用户名: 密码: 验证码:
具有高容错能力的电力系统故障诊断的解析模型与方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当电力系统一次设备发生故障时,调度中心将会接收到来自不同监测系统的海量故障警报,调度员要在很短的时间内处理众多信息并准确地判断出故障根源是极其困难的。因此,需要借助故障诊断系统快速准确的识别故障,以确保系统的安全稳定运行并提高其供电可靠性。现有的故障诊断解析模型存在的主要问题在于:所利用的故障信息源单一,信息的冗余度不高,所建立的模型过于依赖故障发生后的保护和断路器动作信息,然而实际故障发生后,保护和断路器可能发生拒动或误动,且在上传警报的过程中,会存在警报上传速度慢、警报错误或警报丢失的情况,导致故障诊断所利用的信息的可靠性下降,从而影响了诊断的结果的正确性。
     在此背景下,本论文以现有的基于解析模型的方法为基本思路,充分考虑了故障过程中可能发生的各种不确定因素,通过建立更加复杂精确的模型和增加信息冗余度的方法提高模型的容错能力,发展了更加精确合理的故障诊断数学模型和方法,并取得了一定的研究成果:
     1)首先分析了故障诊断系统的目标和功能,并深入了解故障信息源的组成和特点。针对故障信息的分层特性,构建了电力系统故障诊断的分层结构,这种结构能够根据不同的故障状况,对故障信息进行合理的利用,一方面在简单故障时能够提高诊断速度,另一方面在复杂故障时能够提高诊断的准确度。
     2)对现有的故障诊断解析模型做了比较详细的介绍。首先,研究了故障区域识别的实现过程,分析了其原理,阐述了其步骤。然后,对解析模型的目标函数进行了介绍,提出了各保护和断路器期望状态的计算式。最后,介绍了在实际应用中,目标函数自动形成所需要解决的问题。
     3)为适当处理保护/断路器的拒动或误动以及警报的误报或漏报等不确定性因素,本文充分的考虑了继电保护和断路器的误动和拒动,警报信息的误报和漏报,将机会约束规划模型引入到电力系统故障诊断领域,发展了一类新的故障诊断模型与方法,具有较强的容错能力。之后,采用了基于蒙特卡罗仿真的遗传算法对所建立的模型进行求解。最后,用浙江电力系统实际发生过的复杂故障对所提出的模型和方法进行了测试,得到了与实际情况一致的结果,计算速度也满足在线故障诊断的要求。
     4)针对现有故障诊断方法信息源单一,信息冗余度不高的问题,提出了将WAMS获取的电气量信息引入故障诊断解析模型,以提高方法的容错能力。首先,将故障后断路器警报信息和电气量信息相结合,提出了一种快速的故障识别方法,增强了其容错能力。然后,建立了故障诊断的电气量判据,并对其进行处理,使其适用于解析模型,对各判据和保护/断路器的期望状态进行重新建模。通过算例证明,该方法即使在存在大量警报丢失或保护/断路器异常动作的情况下,依然能够快速准确的得到诊断结构。
     最后对论文中所作的研究进行简要总结,并指出了这一领域有待进一步深入研究的问题。
When a fault occurs in a section or component of a given power system, the dispatching center will receive a flood of alarms from different monitoring systems, thus it is difficult for the dispatchers to process the information and judge the fault location accurately in a short period of time. Therefore, a fault diagnosis system is introduced to identify faults rapidly and accurately, in order to ensure the security and stability of the power system associated and improve the reliability of power supply. The main problems of the existing analytic models for fault diagnosis include:limited fault information source, low information redundancy, over reliance on the information of protection relays (PRs) and circuit breakers (CBs) after the fault. In an actual situation, PRs and CBs may fail to operate or refuse to act, and some alarms may be false or lost in the transmitting process, which have negative impacts on the accuracy of fault diagnosis result.
     Given this background, based on existing analytic model, uncertainties in the fault process are considered to improve the fault tolerance capability by developing a more reasonable and accurate model and increasing the information redundancy. Some research results are obtained as follows:
     1) The aim and functions of the fault diagnosis system are first analyzed, and the composition and characteristics of the fault information source are introduced. According to the layered characteristics of the fault information, a layered structure of power system fault diagnosis is constructed. The fault information is used reasonably according to the fault condition:on one hand, the diagnosis process is accelerated in a simple fault; on the other hand, the accuracy can be improved in a complex fault.
     2) The existing analytic model is introduced. First, the process of fault area identification is studied, the theory is analyzed and the steps are stated. Then, the objective function of the analytic model is introduced; the formulas of the expected states of PRs and CBs are put forward. Finally, the problems that need to solve in the automatic forming process of the objective function.
