用户名: 密码: 验证码:
石墨烯基电化学传感平台的构建及其农药残留检测应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农药残留已对生态环境和人类健康造成了极大威胁,因此发展简便快捷、灵敏可靠的农药检测方法,已成为迫在眉睫的重要研究课题。与经典的色谱法相比,电化学传感检测法因具有灵敏度高、分析速度快、成本低等优点,更适合于饮用水以及农作物中农药残留的简便快捷、灵敏可靠检测。其中电化学传感功能界面的构建,是发展电化学传感器检测法的关键步骤,而将纳米科学与电化学技术有效结合,是目前电化学传感器的发展热点和趋势。本文利用合成的具有优异物理化学性能的石墨烯基功能纳米材料,构建了几种新型传感平台,并结合光电化学(PEC)、电化学发光(ECL)和安培传感等电化学检测技术,发展了几种可用于农药残留检测的电化学传感方法,具体内容如下:
     (1)耦合PEC技术-酶抑制原理,研制了一种可用于有机磷农药毒死蜱的快速、灵敏检测的酶抑制型PEC传感器。研究表明,合成的Cd0.5Zn0.5S/石墨烯功能纳米材料不仅具有良好的生物相容性,有效地保持固定在电极表面的乙酰胆碱酯酶(AChE)活性,而且其优异的PEC性能还为目标分析物检测提供了良好的传感平台。在优化条件下,所研制的PEC传感器响应光电流的减小值(ΔI)与毒死蜱浓度的对数呈良好的线性关系,其线性范围为1ng mL-1~1μg mL-1,检测下限为0.3ng mL-1;同时该传感器具有较好的重现性和稳定性。
     (2)以原位法制备的CdS纳米晶/石墨烯量子点(CdS NCs/GQDs)为ECL传感平台,研制了一种可用于有机氯农药五氯苯酚(PCP)检测的ECL传感器。研究表明,与CdS NCs相比,CdS NCs/GQDs功能纳米材料的ECL信号不仅增强了4倍,而且ECL的起始电位降低了80mV。在优化条件下,所研制传感器的ECL信号强度与PCP浓度的对数呈良好的线性关系,其线性范围为0.01-500ng mL-1,检测下限为3pg mL-1;另外,该传感器具有较好的重现性和稳定性,可应用于实际样中PCP的痕量测定。
     (3)利用所制备的CdS NCs/GQDs功能纳米材料良好的PEC性能,以集成的丝网印刷电极为固定化平台,研制了一种可用于有机磷农药甲基对硫磷灵敏测定的可抛式PEC传感器。研究表明,与CdS NCs相比,制备的CdS NCs/GQDs功能纳米材料的PEC信号增强了4倍,这归因于GQDs良好的电子传导能力。在优化条件下,所研制的传感器的响应光电流与甲基对硫磷浓度的对数呈良好的线性关系,其线性范围为0.01-100ng mL-1,检测下限为3pgmL-1;同时该传感器具有装置简单、响应时间短以及稳定性好等优点。
     (4)以部分氧化剥离的多壁碳纳米管(MWCNTs)制得的核壳结构MWCNTs@氧化石墨烯纳米带(MWCNTs@GONRs)为信号放大材料,鲁米诺为ECL发光体,研制了一种可应用于PCP测定的ECL传感器。研究表明,修饰在电极表面的MWCNTs@GONRs有效地催化了鲁米诺的氧化还原反应,与裸电极相比,鲁米诺在MWCNTs@GONRs修饰电极上的氧化峰电流增强了约3倍;其相应的ECL强度增强了约4.4倍。在优化条件下,该传感器ECL信号强度与PCP浓度的对数呈良好的线性关系,其线性范围为2pgmL-1~10ngmL-1:检测下限为0.7pg mL-1;同时该传感器具有较理想的重现性和稳定性。
     (5)进一步以MWCNTs@GONRs为AChE固定化材料,研制了一种可应用于氨基甲酸酯类农药西维因的安培型电化学传感器。研究表明,MWCNTs@GONRs为AChE的固定化提供了良好的生物相容性环境,有效保持了AChE良好的电催化活性。另外,固定在MWCNTs@GONRs表面的AChE对其催化底物氯化硫代乙酰胆碱具有较高的亲和性和催化活性,其米氏常数为0.25mmol L-1。该传感器的酶抑制率与西维因浓度的对数呈良好的线性关系,其线性范围为1ng mL-1~1μg mL-1,检测下限为0.3ng mL-1;同时该传感器具有良好的稳定性和重现性。
     (6)以一步溶剂热法制备的Fe3O4纳米粒子功能化石墨烯纳米带(Fe3O4/GNRs)为传感平台,研制了一种可应用于多巴胺测定的安培型电化学传感器。研究表明,与Fe3O4/石墨烯相比,Fe3O4/GNRs具有更好的电催化活性。所制备传感器的安培响应与多巴胺浓度呈良好的线性关系,其线性范围为1-30μmol L-1,检测下限为0.3μmolL-1。
Public concern over pesticide residues has been increasing dramatically owing to the high toxicity and bioaccumulation effects of pesticides and the serious risks that they pose to the environment and human health. The development of biosensors for pesticides has been an active research area for some years in response to the demand for rapid, simple, selective, and low-cost techniques for pesticide detection, which offer great advantages over conventional analytical techniques, including high specificity for real-time analysis in complex mixtures, high sensitivity, simple operation without the need for extensive sample pretreatment, and low cost. Driven by these needs, great efforts have been made in the design, fabrication, and applicatio n of nanomaterials for electrochemical sensing devices. By incorporation of graphene-based functionalized nanomaterials in the fabrication of electrochemical sensor for pesticide residue and based on the electrochemical techniques such as photoelectrochemical (PEC), electrochemiluminescent (ECL), amperometric methods, herein, several electrochemical sensors have been successfully constructed for pesticide residue determination, as described as follows:
