用户名: 密码: 验证码:
番茄花柄脱落相关基因表达谱分析及多聚半乳糖醛酸酶性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
器官脱落是指植物体的部分器官(如花、叶、果等)脱离母体的过程。成熟果实与种子等器官的正常脱落是植物适应环境、进行正常生长生育的需要,而由于生理与胁迫等引起的花果脱落等,却是影响作物产量与品质的重要因素。因此,研究植物器官脱落机理及调控技术具有重要的理论与实践意义。本研究以番茄离体花柄为试材,应用基因芯片分析技术,研究了番茄离体花柄自然脱落与乙烯诱导脱落过程中相关基因的表达差异;明确了多聚半乳糖醛酸酶等基因的表达与脱落过程密切相关;并采用免疫蛋白定位技术对多聚半乳糖醛酸酶进行了组织定位,提取纯化了脱落相关多聚半乳糖醛酸酶,研究了酶的性质与活性调控。主要结果如下:
     1.采用Agilent 4x44K microarrays番茄基因表达芯片,获得了自然脱落与乙烯诱导脱落过程中的基因表达谱。以2倍差异表达为筛选标准,筛选出17469个差异表达探针。根据各基因在脱落过程中的表达趋势,聚类分析归纳为8个基因表达组。
     2.分析了促进番茄花柄脱落的有关乙烯合成、受体及信号转导基因在脱落过程中的表达情况,结果表明,与乙烯合成及信号传导相关基因SAM、ACO、EGY3、EIN2、ER1、ER33、ER6、ERF1、ERF7、ETR2等在脱落中上调表达,而ETR4、ER49、ER66、EGY1、ERF11、ERF9、ERF3等下调表达;乙烯处理进一步促进了RTE1、TCTR2、ERF4、Never-ripe、ETR1、ETR6、ERS1、ER24等的上调表达,加剧了ER43、ERF2、TCTRlv、ATEBP、ER21、ATERF-1、ERF5、ER5等的下调表达。
     3.分析了脱落过程中生长素及其信号传导基因的表达情况,结果表明,AFB5、ARF10、ARF3、ARF6、AUX1、IAA14、LAX3、PIN3、TIR1等上调表达,而ARF1、Axil、IAA8、PIN4.SAR3等下调表达;乙烯处理进一步促进了SAUR-likeprotein、ARGOS、IAA1等的上调表达,加剧了ARF4、ARF8、ATAUX2-11、CTD1、IAA16、IAA29、IAA3、IAA7、IAA9、SARI等的下调表达。
     4.对番茄花柄脱落相关的细胞壁降解酶和蛋白的基因表达差异表明,在番茄花柄脱落过程中,与细胞壁降解相关的酶和蛋白主要包括:多聚半乳糖醛酸酶、纤维素酶、果胶酯酶、几丁质酶、木葡聚糖转葡糖苷酶、扩展蛋白与伸展蛋白等均有大量基因探针随着脱落过程而呈显著上调表达,说明这些酶和蛋白在番茄花柄脱落中起重要作用。
     5.采用蛋白免疫荧光定位技术分析了番茄脱落过程中多聚半乳糖醛酸酶在离区的组织定位。番茄花柄离区发生脱落前,在离区的皮层组织存在少量的多聚半乳糖醛酸酶蛋白,髓部极少有该酶的存在。随着脱落的启动,酶蛋白首先在皮层组织大量表达,且沿着离层形成方向向髓组织细胞扩展。在脱落过程中,多聚半乳糖醛酸酶在离区的近轴端与远轴端均有显著表达。至脱落后期,在整个离区组织中多聚半乳糖醛酸酶大量表达。
     6.采用蛋白免疫胶体金定位技术分析了番茄花柄脱落过程中多聚半乳糖醛酸酶在离区亚细胞水平的定位。番茄花柄离区发生脱落前,酶蛋白主要位于细胞壁、细胞膜及邻近的细胞质部位,在细胞核及液泡中无表达。随着脱落的启动,细胞中多聚半乳糖醛酸酶蛋白显著增多,尤其是在细胞壁及膜系统上。至脱落后期,在整个离区组织中大量表达,除细胞壁、细胞膜外,在细胞核、液泡及细胞质中也大量存在。另外,在脱落过程中,多聚半乳糖醛酸酶在离区近轴端与远轴端的细胞中均有显著表达。
     7.建立了番茄花柄脱落相关多聚半乳糖醛酸酶提取纯化技术,即:以50 mmol·L-1乙酸缓冲液(0.1mol·L-1NaCl,1 mmol·L-1DTT, pH=5.5)为提取缓冲液,对脱落相关的多聚半乳糖醛酸酶进行粗提,低温真空浓缩后,经Sephadex G-75凝胶过滤层析(流速0.2 mL·min-1,上样量3.5 mL)和CM Sepharose CL-6B阳离子离子交换层析(pH=5.5乙酸缓冲液,流速为0.3 mL·min-1),纯化得到分子量约为30.2kD的多聚半乳糖醛酸酶。纯化倍数为30.85倍,回收率为52.58%。
     8.明确了纯化多聚半乳糖醛酸酶的基本性质。该酶具有较好的热稳定性,最适反应温度为40℃,最适反应pH为5.0,以多聚半乳糖醛酸钠为反应底物的Km值为26.14mg·mL-1。1mmol·L-1的Ca2+、Gu2+、Ba2+、Co2+、Mn2+可抑制多聚半乳糖醛酸酶活性,而1 mmol·L-1的Mg2+、K+、Fe2+、Zn2+、Fe3+则促进多聚半乳糖醛酸酶活性。
     9.明确了植物生长调节剂对纯化多聚半乳糖醛酸酶活性的调控作用。在一定浓度下,IAA、GA与ZT对纯化的多聚半乳糖醛酸酶活性具有一定抑制作用,而ABA对酶的活性有一定促进作用,但作用效果均不明显,说明这些植物生长调控剂对酶活性的直接调控作用较小。
     通过上述研究,系统分析了脱落过程中相关基因的表达情况,总结了脱落的分子机制。对器官脱落中起重要作用的多聚半乳糖醛酸酶进行了定位,提出该酶在脱落过程中首先于皮层细胞表达,随着脱落进程沿着离层形成方向向髓组织细胞扩展,且在离区的近轴端与远轴端均有表达。提取纯化了脱落相关多聚半乳糖醛酸酶,明确了酶的基本性质与活性调控,为进一步调控脱落过程奠定了基础。
