunata on Jatropha curcas in Mexico[J]. Plant Disease,2012,96(2):288-288.
    [52] Gurunathan N., Srimathi P., Influence of seed orientation at different depthsof sowing in Jatropha curcas[J]. Range Management and Agroforestry,2011,32(2):100-103.
    [53] Lin Y.F., Chen J.H., Hsu S.H., et al., The synthesis of Lewis acid ZrO2nanoparticles and their applications in phospholipid adsorption from Jatrophaoil used for biofuel[J]. Journal of Colloid and Interface Science,2012,368:660-662.
    [54] Kumar R., Rana B.S., Tiwari R., et al., Hydroprocessing of jatropha oil and itsmixtures with gas oil[J]. Green Chemistry,2010,12(12):2232-2239.
    [55] Petkov G., Ivanova A., Iliev I., et al., A critical look at the microalgaebiodiesel[J]. European Journal of Lipid Science and Technology,2012,114(2):103-111.
    [56] He M.X., Hu Q.C., Gou X.H., et al., Screening of oleaginous yeast withxylose assimilating capacity for lipid and bio-ethanol production[J]. AfricanJournal of Biotechnology,2010,9(49):8392-8397.
    [57] Singh J., Cu S., Commercialization potential of microalgae for biofuelsproduction[J]. Renewable&Sustainable Energy Reviews,2010,14(9):2596-2610.
    [58] Quinn J.C., Catton K., Wagner N., et al., Current large-scale US biofuelpotential from microalgae cultivated in photobioreactors[J]. BioenergyResearch,2012,5(1):49-60.
    [59] Servaites J.C., Faeth J.L., Sidhu S.S., A dye binding method for measurementof total protein in microalgae[J]. Analytical Biochemistry,2012,421(1):75-80.
    [60] Kativu E., Hildebrandt D., Matambo T., et al., Effects of CO2on SouthAfrican fresh water microalgae growth[J]. Environmental Progress&Sustainable Energy,2012,31(1):24-28.
    [61] Edwards T., Cracking and deposition behavior of supercritical hydrocarbonaviation fuels[J]. Combustion Science and Technology,2006,178(1-3):307-334.
    [62] Filippone A., Comprehensive analysis of transport aircraft flightperformance[J]. Progress in Aerospace Sciences,2008,44(3):192-236.
    [63] Sims R.E.H., Mabee W., Saddler J.N., et al., An overview of secondgeneration biofuel technologies[J]. Bioresource Technology,2010,101(6):1570-1580.
    [64] Jeczmionek L., Camelina oil co-processing into the second generationbiocomponents[J]. Przemysl Chemiczny,2011,90(11):2010-2014.
    [65] Imbrea F., Jurcoane S., Halmajan H.V., et al., Camelina sativa: A new sourceof vegetal oils[J]. Romanian Biotechnological Letters,2011,16(3):6263-6270.
    [66] Terpinc P., Polak T., Makuc D., et al., The occurrence and characterisation ofphenolic compounds in Camelina sativa seed, cake and oil[J]. FoodChemistry,2012,131(2):580-589.
    [67] Wu X., Leung D.Y.C., Optimization of biodiesel production from camelina oilusing orthogonal experiment[J]. Applied Energy,2011,88(11):3615-3624.
    [68] Berti M., Wilckens R., Fischer S., et al., Seeding date influence on camelinaseed yield, yield components, and oil content in Chile[J]. Industrial Cropsand Products,2011,34(2):1358-1365.
    [69] Howitt O.J.A., Carruthers M.A., Smith I.J., et al., Carbon dioxide emissionsfrom international air freight[J]. Atmospheric Environment,2011,45(39):7036-7045.
    [70] Green J.E., Civil aviation and the environment-the next frontier for theaerodynamicist[J]. Aeronautical Journal,2006,110(1110):469-486.
    [71] Holmes C.D., Tang Q., Prather M.J., Uncertainties in climate assessment forthe case of aviation NO[C]. Proceedings of the National Academy of Sciencesof the United States of America,2011,108(27):10997-11002.
    [72] Chaturvedi A.K., Aviation combustion toxicology: An overview[J]. Journal ofAnalytical Toxicology,2010,34(1):1-16.
    [73] Timko M.T., Yu Z., Onasch T.B., et al., Particulate emissions of gas turbineengine combustion of a Fischer-Tropsch synthetic fuel[J]. Energy&Fuels,2010,24:5883-5896.
    [74] FAA,2004Annual Performance Report[R].2004.
    [75] EPA, The Benefits and Costs of the Clean Air Act1990to2010[R].1999.
    [76] Mahashabde A., Wolfe P., Ashok A., et al., Assessing the environmentalimpacts of aircraft noise and emissions[J]. Progress in Aerospace Sciences,2011,47(1):15-52.
    [77] Bromwich M.A., Parsa V., Lanthier N., et al., Active noise reductionaudiometry: A prospective analysis of a new approach to noise managementin audiometric testing[J]. Laryngoscope,2008,118(1):104-109.
    [78] NASA, Columbia Accident Investigation Board Report2003[R].2003.
    [79] Zachary D.S., Gervais J., Leopold U., Multi-impact optimization to reduceaviation noise and emissions[J]. Transportation Research Part D-Transportand Environment,2010,15(2):82-93.
    [80] Dorbian C.S., Wolfe P.J., Waitz I.A., Estimating the climate and air qualitybenefits of aviation fuel and emissions reductions[J]. AtmosphericEnvironment,2011,45(16):2750-2759.
    [81] O Connor P., O Dea A., Kennedy Q., et al., Measuring safety climate inaviation: A review and recommendations for the future[J]. Safety Science,2011,49(2):128-138.
    [82] Anderson K., Bows A., Beyond dangerous climate change: emissionscenarios for a new world[J]. Philosophical Transactions of the Royal Societya-Mathematical Physical and Engineering Sciences,2011,369(1934):20-44.
    [83] Bows A., Anderson K., Policy clash: can projected aviation growth bereconciled with the UK Government s60%carbon-reduction target?[J].Transport Policy,2007,14:103-110.
    [84] Mayor K., Tol R.S.J., Scenarios of carbon dioxide emissions from aviation[J].Global Environmental Change-Human and Policy Dimensions,2010,20(1):65-73.
    [85] Macintosh A., Wallace L., International aviation emissions to2025: Canemissions be stabilised without restricting demand?[J]. Energy Policy,2009,37(1):264-273.
    [86] Arto I., Gallastegui C., Ansuategi A., Accounting for early action in theEuropean Union Emission Trading Scheme[J]. Energy Policy,2009,37(10):3914-3924.
    [87] Korres D.M., Karonis D., Lois E., et al., Aviation fuel JP-5and biodiesel on adiesel engine[J]. Fuel,2008,87(1):70-78.
    [88] Al-Otoom A., Allawzi M., Al-Harahsheh A.M., et al., A parametric study onthe factors affecting the froth floatation of Jordanian tar sand utilizing afluidized bed floatator[J]. Energy,2009,34(9):1310-1314.
    [89] Al-Otoom A., Allawzi M., Al-Omari N., et al., Bitumen recovery fromJordanian oil sand by froth flotation using petroleum cycles oil cuts[J].Energy,2010,35(10):4217-4225.
    [90] Hogshead C.G., Manias E., Williams P., et al., Studies of bitumen-silica andoil-silica interactions in ionic liquids[J]. Energy&Fuels,2011,25:293-299.