     3) In order to handle uncertain factors, including the malfunctioning and other improper actions of PRs and CBs, in addition to the false and/or missing alarms, the authors have introduced a chance-constrained programming model into the application of power system fault diagnosis. This thesis presents such a novel type of fault diagnosis model with high fault tolerance. The Monte Carlo simulation based genetic algorithm is employed to solve the model. An actual complex fault scenario at a substation in Zhejiang province, China, is used to test the proposed method. As shown by the case study, the developed model produced a diagnosis result consistent with the real fault. Furthermore, the computation speed of the developed method meets the requirements of on-line fault diagnosis.
     4) The existing analytic model for power system fault diagnosis with a single data resource is insufficient in information redundancy and has difficulty in getting the correct diagnosis in a complex fault. The development of WAMS based on PMU makes real-time and accurate electrical data information of the system available. Therefore, electrical data information is introduced to improve the existing analytic model. Fault area is rapidly confirmed using states of circuit breakers combined with electrical data. Then, fault section is diagnosed using the developed analytic model. Finally, a fault scenario is served for demonstrating the feasibility and efficiency of the developed model. It is verified by simulation results that the developed model has high fault tolerance and can locate fault even with a large amount of malfunctions and lost alarms.
     Finally, several conclusions are obtained based on the research outcomes, and directions for future research indicated.
引文
[1]Protopapas C. A., Psaltiras K. P., Machias A. V.. An expert system for fault diagnosis and alarm processing [J]. IEEE Trans on Power Delivery,1991,6(2):648-655.
    [2]Yang H. T., Chang W. Y., Huang C. L.. On-line fault diagnosis of power substation using connectionist expert system [J]. IEEE Trans on Power System,1995,10(1):323-331.
    [3]Minakawa T., Kunugi M., Shimada K., et al. Development and implementation of a power system fault diagnosis expert system [J]. IEEE Trans on Power System,1995,10(2): 932-940.
    [4]Cho H. J., Park J. K.. An expert system for fault section diagnosis of power systems using fuzzy relations [J]. IEEE Trans on Power System,1997,12(1):342-348.
    [5]Ernesto Vazquez M., Oscar L., Chacon M., et al. An on-line expert system for fault section diagnosis in power systems [J].1997,12(1):357-362.
    [6]Park Y. M., Kim G. W., Sohn J. M.. A logic based expert system (LBES) for fault diagnosis of power system [J].1997,12(1):363-369.
    [7]Lee H. J., Ahn B. S., Park Y. M. A fault diagnosis expert system for distribution substations [J]. IEEE Trans on Power Delivery,2000,15(1):92-97.
    [8]潘翀,陈伟根,云玉新,等.基于遗传算法进化小波神经网络的电力变压器故障诊断[J].电力系统自动化,2007,31(13):88-92.
    [9]Cardoso G, Rolim J. G., Zurn H. H.. Application of neural-network modules to electric power system fault section estimation [J]. IEEE Trans on Power Delivery,2004,19(3): 1034-1041.
    [10]Mahanty R. N., Gupta P. B. D.. Application of RBF neural network to fault classification and location in transmission lines [J]. IET Proceedings of Generation, Transmission & Distribution,2004,151(2):201-212.
    [11]Huang Y. C., Yang H. T., Huang K. Y. Abductive network model-based diagnosis system for power transformer incipient fault detection [J]. IET Proceedings-Generation, Transmission and Distribution,2002,149(3):326-330.
    [12]毛鹏,孙雅明,张兆宁.具有冗余神经元神经网络模型系统的输电线路故障测距的研究[J].中国电机工程学报,2000,20(7):28-33.
    [13]Bi T. S., Yan Z., Wen F. S., et al. On-line fault section estimation in power systems with radial basis function neural network [J]. International Journal of Electrical Power and Energy Systems,2002,24:321-328.
    [14]毕天姝,倪以信,吴复立,等.基于径向基函数神经网络和模糊控制系统的电网故障诊断新方法[J].中国电机工程学报,2005,25(14):12-18.
    [15]Wang Z. Y., Liu Y. L., Griffin P. J.. A combined ANN and expert system tool for transformer fault diagnosis [J]. IEEE Trans on Power Delivery,1998,13(4):1224-1229.
    [16]Wen F. S., Han Z. X.. Fault section estimation in power systems using a genetic algorithm [J]. Electric Power Systems Research,1995,34:165-172.