     (1) A visible light PEC platform coupled with enzyme-inhibition for rapid and sensitive determination of dursban was constructed based on dual-functional Cd0.5Zn0.5S/graphene (Cd0.5Zn0.5S/G) nanocomposite. Due to the inherent biocompatibility and remarkable PEC property of Cdo.5Z110.5S/G nanocomposite, the acetylcholinesterase (AChE) immobilized on the modified electrode can hydrolyze acetylthiocholine chloride into thiocholine, which could increase the photocurrent of the modified enzyme electrode, and the further inhibition of dursban on the enzyme electrode could decrease the photocurrent response. Based on the notable change of dursban in PEC response of the AChE-Cd0.5Zn0.5S/G modified electrode, a simple and effective way for PEC monitoring of dursban is proposed, which showed wide liner range of1ng mL-1~1μg mL-1with a low detection limit of0.3ng mL
     (2) Based on the amplifying ECL behavior of graphene quantum dots/CdS nanocrystals (CdS NCs/GQDs), an ultrasensitive ECL sensor was constructed for the detection of pentachlorophenol (PCP). Due to the presence of the doped GQDs, the resulting CdS NCs/GQDs exhibited4-fold enhanced ECL intensity than pure CdS NCs with the ECL onset potential80mV positively shifted. Furthermore, based on the effective inhibition of PCP on the ECL response of CdS NCs/GQDs film, a simple method for ultrasensitive determination of PCP was constructed, which showed wide linear range of0.01~500ng mL-1and low detection limit of3pg mL-1with good stability and reproducibility.
     (3) A novel PEC sensor for detection of the organophosphorus (OPs) pesticide parathion-methyl using CdS NCs/GQDs coupled with a screen-printed efectrode is presented. The CdS NCs/GQDs inherited the excellent electron transport of GQDs and facilitated the spatial separation of photo-generated charge carrier, resulting in the enhanced photocurrent4-fold higher than CdS NCs under visible irradiation. Based on the inhibition of parathion-methyl on the PEC response of CdS NCs/GQDs modified electrode, a simple way for PEC detection of parathion-methyl was proposed, which show good performances with a wide linear range (0.01-100ng mL-1), low detection limit (3pg mL-1), instrument simple and portable, rapid response and good stability.
     (4) Based on the signal amplification of core-shell structure MWCNTs@GONRs on the ECL signal of luminol, a novel ECL sensor for PCP determination was constructed. The MWCNTs@GONRs modified on the electrode can catalyze the luminol oxidation process, compared with bare electrode, the ECL of luminol was enhanced for4.4-fold on the MWCNTs@GONRs modified electrode. And PCP is found to be able to enhance the ECL intensity, based on this, a method for PCP detection was fabricated. An acceptable linear range was obtained between the log[PCP] and ECL intensity with a limit of detection of0.7pg mL-1. Moreover, the method exhibits good stability and reproducibility, which provide new way for application of MWCNTs@GONRs in pesticide determination.