    [91] Moskalyk R.R., Alfantazi A.M., Processing of vanadium: a review[J].Minerals Engineering,2003,16(9):793-805.
    [92] Pakdel H., Roy C., Recovery of bitumen by vacuum pyrolysis of Alberta tarsands[J]. Energy&Fuels,2003,17(5):1145-1152.
    [93] Wallwork V., Xu Z.H., Masliyah J., Bitumen recovery with oily air bubbles[J].Canadian Journal of Chemical Engineering,2003,81(5):993-997.
    [94] Painter P., Williams P., Mannebach E., Recovery of bitumen from oil or tarsands using ionic liquids[J]. Energy&Fuels,2010,24:1094-1098.
    [95] Masliyah J., Zhou Z.J., Xu Z.H., et al., Understanding water-based bitumenextraction from athabasca oil sands[J]. Canadian Journal of ChemicalEngineering,2004,82(4):628-654.
    [96] Hupka J., Miller J.D., Drelich J., Water-based bitumen recovery fromdiluent-conditioned oil sands[J]. Canadian Journal of Chemical Engineering,2004,82(5):978-985.
    [97] Williams P.T., Ahmad N., Influence of process conditions on the pyrolysis ofPakistani oil shales[J]. Fuel,1999,78(6):653-662.
    [98] Wang Q., Zhao W.Z., Liu H.P., et al., Interactions and kinetic analysis of oilshale semi-coke with cornstalk during co-combustion[J]. Applied Energy,2011,88(6):2080-2087.
    [99] Torrente M.C., Galan M.A., Kinetics of the thermal decomposition of oilshale from Puertollano (Spain)[J]. Fuel,2001,80(3):327-334.
    [100] Gersten J., Fainberg V., Hetsroni G., et al., Kinetic study of the thermaldecomposition of polypropylene, oil shale, and their mixture[J]. Fuel,2000,79(13):1679-1686.
    [101] Deng S.H., Wang Z.J., Gu Q.A., et al., Extracting hydrocarbons from Huadianoil shale by sub-critical water[J]. Fuel Processing Technology,2011,92(5):1062-1067.
    [102] Koel M., Use of ionic liquids in oil shale processing, in Ionic Liquids Iiib:Fundamentals, Progress, Challenges and Opportunities: Transformations andProcesses[M], R.D. Rogers and K.R. Seddon, Editors.2005, p.72-82.
    [103] Koel M., Ljovin S., Bondar Y., Supercritical carbon dioxide extraction ofEstonian oil shale[J]. Oil Shale,2000,17(3):225-232.
    [104] Miao L.N., Ji G.J., Gao G.M., et al., Extraction of alumina powders from theoil shale ash by hydrometallurgical technology[J]. Powder Technology,2011,207(1-3):343-347.
    [105] Adesina A.A., Hydrocarbon synthesis via Fischer-Tropsch reaction: travailsand triumphs[J]. Applied Catalysis A: General,1996,138(2):345-367.
    [106] Chum H.L.,Overend R.P., Biomass and renewable fuels[J]. Fuel ProcessingTechnology,2001,71(1-3):187-195.
    [107] Khodakov A.Y., Chu W., Fongarland P., Advances in the development ofnovel cobalt Fischer-Tropsch catalysts for synthesis of long-chainhydrocarbons and clean fuels[J]. Chemical Reviews,2007,107(5):1692-1744.
    [108] Rafiq M.H., Jakobsen H.A., Schmid R., et al., Experimental studies andmodeling of a fixed bed reactor for Fischer-Tropsch synthesis usingbiosyngas[J]. Fuel Processing Technology,2011,92(5):893-907.
    [109] Van der Laan G.P., Beenackers A., Kinetics and selectivity of theFischer-Tropsch synthesis: A literature review[J]. Catalysis Reviews-Scienceand Engineering,1999,41(3-4):255-318.
    [110] Schulz H., Short history and present trends of Fischer-Tropsch synthesis[J].Applied Catalysis a-General,1999,186(1-2):3-12.
    [111] Cano L.A., Cagnoli M.V., Bengoa J.F., et al., Effect of the activationatmosphere on the activity of Fe catalysts supported on SBA-15in theFischer-Tropsch Synthesis[J]. Journal of Catalysis,2011,278(2):310-320.
    [112] Jia L.H., Jia L.T., Li D.B., et al., Silylated Co/SBA-15catalysts forFischer-Tropsch synthesis[J]. Journal of Solid State Chemistry,2011,184(3):488-493.
    [113] Wang Z.J., Yan Z., Liu C.J., et al., Surface science studies on cobaltFischer-Tropsch catalysts[J]. Chemcatchem,2011,3(3):551-559.
    [114] Pour A.N., Housaindokht M.R., Tayyari S.F., et al., Water-gas-shift kineticsover a Fe/Cu/La/Si catalyst in Fischer-Tropsch synthesis[J]. ChemicalEngineering Research&Design,2011,89(3A):262-269.
    [115] Jalama K., Coville N.J., Xiong H.F., et al., A comparison of Au/Co/Al2O3andAu/Co/SiO2catalysts in the Fischer-Tropsch reaction[J]. Applied Catalysisa-General,2011,395(1-2):1-9.
    [116] Leckel D., Diesel production in coal-based high-temperature Fischer-Tropschplants using fixed bed dry bottom gasification technology[J]. Fuel ProcessingTechnology,2011,92(5):959-969.
    [117] Dry M.E., The Fischer-Tropsch process:1950-2000[J]. Catalysis Today,2002,71(3-4):227-241.
    [118] Atashi H., Siami F., Mirzaei A.A., et al., Kinetic study of Fischer-Tropschprocess on titania-supported cobalt-manganese catalyst[J]. Journal ofIndustrial and Engineering Chemistry,2010,16(6):952-961.
    [119] Hou J., Zhang P., Yuan X., et al., Life cycle assessment of biodiesel fromsoybean, jatropha and microalgae in China conditions[J]. Renewable&Sustainable Energy Reviews,2011,15(9):5081-5091.
    [120] Hook M., Aleklett K., A review on coal-to-liquid fuels and its coalconsumption[J]. International Journal of Energy Research,2010,34(10):848-864.
    [121] Hao X., Dong G.Q., Yang Y., et al., Coal to liquid (CTL): Commercializationprospects in china[J]. Chemical Engineering&Technology,2007,30(9):1157-1165.
    [122] Mantripragada H.C., Rubin E.S., CO2reduction potential of coal-to-liquids(CTL) plants, in Greenhouse Gas Control Technologies[M], J. Gale, H.Herzog, and J. Braitsch, Editors.2009, p.4331-4338.
    [123] Sudiro M., Bertucco A., Ruggeri F., et al., Improving process performances incoal gasification for power and synfuel production[J]. Energy&Fuels,2008,22(6):3894-3901.
    [124] Keshav T.R., Basu S., Gas-to-liquid technologies: India s perspective[J]. FuelProcessing Technology,2007,88(5):493-500.
    [125] Bakkerud P.K., Update on synthesis gas production for GTL[J]. CatalysisToday,2005,106(1-4):30-33.
    [126] Faraji S., Nordheden K.J., Stagg-Williams S.M., A comparative study ofBa0.5Sr0.5Co0.8Fe0.2Ox (BSCF) and SrFeCo0.5Ox (SFC) ceramic membranesused for syngas production[J]. Applied Catalysis B-Environmental,2010,99(1-2):118-126.