Abscission, in plant sciences it most commonly refers to the process by which a plant drops one or more of its parts, such as leaves, fruits, flowers or seeds. A plant will abscise a part either to discard a member that is no longer necessary, such as a leaf during autumn, or a means of plant defense, or a flower following fertilisation, or for the purposes of reproduction, however, in agricultural production the physiology disorder and bio-stress caused flower and fruit dropping resulted in seriously yield and economic loss. Study of the abscission may have great value in understanding the theory of abscission and provide proper guidance for preventing flower abscission. This paper reports the tomato pedicel abscise-relative genes screened by Agilent microarrays, on basis of this mainly study the character of key abscission gene polygalacturonase and its distribution in cell level during abscission by immunolocalization. The results are as follows:
     1. Application of Agilent 4x44K microarrays constructed gene expression profiles of tomato pedicel ethylene induced and natural abscission, screening 17469 differentially expressed probe and clustered into 8 groups according to expression patterns.
     2. Ethylene biosynthesis and signal pathway cluster:SAM, ACO, EGY3, EIN2, ER1, ER33, ER6, ERF1, ERF7 and ETR2 were up-regulated expression, while ETR4, ER49, ER66, EGY1, ERF11, ERF9 and ERF3 significant down-regulated. Ethylene treatment up-regulated the expression of RTE1, TCTR2, ERF4, Never-ripe, ETR1, ETR6, ERS1, ER24, and ERF1-1, but down-regulated ER43, ERF2, TCTRlv, ATEBP, ER21, ATERF-1, ERF5 and ER5.
     3. Auxin signal pathway cluster:AFB5, ARF10, ARF3, ARF6, AUX1, IAA14, LAX3, PIN3 and TIR1were up-regulated, while ARF1, Axil, IAA8, PIN4 and SAR3 down-regulated. Ethylene treatment up-regulated the expression of SAUR-like protein, ARGOS and IAA1, but down-regulated ARF4, ARF8, ATAUX2-11, CTD1, IAA16, IAA29, IAA3, IAA7, IAA9 and SARI.
     4. Cell wall-degrading enzymes and proteins cluster: PG (polygalacturonase), CEL (cellulose), PE (pectin esterase), CHIT (chitinase), XET (xyloglucan endotransglycosylase), EXT (extension) and EXP (expansin). Most of them show up-regulated during separated process which implicated play important roles in abscission.