    [17]Srinivasan D., Cheub R. L., Poh Y. P., et al. Automated fault detection in power distribution networks using a hybrid fuzzy-genetic algorithm approach [J]. Engineering Applications of Articial Intelligence,2000,13(4):407-418.
    [18]Wen F. S., Chang C. S.. A tabu search approach to fault section estimation in power systems [J]. Electric Power Systmes Research,1997,40:63-73.
    [19]Wen F. S., Chang C. S.. Tabu search approach to alarm processing in power systems [J]. IEE Proceedings:Generation, Transmission and Distribution,1997,144(1):31-38.
    [20]Wen F. S., Chang C. S.. A new approach to time constrained fault diagnosis using the Tabu search method [J]. Journal of Engineering Intelligent Systems,2002,10(1):19-25.
    [21]Chang C. S., Tian L., Wen F. S.. A new approach to fault section estimation in power systems using Ant system [J]. Electric Power Systems Research,1999,49:63-70.
    [22]He Z. Y, Chiang H. D., Li C. W., et al. Fault-section estimation in power systems based on improved optimization model and binary particle swarm optimization [C]. IEEE Power & Energy Society General Meeting, Calgary, AB, July 2009.
    [23]翁汉琍,毛鹏,林湘宁.一种改进的电网故障诊断优化模型[J].电力系统自动化,2007,31(7):66-70.
    [24]Lin X. N., Ke S. H., Li Z. T., et al. A fault diagnosis method of power systems based on improved objective fuction and genetic algorithm-tabu search [J]. IEEE Trans on Power Delivery,2010,25(3):1268-1274.
    [25]Guo W. X., Wen F. S., Ledwich G., et al. An analytic model for fault diagnosis in power systems considering malfunctions of protective relays and circuit breakers [J]. IEEE Trans on Power Delivery,2010,25(3):1393-1401.
    [26]苏广宁,胡炎,张沛超等.一种优化型电网故障诊断的实用改进模型[J].华北电力大学学报,2011,38(3):42-46.
    [27]Sun J., Qin S. Y., Song Y. H.. Fault diagnosis of electric power systems based on fuzzy petri nets [J]. IEEE Trans on Power Systems.2004,19(4):2053-9.
    [28]Luo X., Kezunovic M.. Implementing fuzzy reasoning Petri-Nets for fault section estimation [J]. IEEE Trans on Power Delivery,2008,23(2):676-685.
    [29]曾庆锋,何正友,杨健维.基于有色Petri网的电力系统故障诊断模型研究[J].电力系统保护与控制,2010,23(14):5-12.
    [30]杨健维,何正友,臧天磊.基于方向性加权模糊Petri网的电网故障诊断方法[J].中国电机工程学报,2010,30(34):42-49.
    [31]杨健维,何正友.基于时序模糊Petri网的电力系统故障诊断[J].电力系统自动化,2011,35(15):46-51.
    [32]Zhu Y. L., Huo L. M., Lu J. L.. Bayesian networks-based approach for power systems fault diagnosis [J]. IEEE Trans on Power Delivery,2006,21(2):634-639.
    [33]李强,徐建政.基于主观贝叶斯方法的电力系统故障诊断[J].电力系统自动化,2007,31(15):46-50.
    [34]栗然,高聪颖,张烈勇.基于粗糙集-贝叶斯方法的分布式电网故障诊断[J].华北电力大学学报,2010,37(2):1-7.
    [35]何小飞,童晓阳,周曙.基于贝叶斯网络和故障区域识别的电网故障诊断研究[J].电力系统保护与控制,2010,38(12):29-34.
    [36]周曙,王晓茹,钱清泉.基于贝叶斯网的分布式电网故障诊断方法[J].电网技术,2010,34(9):76-81.
    [37]宋功益,王晓茹,周曙.基于贝叶斯网的电网多区域复杂故障诊断研究[J].电力系统保护与控制,2011,39(7):20-26.
    [38]何小飞,童晓阳,孙明蔚.基于贝叶斯网络和D-S证据理论的分布式电网故障诊断[J]. 电力系统自动化,2011,35(10):42-47.
    [39]Lee H. J., Park D. Y., Ahn B. S., et al. A fuzzy expert system for the integrated fault diagnosis [J]. IEEE Trans on Power Delivery,2000,15(2):833-838.
    [40]Chen W. H., Liu C. W., Tsai M. S.. On-line fault diagnosis of distribution substations using hybrid cause-effect network and fuzzy rule-based method [J]. IEEE Trans on Power Delivery,2000,15(2):710-717.