    [127] Zhu X.F., Li Q.M., He Y.F., et al., Oxygen permeation and partial oxidation ofmethane in dual-phase membrane reactors[J]. Journal of Membrane Science,2010,360(1-2):454-460.
    [128] Hong X.B., Wang Y.Q., Partial oxidation of methane to syngas catalyzed by anickel nanowire catalyst[J]. Journal of Natural Gas Chemistry,2009,18(1):98-103.
    [129] Xu Y., Wang T.J., Ma L.L., et al., Upgrading of liquid fuel from the vacuumpyrolysis of biomass over the Mo-Ni/gamma-Al(2)O(3) catalysts[J]. Biomass&Bioenergy,2009,33(8):1030-1036.
    [130] Pyl S.P., Schietekat C.M., Reyniers M.F., et al., Biomass to olefins: Crackingof renewable naphtha[J]. Chemical Engineering Journal,2011,176-77:178-187.
    [131] Bridgwater A.V., Peacocke G.V.C., Fast pyrolysis processes for biomass[J].Renewable&Sustainable Energy Reviews,2000,4(1):1-73.
    [132] Templis C., Vonortas A., Sebos I., et al., Vegetable oil effect on gasoil HDS intheir catalytic co-hydroprocessing[J]. Applied Catalysis B-Environmental,2011,104(3-4):324-329.
    [133] Dunn R.O., Alternative jet fuels from vegetable-oils[J]. Transactions of theAsae,2001,44(6):1751-1757.
    [134] Lei Z.P., Gao L.J., Shui H.F., et al., Hydrotreatment of heavy oil from coalliquefaction on sulfided Ni-W catalysts[J]. Journal of the Brazilian ChemicalSociety,2011,22(6):1118-1124.
    [135] Charon-Revellin N., Dulot H., Lopez-Garcia C., et al., Kinetic modeling ofvacuum gas oil hydrotreatment using a molecular reconstruction approach[J].Oil&Gas Science and Technology-Revue D Ifp Energies Nouvelles,2011,66(3):479-490.
    [136] French R.J., Stunkel J., Baldwin R.M., Mild hydrotreating of bio-oil: effect ofreaction severity and fate of oxygenated species. Energy&Fuels,2011,25(7):3266-3274.
    [137] Soogund D., Lecour P., Daudin A., et al., New Mo-V based oxidic precursorfor the hydrotreatment of residues[J]. Applied Catalysis B-Environmental,2010,98(1-2):39-48.
    [138] Lan L., Ge S.H., Liu K.H., et al., Synthesis of Ni(2)P promoted trimetallicNiMoW/gamma-Al(2)O(3) catalysts for diesel oil hydrotreatment[J]. Journalof Natural Gas Chemistry,2011,20(2):117-122.
    [139] Bezergianni S., Voutetakis S., Kalogianni A., Catalytic hydrocracking of freshand used cooking oil[J]. Industrial&Engineering Chemistry Research,2009,48(18):8402-8406.
    [140] Boahene P.E., Soni K.K., Dalai A.K., et al., Application of different porediameter SBA-15supports for heavy gas oil hydrotreatment using FeWcatalyst[J]. Applied Catalysis a-General,2011,402(1-2):31-40.
    [141] Vakros J., Papadopoulou C., Lycourghiotis A., et al., Hydrodesulfurizationcatalyst bodies with various Co and Mo profiles[J]. Applied Catalysisa-General,2011,399(1-2):211-220.
    [142] Wildschut J., Melian-Cabrera I., Heeres H.J., Catalyst studies on thehydrotreatment of fast pyrolysis oil[J]. Applied Catalysis B-Environmental,2010,99(1-2):298-306.
    [143] Duan P.G., Savage P.E., Catalytic hydrotreatment of crude algal bio-oil insupercritical water[J]. Applied Catalysis B-Environmental,2011,104(1-2):136-143.
    [144] Marques J., Guillaume D., Merdrignac I., et al., Effect of catalysts acidity onresidues hydrotreatment[J]. Applied Catalysis B-Environmental,2011,101(3-4):727-737.
    [145] Oasmaa A., Kuoppala E., Ardiyanti A., et al., Characterization of hydrotreatedfast pyrolysis liquids[J]. Energy&Fuels,2010,24:5264-5272.
    [146] Bezergianni S., Kalogianni A., Vasalos I.A., Hydrocracking of vacuum gasoil-vegetable oil mixtures for biofuels production[J]. Bioresource Technology,2009,100(12):3036-3042.
    [147] Trejo F., Ancheyta J., Kinetics of asphaltenes conversion during hydrotreatingof Maya crude[J]. Catalysis Today,2005,109(1-4):99-103.
    [148] Mouli K.C., Dalai A.K., Ring opening and kinetics study of hydrotreatedLGO on Ni-Mo carbide supported on HY and H-Beta catalysts[J]. AppliedCatalysis a-General,2009,364(1-2):80-86.
    [149] Christensen E.D., Chupka G.M., Luecke J., et al., Analysis of oxygenatedcompounds in hydrotreated biomass fast pyrolysis oil distillate fractions[J].Energy&Fuels,2011,25(11):5462-5471.
    [150] Jones E.G., Balster L.M., Autoxidation of dilute jet-fuel blends[J]. Energy&Fuels,1999,13(4):796-802.
    [151] Shonnard D.R., Williams L., Kalnes T.N., Camelina-derived jet fuel anddiesel: sustainable advanced biofuels[J]. Environmental Progress&Sustainable Energy,2010,29(3):382-392.
    [152] Andresen J.M., Strohm J.J., Song C.S., Characterization and pyrolyticperformance of hydrotreated derivatives from a light cycle oil for jet fuelapplications[J]. Abstracts of Papers of the American Chemical Society,1999,218: U227-U227.
    [153] Dirk D.L., Zandhuis P., The distribution of sulfur compounds in hydrotreatedjet fuels: Implications for obtaining low-sulfur petroleum fractions[J]. Fuel,2006,85(4):451-455.
    [154] Andresen J.M., Strohm J.J., Boyer M.L., et al., Thermal stability ofhydrotreated refined chemical oil derived jet fuels in the pyrolytic regime[J].Abstracts of Papers of the American Chemical Society,2001,221:U505-U505.
    [155] Westfall P.J., Gardner T.S., Industrial fermentation of renewable dieselfuels[J]. Current Opinion in Biotechnology,2011,22(3):344-350.
    [156] Meepagala K.M., Schrader K.K., Burandt C.L., et al., New class of algicidalcompounds and fungicidal activities derived from a chromene amide ofamyris texana[J]. Journal of Agricultural and Food Chemistry,2010,58(17):9476-9482.
    [157] Cozier M., Total acquire stake in Amyris[J]. Biofuels Bioproducts&Biorefining-Biofpr,2010,4(5):477-477.
    [158] Paluch G.E., Coats J.R., AGRO39-Mosquito repellency of Amyris andSiam-wood essential oils[J]. Abstracts of Papers of the American ChemicalSociety,2007,234.
    [159] Mossman K., Amyris biotechnologies-The emerging field of syntheticbiology provides candidates for a new generation of biofuels[J]. ScientificAmerican,2008,298(1):42-43.