     5. Before tomato flower pedicel separation, PG mainly distributed in cortex of AZ (abscission zone), little observed in and central parenchymatous region. As the abscission initial, PG showed abundant accumulative in cortical tissue and transmitted into central parenchymatous region. PG was significant increased in cell, especially in cell wall and membrane systems. In the late stage of abscission, PG showed abundant accumulative in whole AZ region. Moreover, there is no observed of PG appearance in distal and proximal part throughout abscission.
     6. Before tomato flower pedicel separation, PG mainly distributed in AZ (abscission zone) cell wall, cell membrane and cytoplasm of adjacent parts, no observed in nucleus and the vacuole. As the abscission initial, PG was significant increased in cell, especially in cell wall and membrane systems. In the late stage of abscission, PG showed abundant accumulative in whole AZ region, besides in cell wall and membrane systems, cytoplasm, nucleus and the vacuole was also great amount observed.
     7. The optimum extraction condition for polygalacturonase from the crude enzyme extracts of tomato pecdicel is 50 mmol·L-1 acetate buffer solution (pH5.5) with 0.1 M NaCl and 1 mM DTT. Then enzyme extracts which concentrated in low temperature are purified by Sephadex G-75 column equilibrated with flow rate of 0.2 mL·min-1 and sample volume of 3.5 mL. Then the active fraction of polygalacturonase which concentrated in low temperature are further absorbed onto a CM sepharose CL-6B ionic exchange chromatographic with acetate buffer at pH5.5 and flow rate of 0.3 mL·min-1. The purified polygalacturonase of tomato pecdicel molecular mass is 30.2 kD,30.85-fold purification and 52.58% recovery.
     8. The pH optimum for activity of purified polygalacturonase is determined to be 5.0, temperature optima to be 40℃, and Km 26.14 mg·ml-1. The enzyme activity was inhibited by 1 mmol·L-1 Ca2+, Gu2+, Ba2+, Co2+ and Mn2+ and activated by 1 mmol·L-1Mg2+, K+, Fe2+ Zn2+ and Fe3+.
     9. The effect of plant phytohormones on the activity of polygalacturonase was also investigated. The result indicated that GA and IAA could inhibit the activity of PG with the optimum concentration of 0.3 mg·mL-1 and 0.1 mg·mL-1 respectively. ABA could activate the activity of PG with the optimum concentration of 0.3 mg·mL-1. Low concentration of ZT could activate the activity of PG, however, high concentration ZT inhibit the activity of PG.
     According to systematic analysis of gene expression profiles, summarized the molecular mechanism of ethylene induced abscission. On basis of this, screened the key abscission gene polygalacturonase and made out PG distribution first accumulative in cortical tissue and transmitted into central parenchymatous region. Moreover, there is no observed of PG appearance in distal and proximal part throughout abscission. We also purified polygalacturonaseis, its enzyme character. The results will be helpful for understanding the theory of abscission and provide proper guidance for preventing flower abscission.
引文
1.陈晓博.2010.参与番茄花柄离区发育的转录因子SPL3的基因功能研究.博士学位论文,中国农业科学院.
    2.陆定志,傅家瑞,宋松泉.1997.植物衰老及其调控.北京:中国农业出版社,65-92.
    3.齐明芳,李天来,许涛,曹霞.2007.园艺作物器官脱落相关酶的研究进展.北方园艺(06):62-65.
    4.齐明芳,许涛,李天来,吴士才.2007.Ca2+对离体培养的番茄花柄脱落的影响以及脱落过程中离区内钙形态的变化.植物生理学通讯,43(3):476-478.
    5.沈全光,刘存德,阎田鞠,戎王,飞澜.1991.番茄果实中多聚半乳糖醛酸酶的纯化及其基本性质.植物学报,33(3):243-247.
    6.王翔.2008.番茄花柄离区发育的分子生物学研究.博士学位论文,中国农业科学院.
    7.王彦昌.2003.番茄花柄外植体脱落的生理机制.博士学位论文,沈阳农业大学.
    8.王彦昌,李天来.2001.园艺植物花器脱落研究进展.园艺学报,29(增刊):613-618.
    9.武维华.2008.植物生理学.2版,北京:科学出版社.
    10.许涛.2008.钙素对番茄花柄外植体脱落调控机理的研究.博士学位论文,沈阳农业大学.
    11.许涛,李天来,齐明芳.2007.钙处理对乙烯诱导的番茄离体花柄脱落的抑制作用.园艺学报,34(02):366-370.
