用户名: 密码: 验证码:
O_3/GAC工艺控制饮用水氯化消毒副产物研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,水体污染日益加剧,使得以混凝、过滤、消毒为代表的常规饮用水处理工艺难以有效地去除水中的有机物,从而使氯化消毒副产物增加,严重威胁人体健康,最为突出的就是产生具有致癌致突作用的THMs和卤代有机物,其中三氯甲烷产生量最大,尤其受到了重视。而原水中存在的各种有机物,包括天然有机物(如腐殖酸)和污染性有机物,都是产生氯化消毒副产物的根源。因此,最大可能地去除有机物,减少消毒副产物前体物就是饮用水深度净化的目的。本研究即以COD_(Mn)、UV_(254)、CHCl_3FP、CCl_4FP作为评价指标,探讨臭氧和活性炭联用对有机物,特别是消毒副产物前体物的去除效能以及去除机理,并针对高有机污染饮用水源提出了O_3/GAC两级串联工艺。
     研究发现,针对COD_(Mn)<5mg/l的低有机污染饮用水源,采用O_3/GAC一级工艺,出水水质良好。它在去除有机物、消毒副产物前体物方面明显优于传统工艺、O_3、GAC单一工艺。
     O_3/GAC联合工艺出水水质受臭氧投加量、活性炭吸附时间和水源水质波动的影响。O_3投加量有一最佳范围,因水质而异,如当原水COD_(Mn)为4.78时,最佳O_3投加量为4mg/l,当原水COD_(Mn)为7.1时,最佳O_3投加量为6mg/l。COD_(Mn)、UV_(254)、CHCl_3FP的去除率以及CHCl_3FP、CCl_4FP总去除率随活性炭吸附时间的延长而提高;但当吸附时间超过15~25min后,四者的去除率己无明显变化,此时可认为已达到吸附平衡。对于不同水质(COD_(Mn)4—8,uv_(254)0.08—0.185),O_3/GAC工艺均有较稳定的去除率,即COD_(Mn)在55%—70%之间,UV_(254)在60%—80%之间,而CHCl_3FP去除率、CHCl_3FP、CCl_4FP总去除率则稳定在50%左右。说明O_3/GAC工艺对控制消毒副产物具有稳定的处理效果。
     当原水为COD_(Mn)>5mg/l的高有机污染饮用水源时,采用O_3/GAC一级工艺,出水的COD_(Mn)难以达到净水标准,即使增加臭氧投量和延长活性炭吸附时间也难以有效提高处理效果。我们根据O_3/GAC工艺去除有机物的机理,在一级工艺的基础上采用了O_3/GAC两级串联工艺。结果表明,它不仅能将出水的COD_(Mn)达到净水要求,而且更为突出的是,它显著提高了对消毒副产物前驱物的去除率,对控制氯化消毒副产物特别有效。
In recent years, because of industrial, agricultural and urban pollution, the quality of drinking water sources is becoming worse and worse. Though conventional water treatment has played an important role in past years, it is now found ill-fitted because of increasing mutagens and carcinogens in chlorinated water. So how to reduce chlorination disinfection by-products (DBFs) has been greatly concerned. In this text, we discussed the effectiveness and mechanism of Os/GAC technics in removing natural organic matters (NOM) and disinfection by-products precursors.
    Ozonation coupled with granular activated carbon adsorption (CVGAC technics) is proved to have a good effect in dealing with low organic polluted raw water. It shows distinct advantage in reducing NOM and disinfection by-products precursors when compared with conventional water treatment, OB and GAC single technics.
    The quality of effluent water depends on ozone dose, carbon adsorption time and the character of raw water. The analyses of samples show results: there is a best ozone dose for a particular raw water which varies with the quality of water; the removal ratios of all indexes increase with prolonged carbon adsorption time before 15-25 minutes; Os/GAC technics can apply stably under different water quality conditions(CODMn 4-8).
    However, when source water is seriously polluted by organics, the concentration of CODMn can't meet the drinking water regulations using one-stage Os/GAC technics. Increasing ozone dose or prolonging carbon adsorption time is proved to have little effect. On the basis of mechanism of Os/GAC technics, we put forward two-stage CVGAC technics which not only make CODMn up to dar, but also greatly reduce disinfection by-products precursors.