     (5) Based on AChE immobilized on MWCNTs@GONRs nanostructure, a rapid and sensitive organophosphates amperometric biosensor was fabricated. The MWCNTs@GONRs can provide a unique microenvironment for AChE, and the immobilized AChE on the MWCNTs@GONRs modified electrode can possess its native structure and electrocatalytic activities effectively. The as-prepared biosensor shows high affinity to acetylthiocholine with a Michaelis-Menten constant value of0.25mmol L-1. Based on the inhibition of carbaryl on the enzymatic activity of the immobilized AChE, the resulting biosensor exhibits excellent performance for carbaryl detection including good reproducibility, acceptable stability, and a reliable linear relationship between the inhibition and log[carbaryl] from1ng mL-1up to1μg mL-1with a detection limit of0.3ng mL-1.
     (6) Fe3O4/functionalized graphene nanoribbons (Fe3O4/GNRs) were prepared in situ by a facile one-step solvothermal process, and further, an amperometric electrochemical sensor for the determination of dopamine was fabricated based on the resulting Fe3O4/GNRs. The result indicated that the electrochemical activity of Fe3O4/GNRs was better than Fe3O4-functionalized graphene nanosheets (Fe2O4/G) for the redox of dopamine. The resulting electrochemical sensor showed a linaer range of1~30μmol L-1with a detection limit of0.3μmol L-
引文
[1]Aragay G, Pino F, Merkoci A, Nanomaterials for sensing and destroying pesticides [J]. Chem. Rev.,2012,112 (10):5317-5338.
    [2]华小梅,单正军,我国农药的生产,使用状况及其污染环境因子分析[J].环境科学进展,1996,4(2):33-45.
    [3]George J, Shukla Y, Pesticides and cancer:Insights into toxicoproteomic-based findings [J]. J. Proteomics,2011,74 (12):2713-2722.
    [4]Varsamis D G, Touloupakis E, Morlacchi P, et al., Development of a photosystem Ⅱ-based optical microfluidic sensor for herbicide detection [J]. Talanta,2008,77(1):42-47.
    [5]周启星,复合污染生态学[M].中国环境科学出版社,1995,55-68.
    [6]王素利,马玉娥,李士军,农药的残留毒性与合理安全使用[.J].张家口农专学报,2002,18(1):24-26.
    [7]阎秀花,李玉珍,农药污染与人体健康[J].衡水师专学报.2002,4(1):45-47·
    [8]Mulchandani P, Mulchandani A, Kaneva I, et al., Biosensor for direct determination of organophosphate nerve agents.1. Potentiometric enzyme electrode [J]. Biosens. Bioelectron., 1999,14(1):77-85.
    [9]Liu G D, Lin Y H, Electrochemical stripping analysis of organophosphate pesticides and nerve agents [J]. Electrochem. Commun.,2005,7 (4):339-343.
    [10]朱玉强,气相色谱法测定农药残留研究近展[J].甘蔗糖业,2007,2(1):22-29·
    [11]Schachterle S, Feigel C, Pesticide residue analysis in fresh produce by gas chromatography-tandem mass spectrometry [J]. J. Chromatogr. A,1996,754 (1-2):411-422.
    [12]He L J, Luo X L, Xie H X, et al. Ionic liquid-based dispersive liquid-liquid microextraction followed high-performance liquid chromatography for the determination of organophosphorus pesticides in water sample [J]. Anal. Chim. Acta,2009,655 (1-2):52-59.
    [13]Niessen W M A, Tjaden U R, Greef J V D, Srtategies in developing interfaces for coupling liquid chromatography and mass spectrometry [J]. Chromatogr.1991,554 (1):3-26.
    [14]陈晓红,李小平,金米聪,蔬菜中氨基甲酸酷类农药残留的HPLC/MS测定研究[J].中国卫生检验杂志,2006,16(9):1041-1043.
    [15]Liu S Q, Zheng Z Z, Li X Y, Advances in pesticide biosensors:current status, challenges, and future perspectives [J]. Anal Bioanal Chem,2013,405:63-90.
    [16]Kumaravel A, Chandrasekaran M, A biocompatible nano TiO2/nafion composite modified glassy carbon electrode for the detection of fenitrothion [J]. J. Electroanal. Chem.,2011,650 (2):163-170.
    [17]刘有芹,刘六战,沈含熙,氢氧化钻修饰玻碳电极的制备及其电化学行为[J].分析测试学报,2004,23(6):9-13.