    12.许涛,李天来,齐明芳,陈伟之.2008.番茄花柄脱落过程中超微结构及亚细胞钙分布的变化.园艺学报,35(02):233-238.
    13.于艳军.2000.冬枣果实中多聚半乳糖醛酸酶的纯化及部分性质分析.硕士学位论文,青岛建筑工程学院.
    14.张凌云.2010.乙烯诱导柑橘果实脱落的转录基因组学研究及乙烯诱导基因的克隆和鉴定.博士学位论文,西南大学.
    15.左鲜红.2010.钙对番茄花柄脱落过程中生长素反应基因的调控作用.沈阳农业大学.
    16. Abeles FB.1969. Abscission:role of cellulase. Plant Physiol,44(3):447-452.
    17. Abeles FB, Craker LE, Leather GR.1971. Abscission: the phytogerontological effects of ethylene. Plant Physiol,47(1):7-9.
    18. Abeles FB, Gahagan HE.1968. Abscission: The role of ethylene, ethylene analogues, carbon dioxide, and oxygen. Plant Physiol,43(8):1255-1258.
    19. Addicott FT, Lynch RS, Cams HR.1955. Auxin gradient theory of abscission regulation. Science, 121(3148):644-645.
    20. Agusti J, Merelo P, Cercos M, Tadeo FR, Talon M.2008. Ethylene-induced differential gene expression during abscission of citrus leaves. J Exp Bot,59(10):2717-2733.
    21. Belfield EJ, Ruperti B, Roberts JA, Mc Queen-Mason S.2005. Changes in expansin activity and gene expression during ethylene-promoted leaflet abscission in Sambucus nigra. J Exp Bot,56(413): 817-823.
    22. Berger RK, Reid PD.1979. Role of polygalacturonase in bean leaf abscission. Plant Physiol,63(6): 1133-1137.
    23. Bonghi C, Rascio N, Ramina A, Casadoro G.1992. Cellulase and polygalacturonase involvement in the abscission of leaf and fruit explants of peach. Plant Mol Biol,20(5):839-848.
    24. Botton A, Eccher G, Forcato C, Ferrarini A, Begheldo M, Zermiani M, Moscatello S, Battistelli A, Velasco R, Ruperti B,Ramina A.2011. Signaling pathways mediating the induction of apple fruitlet abscission. Plant Physiol,155(1):185-208.
    25. Brown KM.1997. Ethylene and abscission. Physiologia Plantarum,100(3):567-576.
    26. Brummell DA, Hall BD, Bennett AB.1999. Antisense suppression of tomato endo-1,4-beta-glucanase Cel2 mRNA accumulation increases the force required to break fruit abscission zones but does not affect fruit softening. Plant Mol Biol,40(4):615-622.
    27. Burg SP.1968. Ethylene, plant senescence and abscission. Plant Physiol,43(9 Pt B):1503-1511.
    28. Burns JK, Lewandowski DJ 2000. Genetics and expression of pectinmethylesterase, endo-beta-glucanase, and polygalacturonase genes in Valencia orange. In: GOREN, R & GOLDSCHMIDT, EE (eds.) Proceedings of the First International Symposium on Citrus Biotechnology.
    29. Butenko MA, Vie AK, Brembu T, Aalen RB, Bones AM.2009. Plant peptides in signalling:looking for new partners. Trends Plant Sci,14(5):255-263.
    30. Chatterjee S, Chatterjee SK.1977. Influence of reproduction on abscission process of cotton (gossypium-barbadense 1) leaves. Annals of Botany,41(173):517-525.
    31. Cho HT, Cosgrove DJ.2000. Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana. Proc Natl Acad Sci U S A,97(17):9783-9788.
    32. Cho SK, Larue CT, Chevalier D, Wang H, Jinn TL, Zhang S,Walker JC.2008. Regulation of floral organ abscission in Arabidopsis thaliana. Proc Natl Acad Sci U S A,105(40):15629-15634.
    33. Choi D, Cho HT, Lee Y.2006. Expansins: expanding importance in plant growth and development. Physiologia Plantarum,126(4):511-518.
    34. Clements JC, Atkins CA.2001. Characterization of a non-abscission mutant in Lupinus angustifolius L.:Physiological aspects. Annals of Botany,88(4):629-635.
    35. Cosgrove DJ.2000. New genes and new biological roles for expansins. Curr Opin Plant Biol,3(1): 73-78.
    36. Cosgrove DJ, Li LC, Cho HT, Hoffmann-Benning S, Moore RC, Blecker D.2002. The growing world of expansins. Plant Cell Physiol,43(12):1436-1444.