引文
[1]Bellar T. A., Lichtenberg J., Kroner R. C. Determining volatile organics at microgram-per-litre levels by gas chromatography. J. Am. Water Works Assoc., 1994. 66: 703~706
    [2]Rook J. J. Formation of haloforms during chlorination of natural waters. J. Water Treat. Exam., 1974, 23(2):234~243
    [3]Symons JM et al. J. Am Water Works Assoc. 1975, 67:634~647
    [4]Philip C. Singer et al. Control of disifection by-product in drinking water Water Environment Research 1998, 70(4): 727~734
    [5]U. S. NCl. Report on the carcinogenesis bioassay of chloroform(CAS No. 67-66-3) TR-OOO NTIS Rpt No PB 2640818 bethesda, MD: National Cancer Institute, 1976
    [6]King W. D., Marrett L. D. Case-control study of bladder cancer and chlorination byproducts in treated water (Ontario, Canada). Cancer Causes Control, 1996, 7:596~604
    [7]Koivusalo M., Pukkala E., Vartiainen T. et al. Drinking water chlorination and cancer-a historical cohort study in Finland. Cancer Causes Control, 1997, 8: 192~200
    [8]Morris R. D., Audet A. M., Angelillo I. F. et al. Chlorination, chlorination byproducts, and cancer: a meta-analysis. Am. J. Public Health, 1992, 138: 492~501
    [9]McGeehin M. A., Reif J. S., Becher J. C. et al. Case-control study of bladder cancer and water disifection methods in Colorado. Am. J. Epidomiol, 1993, 138: 493~501
    [10]Richardson S. D., Thruston A. M., Caughran T. V. et al. DBPs in drinking water Proc. Water Qual. Technol. Conf., 1998
    [11]Nawrocki J., Andrzejewski P., Kronberg L. et al. New derivatization method for detemination of 3-chloro-4 (dichloromethyl)-5hydroxy-2 (5H)-furanone in water. J. Chromatogr. A, 1997. 790: 242-247
    [13]Romero J., Ventura F, Caixach J. et al. Identification and quantification of the mutagenic compound 3-chloro-4-(dichloromehtyl)-5-hydroxy-2(5H)-furanone(MX) in chlorine-treated water. Bull. Environ. Contam. Toxicol., 199759: 715~722
    [14]Pip E. Survey of bottled drinking water available in Manitoba, Canda. Environ. Health Perspectives, 2000, 108(9): 863-866
    [15]Bichsel Y., Von Gunten U. Oxidation of iodide and hypoiodous acid in the disinfection of natural waters. Enviro. Sci. Technol., 1999, 33(22): 4040~4045
    [16]Simpson K. L., Hayes K. P. Drinking water disinfection byproducts: an Australian perspective. Wat. Res., 1998, 32(5): 1522~1528
    [17]Hydes O. European regulations on residual disinfection. J. Am. Water Works Assoc., 1999, 91(1): 70~74
    [18]马远明 张淑兰 马蔚 美国现时饮水消毒剂/消毒副产物规定 国外医学卫生学分册 2000.6 368~372
    [19]National Primary Drinking Water Regulation: Interim Enhanced Surface Water Treatment: Final Rule. Fed. Registr. 1998, 63(241): 69477-69521
    [20]Steven C Allgier et al. Evaluating NF for DBP Control qith the BSMT. Jour AWWA, 1995, 87(3):87-89