    [160] Badal S., Williams S.A., Huang G., et al., Cytochrome P4501enzymeinhibition and anticancer potential of chromene amides from Amyrisplumieri[J]. Fitoterapia,2011,82(2):230-236.
    [161] Wen G.D., Xu Y.P., Liu Q.H., et al., Preparation of Ce-modified raney Nicatalysts and their application in aqueous-phase reforming of cellulose[J].Catalysis Letters,2011.141(12):1851-1858.
    [162] Xiang Y.Z., Li X.N., Lu C.S., et al., Reaction performance of hydrogen fromaqueous-phase reforming of methanol or ethanol in hydrogenation ofphenol[J]. Industrial&Engineering Chemistry Research,2011,50(6):3139-3144.
    [163] Xie J.J., Su D.R., Yin X.L., et al., Thermodynamic analysis of aqueous phasereforming of three model compounds in bio-oil for hydrogen production[J].International Journal of Hydrogen Energy,2011,36(24):15561-15572.
    [164] Liu X.H., Guo Y., Xu W.J., et al., Catalytic properties of Pt/Al(2)O(3) catalystsin the aqueous-phase reforming of ethylene glycol: Effect of the aluminasupport[J]. Kinetics and Catalysis,2011,52(6):817-822.
    [165] Guo Y., Liu X.H., Azmat M.U., et al., Hydrogen production by aqueous-phasereforming of glycerol over Ni-B catalysts[J]. International Journal ofHydrogen Energy,2012,37(1):227-234.
    [166] Manfro R.L., da Costa A.F., Ribeiro N.F.P., et al., Hydrogen production byaqueous-phase reforming of glycerol over nickel catalysts supported on CeO(2)[J]. Fuel Processing Technology,2011,92(3):330-335.
    [167] Chen Y., Ke F.Y., Wang H.P., et al., Phase separation in mixtures of ionicliquids and water[J]. Chemphyschem,2012,13(1):160-167.
    [168] Chu X.W., Liu J., Sun B., et al., Aqueous-phase reforming of ethylene glycolon Co/ZnO catalysts prepared by the coprecipitation method[J]. Journal ofMolecular Catalysis a-Chemical,2011,335(1-2):129-135.
    [169] Roy B., Sullivan H., Leclerc C.A., Aqueous-phase reforming of n-BuOH overNi/Al(2)O(3) and Ni/CeO(2) catalysts[J]. Journal of Power Sources,2011,196(24):10652-10657.
    [170] Mortensen P.M., Grunwaldt J.D., Jensen P.A., et al., A review of catalyticupgrading of bio-oil to engine fuels[J]. Applied Catalysis a-General,2011,407(1-2):1-19.
    [171] Butler E., Devlin G., Meier D., et al., A review of recent laboratory researchand commercial developments in fast pyrolysis and upgrading[J]. Renewable&Sustainable Energy Reviews,2011,15(8):4171-4186.
    [172] Pan H., Synthesis of polymers from organic solvent liquefied biomass: Areview[J]. Renewable&Sustainable Energy Reviews,2011,15(7):3454-3463.
    [173] Gallezot P., Conversion of biomass to selected chemical products[J].Chemical Society Reviews,2012,41(4):1538-1558.
    [174] Jarboe L.R., Wen Z.Y., Choi D.W., et al., Hybrid thermochemical processing:fermentation of pyrolysis-derived bio-oil[J]. Applied Microbiology andBiotechnology,2011,91(6):1519-1523.
    [175] Singh R.P., Tyagi V.V., Allen T., et al., An overview for exploring thepossibilities of energy generation from municipal solid waste (MSW) inIndian scenario[J]. Renewable&Sustainable Energy Reviews,2011,15(9):4797-4808.
    [176] Neves D., Thunman H., Matos A., et al., Characterization and prediction ofbiomass pyrolysis products[J]. Progress in Energy and Combustion Science,2011,37(5):611-630.
    [177] Vamvuka D., Bio-oil, solid and gaseous biofuels from biomass pyrolysisprocesses-An overview[J]. International Journal of Energy Research,2011,35(10):835-862.
    [178] Bulushev D.A., Ross J.R.H., Catalysis for conversion of biomass to fuels viapyrolysis and gasification: A review[J]. Catalysis Today,2011,171(1):1-13.
    [179] Demirbas A., Kinetics for non-isothermal flash pyrolysis of hazelnut shell[J].Bioresource Technology,1998,66(3):247-252.
    [180] Zhang S.P., Yan Y.J., Ren J.W., et al., Study of hydrodeoxygenation of bio-oilfrom the fast pyrolysis of biomass[J]. Energy Sources,2003,25(1):57-65.
    [181] Swain P.K., Das L.M., Naik S.N., Biomass to liquid: A prospective challengeto research and development in21stcentury[J]. Renewable&SustainableEnergy Reviews,2011,15(9):4917-4933.
    [182] van der Stelt M.J.C., Gerhauser H., Kiel J.H.A., et al., Biomass upgrading bytorrefaction for the production of biofuels: A review[J]. Biomass&Bioenergy,2011,35(9):3748-3762.
    [183] Kawashima A., Matsubara K., Honda K., Acceleration of catalytic activity ofcalcium oxide for biodiesel production[J]. Bioresource Technology,2009,100(2):696-700.
    [184] Demirbas A., Progress and recent trends in biofuels[J]. Progress in Energyand Combustion Science,2007,33(1):1-18.
    [185] Pinto A.C., Guarieiro L.L.N., Rezende M.J.C., et al., Biodiesel: Anoverview[J]. Journal of the Brazilian Chemical Society,2005,16(6B):1313-1330.
    [186] Lopez D.E., Goodwin J.G., Bruce D.A., et al., Transesterification of triacetinwith methanol on solid acid and base catalysts[J]. Applied Catalysisa-General,2005,295(2):97-105.
    [187] Usta N., Use of tobacco seed oil methyl ester in a turbocharged indirectinjection diesel engine[J]. Biomass&Bioenergy,2005,28(1):77-86.
    [188] Zhang Y., Dube M.A., McLean D.D., et al., Biodiesel production from wastecooking oil:1. Process design and technological assessment[J]. BioresourceTechnology,2003,89(1):1-16.
    [189] Marchetti J.M., Miguel V.U., Errazu A.F., Possible methods for biodieselproduction[J]. Renewable&Sustainable Energy Reviews,2007,11(6):1300-1311.
    [190] Meher L.C., Sagar D.V., Naik S.N., Technical aspects of biodiesel productionby transesterification-a review[J]. Renewable&Sustainable Energy Reviews,2006,10(3):248-268.
    [191] Srivastava A., Prasad R., Triglycerides-based diesel fuels[J]. Renewable&Sustainable Energy Reviews,2000,4(2):111-133.
    [192] Ma F.R., Hanna M.A., Biodiesel production: a review[J]. BioresourceTechnology,1999,70(1):1-15.
    [193] Fukuda H., Kondo A., Noda H., Biodiesel fuel production bytransesterification of oils[J]. Journal of Bioscience and Bioengineering,2001,92(5):405-416.
    [194] Agarwal A.K., Biofuels (alcohols and biodiesel) applications as fuels forinternal combustion engines[J]. Progress in Energy and Combustion Science,2007,33(3):233-271.
    [195] Graboski M.S., McCormick R.L., Combustion of fat and vegetable oil derivedfuels in diesel engines[J]. Progress in Energy and Combustion Science,1998,24(2):125-164.