    37. Dal Cin V, Galla G, Ramina A.2007. MdACO expression during abscission - The use of P-33 labeled primers in transcript quantitation. Molecular Biotechnology,36(1):9-13.
    38. del Campillo E,Bennett AB.1996. Pedicel breakstrength and cellulase gene expression during tomato flower abscission. Plant Physiol,111(3):813-820.
    39. Del Campillo E, Lewis LN.1992. Identification and kinetics of sccumulation of proteins induced by ethylene in bean abscission zones. Plant Physiol,98(3):955-961.
    40. Dostal DL, Agnew NH, Gladon RJ, Weigle JL.1991. Ethylene, simulated shipping, sts, and aoa affect corolla abscission of new-guinea impatiens. HortScience,26(1):47-49.
    41. Ellis CM, Nagpal P, Young JC, Hagen G, Guilfoyle TJ, Reed JW.2005. AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development,132(20):4563-4574.
    42. Eo J, Lee BY.2009. Effects of ethylene, abscisic acid and auxin on fruit abscission in water dropwort (Oenanthe stolonifera DC.). Scientia Horticulturae,123(2):224-227.
    43. Evensen KB, Page AM, Stead AD.1993. Anatomy of ethylene-induced petal abscission in pelargonium x hortorum. Annals of Botany,71(6):559-566.
    44. Gonz(?)lez-Carranza ZH, Lozoya-Gloria E, Roberts JA.1998. Recent developments in abscission: shedding light on the shedding process. Trends in Plant Science,3(1):10-14.
    45. Gonzalez-Carranza ZH, Elliott KA, Roberts JA.2007. Expression of polygalacturonases and evidence to support their role during cell separation processes in Arabidopsis thaliana. J Exp Bot,58(13): 3719-3730.
    46. Gonzalez-Carranza ZH, Whitelaw CA, Swarup R, Roberts JA.2002. Temporal and spatial expression of a polygalacturonase during leaf and flower abscission in oilseed rape and Arabidopsis. Plant Physiol, 128(2):534-543.
    47. Goszczynska DM, Zieslin N.1993. Abscission of flower peduncles in rose (rosa x hybrida) plants. Scientia Horticulturae,54(4):317-326.
    48. Gray-Mitsumune M, Blomquist K, McQueen-Mason S, Teeri TT, Sundberg B,Mellerowicz EJ.2008. Ectopic expression of a wood-abundant expansin PttEXPA 1 promotes cell expansion in primary and secondary tissues in aspen. Plant Biotechnology Journal,6(1):62-72.
    49. Gray WM, Estelle I.2000. Function of the ubiquitin-proteasome pathway in auxin response. Trends in biochemical sciences,25(3):133-138.
    50. Hadfield KA, Bennett AB.1998. Polygalacturonases:Many genes in search of a function. Plant Physiology,117(2):337-343.
    51. Henry EW, Valdovinos JG, Jensen TE.1974. Peroxidases in tobacco abscission zone tissue:ii. time course studies of peroxidase activity during ethylene-induced abscission. Plant Physiol,54(2): 192-196.
    52. Hong SB, Sexton R, Tucker ML.2000. Analysis of gene promoters for two tomato polygalacturonases expressed in abscission zones and the stigma. Plant Physiol,123(3):869-881.
    53. Hong SB, Tucker ML.1998. Genomic organization of six tomato polygalacturonases and 5' upstream sequence identity with tapl and win2 genes. Mol Gen Genet,258(5):479-487.
    54. Jiang CZ, Lu F, Imsabai W, Meir S, Reid MS.2008. Silencing polygalacturonase expression inhibits tomato petiole abscission. J Exp Bot,59(4):973-979.
    55. Kalaitzis P, Solomos T, Tucker ML.1997. Three different polygalacturonases are expressed in tomato leaf and flower abscission, each with a different temporal expression pattern. Plant Physiol,113(4): 1303-1308.
    56. Kostenyuk IA, Zon J, Burns JK.2002. Phenylalanine ammonia lyase gene expression during abscission in citrus. Physiol Plant,116(1):106-112.
    57. Lashbrook CC, Giovannoni JJ, Hall BD, Fischer RL, Bennett AB.1998. Transgenic analysis of tomato endo-beta-1,4-glucanase gene function. Role of cell in floral abscission. Plant Journal,13(3): 303-310.