    [21]夏青等 水质标准手册 中国环境科学出版社,1990
    [22]中华人民共和国国家标准 生活饮用水卫生标准,2001年6月
    [23]刘勇建 侯小平 牟世芬 饮用水消毒副产物研究状况 环境污染治理技术与设备 2001.4
    
    31~38
    [24]Daniel Phillippe A. Meyerhofer, Paulf. A risk assessment approach to selecting a pisinfection by-product control strategg. AWWA, 1992 Annual Conference Proceeding Vancouver B. C. June. 18~22 1992. 281~301
    [25]董海山 曾抗美 控制饮用水消毒副产物的研究状况与评述 重庆环境科学 2000,22(6):68~71
    [26]李建渠 李灵芝 张淑琪 饮用水卤代消毒副产物的去除途径探讨
    [27]Langlais B. Ozone in Water Treatment: Application and Engineering. Lewis Publishers: Chelsea, MI, 1991.2-3
    [28]Trussell R. R. Safety of Water Disinfection: Balancing Chemical and Microbial Risks (Craun G. F. ed) Washingtom: International Life Sciences Institute Press, 1993. 319-343
    [29]吴锦超 林革 臭氧杀菌在饮用纯净水生产中的应用 水处理技术 1999,25(12):87~88
    [30]王晓昌 臭氧处理的副产物 给水排水 1998,70(4):727~734
    [31]田颖 王晶日 黄丽萍 饮水消毒的变革——新型消毒剂二氧化氯取代液氯的前景 环境保护科学 2000,26(8):14~16,33
    [32]施小平 周明浩 二氧化氯消毒饮用水中亚氯酸盐污染的初步研究 环境与健康杂志 2000,17(6):341~342
    [33]黄君礼等 二氧化氯发生技术 环境科学进展 1997,5(2):27~32
    [34]Jun Wenli. et al. Trihalomethanes formation in water treated with chlorine dioxide. Water Res. 1996, 30(10): 2371-2376
    [35]Lechevallier M. W., Cawthon C. D., Lee R. G. Inactivation of bilfilm bacteria. Appl. & Envir. Microbial, 1988, 54(10): 2492-2497
    [36]Norman T. S., Harma L. L., Looyenga R. W. The use of chloramines to prevent trihalomethane formation. J. Am. Water Works Assoc., 1980, 72(3): 176-179
    [37]马军 李圭白 高锰酸钾法去除水中有机污染物 水和废水技术研究 北京:中国建筑工业出版社 1992:12-28
    [38]顾平 张凤娥 应用高锰酸钾降低水中三氯甲烷的研究 环境科学学报 1998,18(1):104~107
    [39]Richardson S. D., Thruston A. D. Jr, Collette T. W. Identification of TiO2/UV disinfection byproducts in drinking water. Environ. Sci. Technol., 1996, 30(11): 3327-3334
    [40]Braunstein. J. F. et al. Ultraviolet Disinfection of Filtered Activated Sludge Effuent for Reuse Application. Wat. Enviro. Res., 68: 152~160
    [41]Stevens, A. A., Slocum, C. J., el al. Chlorination of organics in drinking water. J. Am Water Works Assoc., 1976, 68: 615~620
    [42]Christman, R. F. Norwood, D. L., et al. Identity an yields of major halogenated products of aquatic fuivic acid chlorination. Envir. Sci. Technol., 1983, 17(10): 625~632
    [43]Black D. Magrini-Bair K., et al. Reducing Cancer Risks by improving organic carbon removal. J. Am Water Works Assoc., 1996, 88(6): 72~79
    [44]顾公望 饮水与肝癌研究进展 环境与健康杂志 1988,5:44~47
    [45]吴敦虎等 吉林省土壤中腐殖酸和水溶液富里酸分布特征与大骨节病关系的研究 环境科学学报 1987,7:166~170
    [46]Lind C., et al. Reducing total and dissolved organic carbon: comparing coagulants. Environ. Technol., 1996, 6(3):54-59
    [47]Narkis. N. &Rebhun. M. Stiometeic Relationship between Humic and Fulvic Acids and Fioccu
    