    [196] Nelson R.G., Schrock M.D., Energetic and economic feasibility associatedwith the production, processing, and conversion of beef tallow to a substitutediesel fuel[J]. Biomass and Bioenergy,2006,30(6):584-591.
    [197] Schuchardt U., Sercheli R., Vargas R.M., Transesterification of vegetable oils:a review[J]. Journal of the Brazilian Chemical Society,1998,9(3):199-210.
    [198] Demirbas A., Biodiesel fuels from vegetable oils via catalytic andnon-catalytic supercritical alcohol transesterifications and other methods: asurvey[J]. Energy Conversion and Management,2003,44(13):2093-2109.
    [199] Ranganathan S.V., Narasimhan S.L., Muthukumar K., An overview ofenzymatic production of biodiesel[J]. Bioresource Technology,2008,99(10):3975-3981.
    [200] Kose O., Tuter M., Aksoy H.A., Immobilized Candida antarcticalipase-catalyzed alcoholysis of cotton seed oil in a solvent-free medium[J].Bioresource Technology,2002,83(2):125-129.
    [201] Isayama Y., Saka S., Biodiesel production by supercritical process with crudebio-methanol prepared by wood gasification[J]. Bioresource Technology,2008,99(11):4775-4779.
    [202] He H.Y., Wang T., Zhu S.L., Continuous production of biodiesel fuel fromvegetable oil using supercritical methanol process[J]. Fuel,2007,86(3):442-447.
    [203] Kawashima A., Matsubara K., Honda K., Development of heterogeneous basecatalysts for biodiesel production[J]. Bioresource Technology,2008,99(9):3439-3443.
    [204] Canakci M., Van Gerpen J., Biodiesel production via acid catalysis[J].Transactions of the Asae,1999,42(5):1203-1210.
    [205] Haas M.J., Bloomer S., Scott K., Simple, high-efficiency synthesis of fattyacid methyl esters from soapstock[J]. Journal of the American Oil ChemistsSociety,2000,77(4):373-379.
    [206] Canakci M., Van Gerpen J., Biodiesel production from oils and fats with highfree fatty acids[J]. Transactions of the Asae,2001,44(6):1429-1436.
    [207] Ngo H.L., Zafiropoulos N.A., Foglia T.A., et al., Efficient two-step synthesisof biodiesel from greases[J]. Energy&Fuels,2008,22(1):626-634.
    [208] Ramadhas A.S., Jayaraj S., Muraleedharan C., Biodiesel production from highFFA rubber seed oil[J]. Fuel,2005,84(4):335-340.
    [209] Haas M.J., Improving the economics of biodiesel production through the useof low value lipids as feedstocks: vegetable oil soapstock[J]. Fuel ProcessingTechnology,2005,86(10):1087-1096.
    [210] Chisti Y., Biodiesel from microalgae[J]. Biotechnology Advances,2007,25(3):294-306.
    [211] Haas M.J., McAloon A.J., Yee W.C., et al., A process model to estimatebiodiesel production costs[J]. Bioresource Technology,2006,97(4):671-678.
    [212] Lim Y., Lee H.S., Lee Y.W., et al., Design and economic analysis of theprocess for biodiesel fuel production from transesterificated rapeseed oilusing supercritical methanol[J]. Industrial&Engineering Chemistry Research,2009,48(11):5370-5378.
    [213] van Kasteren J.M.N., Nisworo A.P., A process model to estimate the cost ofindustrial scale biodiesel production from waste cooking oil by supercriticaltransesterification[J]. Resources Conservation and Recycling,2007,50(4):442-458.
    [214] Bender M., Economic feasibility review for community-scale farmercooperatives for biodiesel[J]. Bioresource Technology,1999,70(1):81-87.
    [215] Zhang Y., Dub, M.A., McLean D.D., et al., Biodiesel production from wastecooking oil:2. Economic assessment and sensitivity analysis[J]. BioresourceTechnology,2003,90(3):229-240.
    [216] Chisti Y., Biodiesel from microalgae beats bioethanol[J]. Trends inBiotechnology,2008,26(3):126-131.
    [217] Barnwal B.K.,Sharma M.P., Prospects of biodiesel production fromvegetables oils in India[J]. Renewable&Sustainable Energy Reviews,2005,9(4):363-378.
    [218] Shah S., Sharma S., Gupta M.N., Biodiesel preparation by lipase-catalyzedtransesterification of Jatropha oil[J]. Energy&Fuels,2004,18(1):154-159.
    [219] Knothe G., Steidley K.R., A comparison of used cooking oils: A veryheterogeneous feedstock for biodiesel[J]. Bioresource Technology,2009,100(23):5796-5801.
    [220] Rashid U., Anwar F., Knothe G., Evaluation of biodiesel obtained fromcottonseed oil[J]. Fuel Processing Technology,2009,90(9):1157-1163.
    [221] Saka S., Kusdiana D., Biodiesel fuel from rapeseed oil as prepared insupercritical methanol[J]. Fuel,2001,80(2):225-231.
    [222] Miao X.L., Wu Q.Y., Biodiesel production from heterotrophic microalgaloil[J]. Bioresource Technology,2006,97(6):841-846.
    [223] Alcantara R., Amores J., Canoira L., et al., Catalytic production of biodieselfrom soy-bean oil, used frying oil and tallow[J]. Biomass&Bioenergy,2000,18(6):515-527.
    [224] Noureddini H., Gao X., Philkana R.S., Immobilized Pseudomonas cepacialipase for biodiesel fuel production from soybean oil[J]. BioresourceTechnology,2005,96(7):769-777.
    [225] Tomasevic A.V.,Siler-Marinkovic S.S., Methanolysis of used frying oil[J].Fuel Processing Technology,2003,81(1):1-6.
    [226] Pramanik K., Properties and use of jatropha curcas oil and diesel fuel blendsin compression ignition engine[J]. Renewable Energy,2003.28(2):239-248.
    [227] Kegl B., Biodiesel usage at low temperature[J]. Fuel,2008,87(7):1306-1317.
    [228] Gomez M.E.G., Howard-Hildige R., Leahy J.J., et al., Winterisation of wastecooking oil methyl ester to improve cold temperature fuel properties[J]. Fuel,2002,81(1):33-39.
    [229] Sturm B.S.M., Peltier E., Smith V., et al., Controls of microalgal biomass andlipid production in municipal wastewater-fed bioreactors[J]. EnvironmentalProgress&Sustainable Energy,2012,31(1):10-16.
    [230] Shafagh I., Hughes K.J., Catalanotti E., et al., Experimental and modelingstudies of the oxidation of surrogate bio-aviation fuels[J]. Journal ofEngineering for Gas Turbines and Power-Transactions of the Asme,2012,134(4).
    [231] Jin C., Yao M.F., Liu H.F., et al., Progress in the production and application ofn-butanol as a biofuel[J]. Renewable&Sustainable Energy Reviews,2011,15(8):4080-4106.
    [232] Graham J.M., Graham L.E., ZulkiXy S.B., et al., Freshwater diatoms as asource of lipids for biofuels[J]. Journal of Industrial Microbiology&Biotechnology,2012,39(3):419-428.
    [233] Lee J., Jang Y.S., Choi S.J., et al., Metabolic engineering of clostridiumacetobutylicum ATCC824for isopropanol-butanol-ethanol fermentation[J].Applied and Environmental Microbiology,2012,78(5):1416-1423.