    58. Leslie ME, Lewis MW, Youn JY, Daniels MJ, Liljegren SJ.2010. The EVERSHED receptor-like kinase modulates floral organ shedding in Arabidopsis. Development,137(3):467-476.
    59. Lewis LN, Varner JE.1970. Synthesis of cellulase during abscission of Phaseolus vulgaris leaf explants. Plant Physiol,46(2):194-199.
    60. Lewis MW, Leslie ME, Fulcher EH, Darnielle L, Healy PN, Youn JY, Liljegren SJ.2010. The SERK1 receptor-like kinase regulates organ separation in Arabidopsis flowers. Plant J.
    61. Li Y, Jones L, Mc Queen-Mason S.2003. Expansins and cell growth. Curr Opin Plant Biol,6(6): 603-610.
    62. Libertini E, Li Y, Mc Queen-Mason SJ.2004. Phylogenetic analysis of the plant Endo -β-1,4-Glucanase gene fmily. Journal of Molecular Evolution,58(5):506-515.
    63. Liljegren SJ, Leslie ME, Darnielle L, Lewis MW, Taylor SM, Luo R, Geldner N, Chory J, Randazzo PA, Yanofsky MF,Ecker JR.2009. Regulation of membrane trafficking and organ separation by the NEVERSHED ARF-GAP protein. Development,136(11):1909-1918.
    64. Lim MAG, Kelly P, Sexton R, Trewavas AJ.1987. Identification of chitinase messenger-rna in abscission zones from bean (Phaseolus-vulgaris Red Kidney) during ethylene-induced abscission. Plant Cell and Environment 10(9):741-746.
    65. Mao L, Begum D, Chuang HW, Budiman MA, Szymkowiak EJ, Irish EE,Wing RA.2000. JOINTLESS is a MADS-box gene controlling tomato flower abscission zone development. Nature, 406(6798):910-913.
    66. McKim SM, Stenvik GE, Butenko MA, Kristiansen W, Cho SK, Hepworth SR, Aalen RB,Haughn GW. 2008. The BLADE-ON-PETIOLE genes are essential for abscission zone formation in Arabidopsis. Development,135(8):1537-1546.
    67. McManus MT.2008. Further examination of abscission zone cells as ethylene target cells in higher plants. Annals of Botany,101(2):285-292.
    68. Meir S, Philosoph-Hadas S, Sundaresan S, Selvaraj KS, Burd S, Ophir R, Kochanek B, Reid MS, Jiang CZ,Lers A.2010. Microarray analysis of the abscission-related transcriptome in the tomato flower abscission zone in response to auxin depletion. Plant Physiol,154(4):1929-1956.
    69. Mishra A, Khare S, Trivedi PK, Nath P.2008. Ethylene induced cotton leaf abscission is associated with higher expression of cellulase (GhCell) and increased activities of ethylene biosynthesis enzymes in abscission zone. Plant Physiology and Biochemistry,46(1):54-63.
    70. Oberholster SD, Peterson CM, Dute RR.1991. Pedicel abscission of soybean-cytological and ultrastructural-changes induced by auxin and ethephon. Canadian Journal of Botany-Revue Canadienne De Botanique,69(10):2177-2186.
    71. Orozco-Cardenas ML, Ryan CA.2003. Polygalacturonase beta-subunit antisense gene expression in tomato plants leads to a progressive enhanced wound response and necrosis in leaves and abscission of developing flowers. Plant Physiol,133(2):693-701.
    72. Patterson SE, Bleecker AB.2004. Ethylene-dependent and -independent processes associated with floral organ abscission in Arabidopsis. Plant Physiol,134(1):194-203.
    73. Perin C, Gomez-Jimenez M, Hagen L, Dogimont C, Pech JC, Latche A, Pitrat M,Lelievre JM.2002. Molecular and genetic characterization of a non-climacteric phenotype in melon reveals two loci conferring altered ethylene response in fruit. Plant Physiol,129(1):300-309.
    74. Petersen M, Sander L, Child R, vanOnckelen H, Ulvskov P,Borkhardt B.1996. Isolation and characterisation of a pod dehiscence zone-specific polygalacturonase from Brassica napus. Plant Molecular Biology,31(3):517-527.
    75. Poovaiah BW.1973. Calcium distribution in the abscission zone of bean leaves:electron microprobe x-ray analysis. Plant Physiol,52(6):683-684.
    76. Poovaiah BW.1973. Peroxidase activity in the abscission zone of bean leaves during abscission. Plant Physiol,52(3):263-267.