    [41]Chin H. C.. Fault section diagnosis of power system using fuzzy logic [J]. IEEE Trans on Power Systems,2003,18(1):245-250.
    [42]Chen W. H.. Fault section estimation using fuzzy matrix-based reasoning methods [J]. IEEE Trans on Power Delivery,2011,26(1):205-213.
    [43]郭创新,游家训,彭明伟等.基于面向元件神经网络与模糊积分融合技术的电网故障智能诊断[J].电工技术学报,2010,25(9):183-190.
    [44]Bi T. S., Ni Y. X., Shen C. M., et al. An on-line distributed intelligent fault section estimation system for large-scale power networks [J]. Electric Power Systems Research, 2002,62:173-182.
    [45]Jung J., Liu C. C., Hong M. G., et al. Multiple hypotheses and their credibility in on-line fault diagnosis [J]. IEEE Trans on Power Delivery,2001,16(2):225-230.
    [46]Huang Y. C.. Abductive reasoning network based diagnosis system for fault section estimation in power systems [J]. IEEE Trans on Power Delivery,2002,17(2):369-374.
    [47]Bedekar P. P., Bhide S. R., Kale V. S.. Fault section estimation in power system using Hebb's rule and continuous genetic algorithm [J]. International Journal of Electrical Power and Energy Systems,2011,33:457-465.
    [48]Leao F. B., Pereira R. A. F., Mantovani J. R. S.. Fault section estimation in electric power systems using an optimization immune algorithm [J]. Electric Power Systems Research, 2010,80:1341-1352.
    [49]周子冠,白晓民,李再华等.采用知识网格技术的智能输电网故障诊断方法[J].中国电机工程学报,2010,30(4):8-15.
    [50]栗然,张烈勇,顾雪平等.采用粗糙集联合规则挖掘算法的分布式电网故障诊断[J].中国电机工程学报,2010,30(4):28-34.
    [51]李再华,白晓民,周子冠等.基于特征挖掘的电网故障诊断方法[J].中国电机工程学报,2010,30(10):16-22.
    [52]Chen W. H., Tsai S. H., Lin H.. Fault section estimation for power networks using logic cause-effect models [J]. IEEE Trans on Power Delivery,2011,26(2):963-971.
    [53]许婧,白晓民,徐得超.基于复杂事件处理技术的连锁故障诊断[J].电力系统自动化,2011,35(3):5-8.
    [54]彭飘,廖志伟,文福拴等.基于根本原因法的数字化变电站故障诊断[J].电力系统自动化,2011,35(17):61-66.
    [55]周子冠,白晓民,李文锋等.基于广域测量系统的电网故障在线智能化诊断与分析方法[J].中国电机工程学报,2009,29(13):1-7.
    [56]郭创新,彭明伟,刘毅.多数据源信息融合的电网故障诊断新方法[J].中国电机工程学报,2009,29(31):1-7.
    [57]游家训,彭明伟,唐跃中等.混合量测系统中利用潮流信息的电网故障诊断[J].高电压技术,2010,36(2):411-416.
    [58]颜晟,苏广宁,张沛超等.基于故障录波时序信息的电网故障诊断[J].电力系统保护与控制,2011,39(17):114-119.
    [59]Zhang Y. G., Wang Z. P., Zhang J. F., et al. Fault localization in electrical power systems:A pattern recognition approach [J]. International Journal of Electrical Power and Energy Systems,2011,33(3):791-798.
    [60]许文浩.地区电网故障诊断系统的研究[D].华南理工大学硕士学位论文,2006.
    [61]何祥针.电力系统故障诊断与系统恢复[D].华南理工大学硕士学位论文,2009.
    [62]鞠平,郑世宇,徐群等.广域测量系统研究综述[J].电力自动化设备,2004,24(7):37-40.
    [63]赵爽.基于故障录波器联网信息的电网故障诊断系统[D].华北电力大学硕士学位论文,2004.
    [64]郭文鑫,廖志伟,文福拴等.计及警报信息时序特性的电网故障诊断解析模型[J].电力系统自动化,2008,32(22):26-31.
    [65]Wen F. S., Chang C. S.. Possibilistic-diagnosis theory for fault-section estimation and state identification of unobserved protective relays using Tabu-search method [J]. IEE Proceedings:Generation, Transmission and Distribution,1998,145(6):722-730.
    [66]文福拴,韩祯祥,田磊,等.基于遗传算法的电力系统故障诊断的解析模型与方法(第一部分):模型与方法[J].电力系统及其自动化学报,1998,10(3):1-7.