    [234] Potts T., Du J.J., Paul M., et al., The production of butanol from Jamaica baymacro algae[J]. Environmental Progress&Sustainable Energy,2012,31(1):29-36.
    [235] Chevron, Chevron2006Annual Report[R].2006.
    [236] Baral A., Bakshi B.R., Smith R.L., Assessing resource intensity andrenewability of cellulosic ethanol technologies using eco-LCA[J].Environmental Science&Technology,2012,46(4):2436-2444.
    [237] Zuroff T.R., Curtis W.R., Developing symbiotic consortia for lignocellulosicbiofuel production[J]. Applied Microbiology and Biotechnology,2012,93(4):1423-1435.
    [238] Ilic D.D., Dotzauer E., Trygg L., District heating and ethanol productionthrough polygeneration in Stockholm[J]. Applied Energy,2012,91(1):214-221.
    [239] Studer E., Jamois D., Jallais S., et al., Properties of large-scalemethane/hydrogen jet fires[J]. International Journal of Hydrogen Energy,2009,34(23):9611-9619.
    [240] Han W., Chen H., Jiao A.Y., et al., Biological fermentative hydrogen andethanol production using continuous stirred tank reactor[J]. InternationalJournal of Hydrogen Energy,2012,37(1):843-847.
    [241] Serrano D.P., Dufour J., Iribarren D., On the feasibility of producinghydrogen with net carbon fixation by the decomposition of vegetable andmicroalgal oils[J]. Energy&Environmental Science,2012,5(3):6126-6135.
    [242] Mohammadi M., Najafpour G.D., Younesi F., et al., Bioconversion ofsynthesis gas to second generation biofuels: A review[J]. Renewable&Sustainable Energy Reviews,2011,15(9):4255-4273.
    [243] Melis A., Photosynthesis-to-fuels: from sunlight to hydrogen, isoprene, andbotryococcene production[J]. Energy&Environmental Science,2012,5(2):5531-5539.
    [244] Singh A., Olsen S.I., Nigam P.S., A viable technology to generatethird-generation biofuel[J]. Journal of Chemical Technology andBiotechnology,2011,86(11):1349-1353.
    [245] Koutsaftis D., Marinis D., Karantonis A., Bubble dynamics during Kolbeelectrolysis of trifluoroacetic acid at Pt electrodes[J]. Electrochimica Acta,2012,59:376-381.
    [246] Schafer H.J., Electrochemical conversion of fatty acids[J]. European Journalof Lipid Science and Technology,2012,114(1):2-9.
    [247] Schmittel M., Shu Q.H., A lab-on-a-molecule for anions in aqueous solution:using Kolbe electrolysis and radical methylation at iridium for sensing[J].Chemical Communications,2012,48(21):2707-2709.
    [248] Yamabe S.,Yamazaki S., An unsymmetrical behavior of reactant units in theKolbe-Schmitt reaction[J]. Theoretical Chemistry Accounts,2011,130(4-6):891-900.
    [249] Fu W.F., Li H.F.J., Wang D.H., et al., A novel Kolbe reaction pathway for aselective one-and two-electron reduction of azo compounds (pg5524,2009)[J]. Chemical Communications,2009,(48):7602-7602.
    [250] Lebreux F., Buzzo F., Marko I.E., Synthesis of five-and six-membered-ringcompounds by environmentally friendly radical cyclizations using Kolbeelectrolysis[J]. Synlett,2008,(18):2815-2820.
    [251] Mendonca A.J., Ines M., Esteves A.P., et al., Kolbe Electrosynthesis of1,2-Di(bicyclo2.2.1heptan-2-yl)ethane and1,2-Diphenylethane[J]. SyntheticCommunications,2011,41(6):820-825.
    [252] Shtelman A.V., Becker J.Y., A new method for the synthesis of disilylalkanesby Kolbe anodic oxidation of alpha-silylcarboxylic acids[J]. ElectrochimicaActa,2009,54(26):6696-6699.
    [253] Fu W.F., Li H.F.J., Wang D.H., et al., A novel Kolbe reaction pathway for aselective one-and two-electron reduction of azo compounds[J]. ChemicalCommunications,2009,(37):5524-5526.
    [254] Peganova N.V., Matalin V.A., Lyudikainen A.A., et al., Electrochemicalsynthesis of perfluoropolyethers by the Kolbe method[J]. Russian Journal ofApplied Chemistry,2009,82(12):2118-2126.
    [255] Kurihara H., Fuchigami T., Tajima T., Kolbe carbon-carbon couplingelectrosynthesis using solid-supported bases[J]. Journal of Organic Chemistry,2008,73(17):6888-6890.
    [256] Fujiwara H., Atobe M., Kanetsuna H., et al., Ultrasonic effects onelectroorganic processes. Part10. Product-selectivity in mixed kolbeelectrolysis of carboxylic acids[J]. Journal of the Chinese Chemical Society,1998,45(1):175-181.
    [257] Hicks M.T., Fedkiw P.S., A model for Kolbe electrolysis in a parallel platereactor[J]. Journal of Applied Electrochemistry,1998,28(11):1157-1166.
    [258] Buurmans I.L.C., Ruiz-Martinez J., Knowles W.V., et al., Catalytic activity inindividual cracking catalyst particles imaged throughout different life stagesby selective staining[J]. Nature Chemistry,2011,3(11):862-867.
    [259] Tariq F., Lee P.D., Haswell R., et al., The influence of nanoscalemicrostructural variations on the pellet scale flow properties of hierarchicalporous catalytic structures using multiscale3D imaging[J]. ChemicalEngineering Science,2011,66(23):5804-5812.
    [260] Amin A., Epling W., Croiset E., Reaction and deactivation rates of methanecatalytic cracking over nickel[J]. Industrial&Engineering ChemistryResearch,2011,50(22):12460-12470.
    [261] Renzini M.S., Lerici L.C., Sedran U., et al., Stability of ZSM-11and BETAzeolites during the catalytic cracking of low-density polyethylene[J]. Journalof Analytical and Applied Pyrolysis,2011,92(2):450-455.
    [262] Kim S.S., Kim J., Park Y.H., et al., Pyrolysis kinetics and decompositioncharacteristics of pine trees[J]. Bioresource Technology,2010,101(24):9797-9802.
    [263] Xiu S., Rojanala H.K., Shahbazi A., et al., Pyrolysis and combustioncharacteristics of Bio-oil from swine manure[J]. Journal of Thermal Analysisand Calorimetry,2012,107(2):823-829.
    [264] Aqsha A., Mahinpey N., Mani T., et al., Study of sawdust pyrolysis and itsdevolatilisation kinetics[J]. Canadian Journal of Chemical Engineering,2011,89(6):1451-1457.
    [265] Amutio M., Lopez G., Aguado R., et al., Kinetic study of lignocellulosicbiomass oxidative pyrolysis[J]. Fuel,2012,95(1):305-311.
    [266] Hiramatsu Y., Takatsuka T., Study of residual fluid catalytic cracking catalystsdeactivation by steam[J]. Kagaku Kogaku Ronbunshu,2011,37(5):413-419.
    [267] Xu W.Y., Du R.H., Long W., et al., Study on the cracking mechanism of1,1,2-Trichloro-1,2,2-trimethyldisilane catalyzed by aluminum chloride[J].Chinese Journal of Structural Chemistry,2011,30(11):1628-1634.