    77. Ratner A, Goren R, Monselise SP.1969. Activity of pectin esterase and cellulase in the abscission zone of citrus leaf explants. Plant Physiol,44(12):1717-1723.
    78. Reid PD, Strong HG.1974. Cellulase and abscission in the red kidney bean (Phaseolus vulgaris). Plant Physiol,53(5):732-737.
    79. Riov J.1974. A polygalacturonase from citrus leaf explants:role in abscission. Plant Physiol,53(2): 312-316.
    80. Roberts JA, Schindler CB, Tucker GA.1984. Ethylene-promoted tomato flower abscission and the possible involvement of an inhibitor. Planta,160(2):159-163.
    81. Rosales R, Jamilena M, Gomez P, Garrido D.2009. Hormonal control of floral abscission in zucchini squash (Cucurbita pepo). Plant Growth Regulation,58(1):1-14.
    82. Rubinstein B, Leopold AC.1963. Analysis of the auxin control of bean leaf abscission. Plant Physiol, 38(3):262-267.
    83. Sakamoto M, Munemura I, Tomita R, Kobayashi K.2008. Involvement of hydrogen peroxide in leaf abscission signaling, revealed by analysis with an in vitro abscission system in Capsicum plants. Plant J,56(1):13-27.
    84. Sander L, Child R, Ulvskov P, Albrechtsen M, Borkhardt B.2001. Analysis of a dehiscence zone endo-polygalacturonase in oilseed rape (Brassica napus) and Arabidopsis thaliana: evidence for roles in cell separation in dehiscence and abscission zones, and in stylar tissues during pollen tube growth. Plant Mol Biol,46(4):469-479.
    85. Sane AP, Tripathi SK, Nath P.2007. Petal abscission in rose (Rosa bourboniana var Gruss an Teplitz) is associated with the enhanced expression of an alpha expansin gene, RbEXPAl. Plant Science, 172(3):481-487.
    86. Sexton R, Roberts JA.1982. Cell biology of abscission. Annual Review of Plant Physiology,33(1): 133-162.
    87. Sharova EI.2007. Expansins:Proteins involved in cell wall softening during plant growth and morphogenesis. Russian Journal of Plant Physiology,54(6):713-727.
    88. Stenvik GE, Butenko MA, Aalen RB.2008. Identification of a putative receptor-ligand pair controlling cell separation in plants. Plant Signal Behav,3(12):1109-1110.
    89. Stenvik GE, Tandstad NM, Guo Y, Shi CL, Kristiansen W, Holmgren A, Clark SE, Aalen RB,Butenko MA.2008. The EPIP peptide of INFLORESCENCE DEFICIENT IN ABSCISSION is sufficient to induce abscission in arabidopsis through the receptor-like kinases HAESA and HAESA-LIKE2. Plant Cell,20(7):1805-1817.
    90. Tabuchi T.1999. Comparison on the development of abscission zones in the pedicels between two tomato cultivars. Journal of the Japanese Society for Horticultural Science,68(5):993-999.
    91. Tabuchi T, Arai N.1999. Changes in esterase activity in the abscission zone of jointless tomato fruits. Journal of the Japanese Society for Horticultural Science,68(6):1152-1154.
    92. Taylor J, Tucker G, Lasslett Y, Smith C, Arnold C, Watson C, Schuch W, Grierson D, Roberts J.1991. Polygalacturonase expression during leaf abscission of normal and transgenic tomato plants. Planta, 183(1):133-138.
    93. Taylor JE, Whitelaw CA.2001. Signals in abscission. New Phytologist,151(2):323-339.
    94. Thompson DS, Osborne DJ.1994. A Role for the Stele in Intertissue Signaling in the Initiation of Abscission in Bean Leaves (Phaseolus vulgaris L.). Plant Physiol,105(1):341-347.
    95. Tirlapur UK, Costa G, Malossini C, Vizzotto G, Cresti M.1995. Scanning electron microscopy, video-image analysis, and confocal imaging of changes occurring during peach fruit abscission. Journal of the American Society for Horticultural Science,120(2):203-210.
    96. Trainotti L, Ferrarese L, Poznanski E,Dalla Vecchia F.1998. Endo-beta-1,4-glucanase activity is involved in the abscission of pepper flowers. Journal of Plant Physiology,152(1):70-77.
    97. Tripathi SK, Singh AP, Sane AP, Nath P.2009. Transcriptional activation of a 37 kDa ethylene responsive cysteine protease gene, RbCP1, is associated with protein degradation during petal abscission in rose. J Exp Bot,60(7):2035-2044.