    [67]郭文鑫,文福拴,廖志伟,等.基于时序约束网络的电力系统在线警报处理解析模型[J].电力系统自动化,2009,33(21):36-42.
    [68]Yang H., Chang W., Huang C. Power system distributed on-line fault section estimation using decision tree based neural nets Approach [J]. IEEE Trans on Power Delivery,1995, 10(1):540-546.
    [69]Yang J., He Z., Tan X., et al. A distributed fault diagnosis approach in power system based on fuzzy reasoning Petri net [C]. Power and Energy Engineering Conference (APPEEC), 2010 Asia-Pacific. Mar 28-31,2010, Chengdu:1-4.
    [70]MCARTHUR S D J, DAVISON E M, HOSSACK J A et al. Automating power system fault diagnosis through Multi-agent system [C]. Proceedings of the 37th Annual Hawaii International Conference on System Sciences. Big Island (HI, USA),2004:947-954.
    [71]廖志伟,孙雅明.基于事件序列数据挖掘原理的高压输电线系统故障诊断:(一)模型与算法[J].电力系统自动化,2004,28(4):22-27.
    [72]孙雅明,廖志伟.基于事件序列数据挖掘原理的高压输电线系统故障诊断:(二)仿真和容错性能分析[J].电力系统自动化,2004,28(5):20-24.
    [73]Wei L., Guo W., Wen F., et al. Waveform matching approach for fault diagnosis of high voltage transmission lines employing harmony search algorithm [J]. IET Generation, Transmission and Distribution,2010,4(7):801-809.
    [74]Charnes A., Cooper W. W.. Chance-constrained programming. Management Science [J], 1959,6(1):73-79.
    [75]杨宁.机会约束规划在输电系统规划中的应用研究[D].浙江大学博士学位论文,2005.
    [76]Yang N., Wen F.. A chance constrained programming approach to transmission system expansion planning [J]. Journal of Electric Power Systems Research,2005,75(2-3): 171-177.
    [77]Yang N., Yu C. W., Wen F., et al. An investigation of reactive power planning based on chance constrained programming [J]. International Journal of Electrical Power 2 & Energy Systems,2007,29(9):650-656.
    [78]Yu C. W., Wang L., Wen F., et al. Optimal spinning reserve capacity determination using a chance-constrained programming approach [J]. International Journal of Electric Power Components and Systems,2007,35(10):1131-1143.
    [79]马新顺,文福拴,刘建新.构造发电公司最优报价策略的机会约束规划方法[J].电网技术,2005,29(10):35-39.
    [80]王健,文福拴,杨仁刚.基于机会约束规划的发电公司最优检修策略[J].电力系统自动化,2004,28(19):27-31.
    [81]李春华,王钦,文福拴.基于机会约束规划的供电公司最优购电策略[J].电力系统及其自动化学报,2007,19(6):12-17.
    [82]王乐,余志伟,文福拴.基于机会约束规划的最优旋转备用容量确定[J].电网技术,2006,30(20):14-19.
    [83]伍玉林,文福拴,丁剑鹰,等.发电公司在发电权交易市场的竞价策略初探[J].电力系统自动化,2010,34(17):6-11,16.
    [84]王金凤,李渝曾,张少华.基于机会约束规划的可中断负荷管理[J].电力系统及其自动化学报,2008,20(2):42-45.
    [85]吴杰康,李金艳,黄荣雄.基于机会约束规划的电力系统安全定价随机模型与算法[J].电工技术学报,2009,24(8):160-166.
    [86]文福拴,韩祯祥.基于遗传算法和模拟退火算法的电力系统的故障诊断[J].中国电机工程学报,1994,14(3):29-35.
    [87]文福拴,钱源平,韩祯祥等.利用保护和断路器信息的电力系统故障诊断与不可观测的保护的状态识别的模型与Tabu搜索方法[J].电工技术学报,1998,13(5):1-8.
    [88]郭文鑫,文福拴,廖志伟等.计及保护和断路器误动与拒动的电力系统故障诊断解析模型[J].电力系统自动化,2009,33(24):6-10.
    [89]董明,韦刘红,文福拴等.电力系统故障诊断的机会约束规划模型与方法[J].电力系统自动化,2011,35(20):47-52.
    [90]戴志辉,李强.基于停电区域及广域同步信息的电网故障快速诊断研究[J].电力系统保护与控制,2010,38(12):50-53.
    [91]苏斌,董新洲,阿德南,等.方向高频保护的动作行为第二部分:复故障情况下方向高 频保护的动作行为分析[J].电力系统及其自动化学报,2003,15(2):9-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700