    [268] Kubatova A., St'avova J., Seames W.S., et al., Triacylglyceride thermalcracking: pathways to cyclic hydrocarbons[J]. Energy&Fuels,2012,26(1):672-685.
    [269] Lee J.H., Kang S., Kim Y., et al., New approach for kinetic modeling ofcatalytic cracking of paraffinic naphtha[J]. Industrial&EngineeringChemistry Research,2011,50(8):4264-4279.
    [270] Amin A.M., Croiset E., Epling W., Review of methane catalytic cracking forhydrogen production[J]. International Journal of Hydrogen Energy,2011,36(4):2904-2935.
    [271] Gong F.Y., Yang Z., Hong C.G., et al., Selective conversion of bio-oil to lightolefins: Controlling catalytic cracking for maximum olefins[J]. BioresourceTechnology,2011,102(19):9247-9254.
    [272] Rahimi N., Karimzadeh R., Catalytic cracking of hydrocarbons over modifiedZSM-5zeolites to produce light olefins: A review[J]. Applied Catalysisa-General,2011,398(1-2):1-17.
    [273] Wang R., Li Y.H., Guo B.S., et al., Catalytic mechanism of MCM-41supported phosphoric acid catalyst for FCC gasoline desulfurization byalkylation: experimental and theoretical investigation[J]. Energy&Fuels,2011,25(9):3940-3949.
    [274] Park H.J., Jeon J.K., Suh D.J., et al., Catalytic vapor cracking forimprovement of bio-oil quality[J]. Catalysis Surveys from Asia,2011,15(3):161-180.
    [275] Quintana-Solorzano R., Hernandez A.R., Garcia-de-Leon R., et al., Cyclicdeactivation with steam of metallated cracking catalysts: catalytic testing atthe bench scale and the pilot scale[J]. Topics in Catalysis,2011,54(8-9):547-560.
    [276] Wang L.X., Ozawa K., Komatsu T., et al., Ca(2+)-exchanged ferrierite: Quasione-dimensional zeolite for highly selective and stable formation of lightalkenes in catalytic cracking of n-octane[J]. Applied Catalysis a-General,2011,407(1-2):127-133.
    [277] Taufiqurrahmi N., Bhatia S., Catalytic cracking of edible and non-edible oilsfor the production of biofuels[J]. Energy&Environmental Science,2011,4(4):1087-1112.
    [278] Fonseca N., Lemos F., Laforge S., et al., Influence of acidity on the H-Yzeolite performance in n-decane catalytic cracking: evidence of aseries/parallel mechanism[J]. Reaction Kinetics Mechanisms and Catalysis,2010,100(2):249-263.
    [279] Xu W.Y., Long W., Du R.H., et al., Study on the cracking mechanism of1,1,2,2-Tetramethyl-1,2-Dichlorodisilane catalyzed by aluminum chloride[J].Acta Chimica Sinica,2010,68(19):1951-1955.
    [280] Sun Y.X., Yang J., Zhao L.F., et al., A two-layer ONIOM study on initialreactions of catalytic cracking of1-butene to produce propene and etheneover HZSM-5and HFAU zeolites[J]. Journal of Physical Chemistry C,2010,114(13):5975-5984.
    [281] Pinheiro C.I.C., Fernandes J.L., Domingues L., et al., Fluid catalytic cracking(FCC) process modeling, simulation, and control[J]. Industrial&EngineeringChemistry Research,2012,51(1):1-29.
    [282] Gilbert W.R., Morgado E., de Abreu M.A.S., et al., A novel fluid catalyticcracking approach for producing low aromatic LCO[J]. Fuel ProcessingTechnology,2011,92(12):2235-2240.
    [283] Mihalcik D.J., Boateng A.A., Mullen C.A., et al., Packed-bed catalyticcracking of oak-derived pyrolytic vapors[J]. Industrial&EngineeringChemistry Research,2011,50(23):13304-13312.
    [284] Yamaguchi A., Jin D.F., Ikeda T., et al., Deactivation mechanism of ZSM-5during catalytic steam cracking of n-hexane[J]. Abstracts of Papers of theAmerican Chemical Society,2010,240.
    [285] Qi J.A., Zhao T.B., Xu X., et al., High activity in catalytic cracking of largemolecules over micro-mesoporous silicoaluminophosphate with controlledmorphology[J]. Science China-Chemistry,2010,53(11):2279-2284.
    [286] Li Y.P., Liu D.P., Liu C.G., Hydrodesulfurization (HDS) andhydrodenitrogenation (HDN) performance of an ex situ presulfidedMoNiP/Al(2)O(3) catalyst: model compounds study and pilot test forfluidized catalytic cracking (FCC) diesel oil[J]. Energy&Fuels,2010,24:789-795.
    [287] Araujo-Monroy C., López-Isunza F., Modeling and simulation of an industrialfluid catalytic cracking riser reactor using a lump-kinetic model for a distinctfeedstock[J]. Industrial&Engineering Chemistry Research,2005,45(1):120-128.
    [288] Ancheyta J., Sotelo-Boyas R., Estimation of kinetic constants of a five-lumpmodel for fluid catalytic cracking process using simpler sub-models[J].Energy&Fuels,2000,14(6):1226-1231.
    [289] Heydari M., AleEbrahim H., Dabir B., Study of seven-lump kinetic model inthe fluid catalytic cracking unit[J]. American Journal of Applied Sciences,2010,7(1):71-76.
    [290] Hosein R., Dawe R.A., The development of a true boiling point distillationapparatus[J]. Petroleum Science and Technology,2011,29(9):906-913.
    [291] Kabatek R., Browarzik D., Role of azeotropy in true-boiling-point distillationof complex mixtures of aliphatics, aromatics and1-butanol[J]. Fluid PhaseEquilibria,2001,178(1-2):131-147.
    [292] Sbaite P., Batistella C.B., Winter A., et al., True boiling point extended curveof vacuum residue through molecular distillation[J]. Petroleum Science andTechnology,2006,24(3-4):265-274.
    [293] Bruno T.J., Wolk A., Naydich A., Analysis of fuel ethanol plant liquor withthe composition explicit distillation curve method[J]. Energy&Fuels,2009,23:3277-3284.
    [294] Lovestead T.M., Windom B.C., Riggs J.R., et al., Assessment of thecompositional variability of RP-1and RP-2with the advanced distillationcurve approach[J]. Energy&Fuels,2010,24:5611-5623.
    [295] Outcalt S.L., Fortin T.J., Density and speed of sound measurements of twosynthetic aviation turbine fuels[J]. Journal of Chemical and Engineering Data,2011,56(7):3201-3207.
    [296] Ervin J.S., Zabarnick S., Williams T.F., One-dimensional simulations of jetfuel thermal-oxidative degradation and deposit formation within cylindricalpassages[J]. Journal of Energy Resources Technology-Transactions of theAsme,2000,122(4):229-238.
    [297] Taylor S.E., An alternative view of the thermal oxidation stability of jetfuels[J]. Abstracts of Papers of the American Chemical Society,2002,224:U268-U268.
    [298] Mushrush G.W., Beal E.J., Hardy D.R., et al., Jet fuel system icing inhibitors:Synthesis and characterization[J]. Industrial&Engineering ChemistryResearch,1999,38(6):2497-2502.