    98. Tucker GA, Schindler CB, Roberts JA.1984. Flower abscission in mutant tomato plants. Planta, 160(2):164-167.
    99. Tucker ML, Burke A, Murphy CA, Thai VK, Ehrenfried ML.2007. Gene expression profiles for cell wall-modifying proteins associated with soybean cyst nematode infection, petiole abscission, root tips, flowers, apical buds, and leaves. J Exp Bot,58(12):3395-3406.
    100. Tucker ML, Whitelaw CA, Lyssenko NN, Nath P.2002. Functional analysis of regulatory elements in the gene promoter for an abscission-specific cellulase from bean and isolation, expression, and binding affinity of three TGA-type basic leucine zipper transcription factors. Plant Physiol,130(3):1487-1496.
    101. van Doom WG 2002. Effect of ethylene on flower abscission: a survey. Ann Bot,89(6):689-693.
    102. Wan L, Xia X, Hong D, Yang G.2010. Molecular analysis and expression of a floral organ-specific polygalacturonase gene isolated from rapeseed (Brassica napus L.). Mol Biol Rep.
    103. Wang YC, Li TL, Meng HY, Sun XY.2005. Optimal and spatial analysis of hormones, degrading enzymes and isozyme profiles in tomato pedicel explants during ethylene-induced abscission. Plant Growth Regulation,46(2):97-107.
    104. Wei PC, Tan F, Gao XQ, Zhang XQ, Wang GQ, Xu H, Li LJ, Chen J,Wang XC.2010. Overexpression of AtDOF4.7, an Arabidopsis DOF family transcription factor, induces floral organ abscission deficiency in Arabidopsis. Plant Physiol,153(3):1031-1045.
    105. Wittenbach VA, Bukovac MJ.1975. Cherry fruit abscission - peroxidase-activity in abscission zone in relation to separation. Journal of the American Society for Horticultural Science,100(4):387-391.
    106. Xiao Y, Redman J, Monaghan E, Zhuang J, Underwood B, Moskal W, Wang W, Wu H,Town C.2010. High throughput generation of promoter reporter (GFP) transgenic lines of low expressing genes in Arabidopsis and analysis of their expression patterns. Plant Methods,6(18.
    107. Xu T, Li T, Qi M.2010. Calcium effects on mediating polygalacturonan activity by mRNA expression and protein accumulation during tomato pedicel explant abscission. Plant Growth Regulation,60(3): 255-263.
    108. Xu T, Li TL, Qi MF.2010. Calcium effects on mediating polygalacturonan activity by mRNA expression and protein accumulation during tomato pedicel explant abscission. Plant Growth Regulation,60(3):255-263.
    109. Xu T, Qi M, Lv S, Zuo X, Li J, Li T.2010. The effects of calcium on the expression of genes involved in ethylene biosynthesis and signal perception during tomato flower abscission. African Journal of Biotechnology,9(24):3569-3576.
    110. Yager RE.1960. Possible role ofpectic enzymes in abscission. Plant Physiol,35(2):157-162.
    111. Yamada T, Ichimura K, van Doom WG.2007. Relationship between petal abscission and programmed cell death in Prunus yedoensis and Delphinium belladonna. Planta,226(5):1195-1205.
    112. Yuan RC, Wu ZC, Kostenyuk IA, Burns JK.2005. G-protein-coupled alpha (2A)-adrenoreceptor agonists differentially alter citrus leaf and fruit abscission by affecting expression of ACC synthase and ACC oxidase. Journal of Experimental Botany,56(417):1867-1875.
    113. Zadnikova P, Petrasek J, Marhavy P, Raz V, Vandenbussche F, Ding Z, Schwarzerova K, Morita MT, Tasaka M, Hejatko J, Van Der Straeten D, Friml J, Benkova E.2010. Role of PIN-mediated auxin efflux in apical hook development of Arabidopsis thaliana. Development,137(4):607-617.
    114. Zhu H, Yuan RC.2009. Abscisic acid, ethylene, and polygalacturonase are involved in young fruit abscission induced by naa and shading in 'Golden Delicious'apples. HortScience,44(4):1075-1075.
    115. ZUO X-h, XU ZHAO TLZS, Ming-fang Q, Shuang-shuang LU, Jin-hong L, Hong L, Song G, Tian-lai L.2010. The role of calcium in mediating SlIAAs expression in tomato pedicel explants. AGRICULTURAL SCIENCES IN CHINA,9(7):980-984.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700