    Iants. Water Technol., 1987, 69:6~12
    [48]魏宏斌 严煦世 氧化法去除水中有机物的研究与应用现状 中国给水排水 1996,12(5):19~22
    [49]魏宏斌 徐迪民等 水溶液中腐殖酸的二氧化钛催化研究 环境科学学报 1998,18(2):162~166
    [50]V. CAMEL and A. BERMOND The use of ozone and associated oxidation processes in drinking water treatment. Wat. Res. 1998, 32(11): 3208-3222
    [51]Bekbolet W. C. et al. Photocatalytic oxidation and subsequent adsorption characteristics of humic acid. Water. Sci. Technol., (GB), 1996, 34:65-68
    [52]M. W. Lechevallier, W. C. Becker, P. Schorr and R. G. Lee, Evaluating the performance of bioloqically active rapid filters J. AWWA. 84(4): 136(1992)
    [53]李永秋 王占生 生物预处理对饮用水致突活性影响的研究 中国给水排水 1996,12(2):7~9
    [54]蒋展鹏 寥孟钧 腐殖酸在活性炭上吸附平衡的研究 水处理技术 1988,14(5):306~313
    [55]吴国权 活性炭在给水处理中的应用 净水技术 1995,13(4):10
    [56]任基成 费杰 臭氧活性炭工艺去除饮用水中 CODMn的应用试验 给水排水 2001,27(4):21~24
    [57]张金松 王佳音 王宝贞 臭氧化-生物活性炭深度净化饮用水试验研究 中国给水排水 1999,15(10):17~20
    [58]范洁 李圭白 高锰酸钾复合药剂与粒状活性炭联用去除水中有机污染物的研究 中国给水排水 1999,15(1):5~8
    [59]于祚斌 高明等 简单曝气法去除水中三卤甲烷的研究 环境与健康杂志 1994,11(5):206~209
    [60]安丽 活性炭纤维(ACF)对水中卤代烃吸附作用和机理的研究 同济大学博士论文 1994
    [61]曹莉莉 王占生等 饮用水处理中活性炭吸附卤乙酸的特性 环境科学 1999,20(5):72~75
    [62]李灵芝等 NF和RO对致突变物和无机离子去除效果比较 环境科学 1997,18(5):65~67
    [63]李灵芝等 纳滤(NF)在饮用水处理中的应用 给水排水 1997,23(5):16
    [64]鲍忠定 郑林 许荣年 臭氧处理对水质二次污染的影响 食品与发酵工业 1999,25(2):52~53
    [65]陈华 彭东升 三种常用饮用水消毒剂的应用和前景评价 科技纵横 1999,(3):32~34
    [66]张维佳 王宝贞 伍悦滨 臭氧及深度氧化法去除水中污染物 给水排水 2000,26(5):11~14
    [67]Atasi. Khalil Z. et al. Factor Screening for ozonating the Taste-and Odor-causing Compounds in Source Water at Detroit, USA Wat. Sci. and Technol.. 1999, 40(6): 115-122
    [68]Glazo. W. H. et al. Evaluating Oxidants for the Removal of Model Taste and Odor Compounds from a Municipal Water Supply. Jour. AWWA. 1990, 87(5):79-84
    [69]Becket W. C. and O'Melia C. R.(1995) The effect of ozone on the coagulation of turbidity and TOC. In Proceeding of the 12th Ozone World Congress. Lille, France, 15-18 May, Vol.1, pp. 505-516
    [70]Becker W. C. and O'Melia C. R. (1996) Ozone, oxalic acid, and organic matter molecular weight-Effects on coagulation. Ozone Sci. Eng. 18, 311-324
    [71]Siddiqui, Mohamed S. et al. Ozone enhanced removal of natural organic matter from drinking water sources War. Res. 1997, 31(12)
    
    
    [72] Bose P. et al. Effect of ozonation on some physical and chemical properties of aquatic natural organic matter. Ozone Sci. &Eng. 1994,16(9):89
    [73] Goel S. et al. Biodegration of NOM: effect of NOM source and ozone dose JAWWA.1995,87(1):90
    [74] 李冬梅 冀武 水中天然有机物的臭氧化处理 陕西环境 2002,9(1):27~29
    [75] 雄向陨 黄廷林 于京亭 水中腐殖酸的O3氧化与其生物可降解性实验研究 环境工程 1998,16(6):7~10
    [76] Anderson L. J.,et al. Extent of ozone's reaction with isolated aquatic fulvic Acid. Environ. Sci.Technol., 1986,20. 739~742