    [18]Jia J B, Wang B Q, Wu A G, et al. A method to construct a third-generation horseradish peroxidase biosensor:self-assembling gold nanoparticles to three-dimensional sol-gel network [J]. Anal. Chem.,2002,74 (9):2217-2223.
    [19]Lei J P, Ju H X, Signal amplification using functional nanomaterials for biosensing [J]. Chem. Soc. Rev.,2012,41 (6):2122-2134.
    [20]Guo S J, Dong S J, Biomolecule-nanoparticle hybrids for electrochemical biosensors [J]. Trac-Trend. Anal. Chem.,2009,28(1):96-109.
    [21]You C C, Chompoosor A, Rotello V M, The biomacromolecule-nanoparticle interface [J]. Nano Today,2007,2(3):34-43.
    [22]Zhang W Y, Asiri AM, Liu D L, et al. Nanomaterial-based biosensors for environmental and biological monitoring of organophosphorus pesticides and nerve agents [J]. Trends Anal. Chem., 2014,54(1):1-10.
    [23]Pundir C S, Chauhan N, Acetylcholinesterase inhibition-based biosensors for pesticide determination:A review [J]. Anal. Biochem.,2012,429(1):19-31.
    [24]Du D, Ding J W, Cai J, et al. One-step electrochemically deposited interface of chitosan-gold nanoparticles for acetylcholinesterase biosensor design [J]. J. Electroanal. Chem.,2007,605 (1): 53-60.
    [25]Gong J M, Wang L Y, Zhang L Z, Electrochemical biosensing of methyl parathion pesticide based on acetylcholinesterase immobilized onto Au-polypyrrole interlaced network-like nanocomposite [J]. Biosens. Bioelectron.,2009,24 (7):2285-2288.
    [26]Bird S B, Sutherland T D, Gresham C, et al. OpdA, a bacterial organophosphorus hydrolase, prevents lethality in rats after poisoning with highly toxic organophosphorus pesticides [J]. Toxicology,2008,247(2-3),88-92
    [27]Du D, Chen W Q, Zhang W Y, et al. Covalent coupling of organophosphorus hydrolase loaded quantum dots to carbon nanotube/Au nanocomposite for enhanced detection of methyl parathion [J]. Biosens. Bioelectron.,2010,25 (6):1370-1375.
    [28]Zhao Y T, Zhang W Y, Lin Y H, et al. The vital function of Fe3O4@Au nanocomposites for hydrolase biosensor design and its application in detection of methyl parathion [J]. Nanoscale, 2013,5(3):1121-1126.
    [29]Bertoncello P, Forster R J, Nanostructured materials for electrochemiluminescence (ECL)-based detection methods:Recent advances and future perspectives [J]. Biosens. Bioelectron.,2009,24(11):3191-3200.
    [30]Zhang M H, "Yuan R, Chai Y Q, et al. A biosensor for cholesterol based on gold nanoparticles-catalyzed luminol electrogenerated chemiluminescence [J]. Biosens. Bioelectron., 2012,32(1):288-292.
    [31]Dai Z H, Zhang J, Bao J C, et al. Facile synthesis of high-quality nano-sized CdS hollow spheres and their application in electrogenerated chemiluminescence sensing [J]. J. Mater. Chem.,2007,17(11):1087-1093.
    [32]Myung N, Ding Z F, Bard A J, Electrogenerated Chemiluminescence of CdSe Nanocrystals [J]. Nano Lett.,2002,2 (11):1315-1319.
    [33]Hua L J, Han H Y, Chen H B, Enhanced electrochemiluminescence of CdTe quantum dots with carbon nanotube film and its sensing of methimazole [J]. Electrochim. Acta,2009,54 (5): 1389-1394.
    [34]Mao L, Yuan R, Chai Y Q, et al. Multi-walled carbon nanotubes and Ru(bpy)32+/nano-Au nano-sphere as efficient matrixes for a novel solid-state electrochemiluminescence sensor [J]. Talanta,2010,80(5):1692-1697.
    [35]Li C C, Kang Q, Chen Y F, et al. Electrochemiluminescence of luninol on Ti/TiO2 NT electrode and its application for pentachlorophenol detection [J]. Analyst,2010,135 (11): 2806-2810.
    [36]Zhou H K, Gan N, Hou J G, et al. Enhanced electrochemiluminescence employed for the selective detection of methyl parathion based on a zirconia nanoparticle film modified electrode [J]. Analytical Sciences,2012,28:267-273.