    [299] Ji C.S., Wang Y.L., Egolfopoulos F.N., Flame studies of conventional andalternative jet fuels[J]. Journal of Propulsion and Power,2011,27(4):856-863.
    [300] Araujo V.K.W.S., Hamacher S., Scavarda L.F., Economic assessment ofbiodiesel production from waste frying oils[J]. Bioresource Technology,2010,101(12):4415-4422.
    [301] Ljunggren M., Zacchi G., Techno-economic analysis of a two-step biologicalprocess producing hydrogen and methane[J]. Bioresource Technology. InPress, Corrected Proof.
    [302] Sotoft L.F., Rong B.G., Christensen K.V., et al., Process simulation andeconomical evaluation of enzymatic biodiesel production plant[J].Bioresource Technology,2010,101(14):5266-5274.
    [303] van Kasteren J.M.N., Nisworo A.P., A process model to estimate the cost ofindustrial scale biodiesel production from waste cooking oil by supercriticaltransesterification[J]. Resources, Conservation and Recycling,2007,50(4):442-458.
    [304] Azapagic A., Clift R., The application of life cycle assessment to processoptimisation[J]. Computers&Chemical Engineering,1999,23(10):1509-1526.
    [305] Sobrino F.H., Monroy C.R., Perez J.L.H., Biofuels and fossil fuels: Life CycleAnalysis (LCA) optimisation through productive resources maximisation[J].Renewable&Sustainable Energy Reviews,2011,15(6):2621-2628.
    [306] Brentner L.B., Eckelman M.J., Zimmerman J.B., Combinatorial life cycleassessment to inform process design of industrial production of algalbiodiesel[J]. Environmental Science&Technology,2011,45(16):7060-7067.
    [307] Singh A., Olsen S.I., A critical review of biochemical conversion,sustainability and life cycle assessment of algal biofuels[J]. Applied Energy,2011,88(10):3548-3555.
    [308] Choo Y.M., Muhamad H., Hashim Z., et al., Determination of GHGcontributions by subsystems in the oil palm supply chain using the LCAapproach[J]. International Journal of Life Cycle Assessment,2011,16(7):669-681.
    [309] Pardo Y., Sanchez E., Kafarov V., Life cycle assessment of third generationbiofuels production, in Pres2010:13thInternational Conference on ProcessIntegration, Modelling and Optimisation for Energy Saving and PollutionReduction[M], J.J. Klemes, H.L. Lam, and P.S. Varbanov, Editors.2010, p.1177-1182.
    [310] Koroneos C., Dompros A., Roumbas G., et al., Advantages of the use ofhydrogen fuel as compared to kerosene[J]. Resources Conservation andRecycling,2005,44(2):99-113.
    [311] Requena J.F.S., Guimaraes A.C., Alpera S.Q., et al., Life Cycle Assessment(LCA) of the biofuel production process from sunflower oil, rapeseed oil andsoybean oil[J]. Fuel Processing Technology,2011,92(2):190-199.
    [312] Morais S., Mata T.M., Ferreira E., Life cycle assessment of soybean biodieseland LPG as automotive fuels in Portugal[C]. in4thInternational Conferenceon Safety and Environment in Process Industry, CISAP4, March14,2010-March17,2010.2010. Florence, Italy: Italian Association of ChemicalEngineering-AIDIC.
    [313] Li Y., Griffing E., Higgins M., et al., Life cycle assessment of soybean oilproduction[J]. Journal of Food Process Engineering,2006,29(4):429-445.
    [314] Sander K., Murthy G.S., Life cycle analysis of algae biodiesel[J].International Journal of Life Cycle Assessment,2010,15(7):704-714.
    [315] Campbell P.K., Beer T., Batten D., Life cycle assessment of biodieselproduction from microalgae in ponds[J]. Bioresource Technology,2011,102(1):50-56.
    [316] Soratana K., Landis A.E., Evaluating industrial symbiosis and algaecultivation from a life cycle perspective[J]. Bioresource Technology,2011,102(13):6892-6901.
    [317] Hendrickson C., Horvath A., Joshi S., et al., Economic input-output modelsfor environmental life-cycle assessment[J]. Environmental Science&Technology,1998,32(7):184A-191A.
    [318] Ozilgen M., Sorguven E., Energy and exergy utilization, and carbon dioxideemission in vegetable oil production[J]. Energy,2011.36(10):5954-5967.
    [319] Hoefnagels R., Smeets E., Faaij A., Greenhouse gas footprints of differentbiofuel production systems[J]. Renewable&Sustainable Energy Reviews,2010.14(7):1661-1694.
    [320] Wang M., Huo H., Arora S., Methods of dealing with co-products of biofuelsin life-cycle analysis and consequent results within the US context[J]. EnergyPolicy,2011,39(10):5726-5736.
    [321] Martinez D., Acevedo P., Kafarov V., Life cycle assessment for jointproduction of biodiesel and bioethanol from african palm[C]. in Pres2010:13thInternational Conference on Process Integration, Modelling andOptimisation for Energy Saving and Pollution Reduction, J.J. Klemes, H.L.Lam, and P.S. Varbanov, Editors.2010, p.1309-1314.
    [322] Lardon L., Helias A., Sialve B., et al., Life-cycle assessment of biodieselproduction from microalgae[J]. Environmental Science&Technology,2009,43(17):6475-6481.
    [323] Lotero E., Liu Y.J., Lopez D.E., et al., Synthesis of biodiesel via acidcatalysis[J]. Industrial&Engineering Chemistry Research,2005,44(14):5353-5363.
    [324] Ehimen E.A., Sun Z.F., Carrington C.G., Variables affecting the in situtransesterification of microalgae lipids[J]. Fuel,2010,89(3):677-684.
    [325] Liu X., He H., Wang Y., et al., Transesterification of soybean oil to biodieselusing SrO as a solid base catalyst[J]. Catalysis Communications,2007,8(7):1107-1111.
    [326] Berchmans H.J., Hirata S., Biodiesel production from crude Jatropha curcas L.seed oil with a high content of free fatty acids[J]. Bioresource Technology,2008,99(6):1716-1721.
    [327] Benjumea P., Agudelo J., Agudelo A., Basic properties of palm oilbiodiesel–diesel blends[J]. Fuel,2008,87(10-11):2069-2075.
    [328] Liu J., Ma X., The analysis on energy and environmental impacts ofmicroalgae-based fuel methanol in China[J]. Energy Policy,2009,37(4):1479-1488.
    [329] Hou J., Zhang P., Yuan X., et al., Life cycle assessment of biodiesel fromsoybean, jatropha and microalgae in China conditions[J]. Renewable andSustainable Energy Reviews,2011,15(9):5081-5091.
    [330] Lam M.K., Lee K.T., Mohamed A.R., Life cycle assessment for theproduction of biodiesel: A case study in Malaysia for palm oil versus jatrophaoil[J]. Biofuels, Bioproducts and Biorefining,2009,3(6):601-612.
    [331] Hileman J.I., Stratton R.W., Donohoo P.E., Energy content and alternative jetfuel viability[J]. Journal of Propulsion and Power,2010,26(6):1184-1195.
    [332] Ou X., Zhang X., Chang S., et al., Energy consumption and GHG emissionsof six biofuel pathways by LCA in (the) People s Republic of China[J].Applied Energy,2009,86:197-208.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700