    [77] Gracia R.,et al. Study of the catalytic ozonation of humic substances in water and their ozonation by-products. Ozone Sci. Eng., 1996,18. 195~208
    [78] Kleiser, G.,Frimmel EH. Removal of precursors for disinfection by-products(DBPs)-differences between ozone- and OH- radical-induced oxidation The Science of the Total Environment 2000m256(1):1-9
    [79] Chang, E.E. et al. Characteristics of organics precursors and their relationship with disinfection by-products. Chemosphere 2001,44(5): 1231-1236
    [80] Chang, Cheng-nan; Ma, Ying-shih; Reducing the formation of disinfection by-products by pre-ozonation Chemosphere 2002,46(1):21-30
    [81] 徐海宇 仇荣亮 饮水中三卤甲烷形成机理与处理技术现状 上海环境科学 1999,18(12):568-570
    [82] Ferguson D.W., Gramith J.T. and McGuire M.J. Applying ozone for organics control and disinfection: a utility perspective, controlling disinfection by-products. American Water Works Association, 1993,64-71
    [83] Hisvirta L.O. Disinfection and disifection by-products. IWSA 19th international water supply congress and exhibition, 1993(4): 307~311
    [84] 王小昌 臭氧用于给水处理的几个理论与技术问题 西安建筑科技大学学报 1998,30(4):307~311
    [85] 张淑云 关于通过臭氧处理和粒状活性炭处理对去除有机前驱物的评价 水处理信息导报 2000.4 29~30
    [86] 吴舜泽 王宝贞等 饮用水深度净化现场对比试验 给水排水 1999,25(12):3~7
    [87] 邓慧萍 严煦世 饮用水中臭氧化产物的评述 同济大学学报 1997,25(4):466~470
    [88] 张淑英等 有关去除三卤甲烷前期物与活性炭吸附地表水预臭氧化和预氯处理的评价 5~11
    [89] Dussert B W, et al. Impact of drinking water preozonation on granular activated carbon quality and performance. Proceedings of the 12th Ozone World Congress. Lille. France, 1995,1(5):517~528
    [90] 蒋绍阶 刘宗源 UV_(254)作为水处理中有机物控制指标的意义 重庆建筑大学学报 2002,24(2):61~65
    [91] Robert C., Weast, Ph.D., CRC Handbook of chemistry and Physics, 63rd CRC Press, Inc.(1982~1983)274-276
    [92] 张莘民 徐朝 气相色谱法直接进样测定饮用水中挥发性卤代烃色谱 2000,18(3):274-276
    [93] Trussell A.R., Umphres M.D., Leong L.T. and Machis A., J.AWWA, 1979, 71(7):385
    [94] 钱晓荣 董毛毛等 吹扫—捕集气相色谱法测定水中挥发性卤代烃 分析测试技术与仪器
    
    2002,8(3):161-164
    [95] 张莘民 吹扫—捕集/气相色谱法测定水中挥发性卤代烃 中国环境监测 2002,18(2):38-41
    [96] 张莘民 吹扫—捕集/气相色谱法测定饮用水中5种挥发性卤代烃 分析化学 2002,30(4):503
    [97] 国家环保局《水和废水监测分析方法》编委会 水和废水监测分析方法(第三版)北京:中国环境科学出版社 1989
    [98] 贺北平 秦竹 王占生 气相色谱法测定给水中三卤甲烷的方法 中国环境监测 1997,13(4):18-20
    [99] 张宁惠 利用大口径毛细柱气相色谱法检测水中三氯甲烷和四氯化碳 应用化工 2001,30(1):40-41
    [100] 张红雨 顶空-气相色谱法分析水中挥发性卤代烃 江汉大学学报:综合版1998,15(6):23-27
    [101] 王永华 气相色谱分析 海洋出版社 1990
    [102] 韩长绵 水中挥发性卤代烃的测定——液上气相色谱法 中国环境监测 1987,3(1):201-205
    [103] 丁建清 无锡环境保护 1986(3):72
    [104] 张宏陶 水质分析大全 重庆:科学技术出版社重庆分社,1989
    [105] 宋钰 蔡士林 张卫强 水中臭氧的快速测定 卫生研究 2000,29(3):151-153
    [106] 汪小丰 符晓梅 王晓红 碘化钾-DPD 分光光度法测定二次供水中臭氧 江苏预防医学2000,11(4):51-52
    [107] 齐力汇等 靛蓝二磺酸钠(IDS)分光光度法测定水中臭氧 中国卫生检验杂志 1999,9(1):30-32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700