    [37]Li J Z, Wang N Y, Tran.T T, et al. Electrogenerated chemilum inescence detection of trace level pentachlorophenol using carbon quantum dots [J]. Analyst,2013,138 (7):2038-2043.
    [38]Liang J S, Yang S L, Luo S L, et al. Ultrasensitive electrochemilum inescent detection of pentachlorophenol using a multiple amplification strategy based on a hybrid material made from quantum dots, graphene, and carbon nanotubes [J]. Microchim Acta,2014, DOI: 10.1007/s00604-013-1081-9.
    [39]Wang G L, Xu J J, Chen H Y, Progress in the studies of photoelectrochemical sensors [J]. Sci. China, Ser. B,2009,52(11):1789-1800.
    [40]Lu W, Jin Y, Wang G, et al. Enhanced photoelectrochemical method for linear DNA hybridization detection using Au-nanopaticle labeled DNA as probe onto titanium dioxide electrode [J]. Biosens. Bioelectron.,2008,23 (10):1534-1539.
    [41]Li H B, Li J, Yang Z J et al., A novel photoelectrochemical sensor for the organophosphorus pesticide dichlofenthion based on nanometer-sized titania coupled with a screen-printed electrode [J]. Anal. Chem.,2011,83 (13):5290-5295.
    [42]Li H B, Li J, Xu Q, et al. A derivative photoelectrochemical sensing platform for 4-nitrophenolate contained organophosphates pesticide based on carboxylated perylene sensitized nano-TiO2 [J]. Anal. Chim. Acta,2013,766:47-52.
    [43]Shi H J, Zhao G H, Liu M C, et al. A novel photoelectrochemical sensor based on molecularly imprinted polymer modified TiO2 nanotubes and its highly selective detection of 2,4-dichlorophenoxyacetic acid [J]. Electrochem.Commun.,2011,13 (12):1404-1407.
    [44]Wang P P, Dai W J, Ge L, et al. Visible light photoelectrochemical sensor based on Au nanoparticles and molecularly imprinted poly(o-phenylenediamine)-modified TiO2 nanotubes for specific and sensitive detection chlorpyrifos [J]. Analyst,2013,138 (3):939-945.
    [45]Terrones M, Botello-Mendez A R, Campos-Delgado J, et al. Graphene and graphite nanoribbons:Morphology, properties, synthesis, defects and applications [J]. Nano Today,2010, 5 (4):351-372.
    [46]Yang W R, Ratinac K R, Ringer S P, et al. Carbon nanomaterials in biosensors:Should you use nanotubes or graphene? [J]. Angew. Chem. Int. Ed.,2010,49 (12):2114-2138.
    [47]Allen M J, Tung V C, Kaner R B, Honeycomb carbon:Areview of graphene [J]. Chem. Rev., 2010,110(1):132-145.
    [48]Liu K P, Zhang J J, Wang C M, et al. Graphene-assisted dual amplification strategy for the fabrication of sensitive amperometric immunosensor [J]. Biosens. Bioelectron.,2011,26 (8): 3627-3632.
    [49]Cheng N N, Wang H J, Li X M, et al. Amperometric glucose biosensor based on integration of glucose oxidase with palladium nanoparticles/reduced graphene oxide nanocomposit [J]. American Journal of Analytical Chemistry,2012,3 (4):312-319.
    [50]Zhao X M, Zhou S W, Shen Q M, et al. Fabrication of glutathione photoelectrochemical biosensor using graphene-CdS nanocomposites [J]. Analyst,2012,137(16):3697-3703.
    [51]Zhang X R, Li S G, Jin X, et al. A new photoelectrochemical aptasensor for the detection of thrombin based on functionalized graphene and CdSe nanoparticles multilayers [J]. Chem. Commun.,2011,47(17):4929-4931.
    [52]Wang K, Wu J, Liu Q, et al. Ultrasensitive Photoelectrochemical Sensing of Nicotinamide Adenine Dinucleotide Based on Graphene-TiO2 Nanohybrids Under visible Irradiation [J]. Anal. Chim.Acta.,2012,745:131-136.
    [53]Wu H, Wang J, Kang X H, et al. Glucose biosensor based on immobilization of glucose oxidase in platinum nanoparticles/graphene/chitosan nanocomposite film [J]. Talanta,2009,80 (1):403-406.
    [54]Shan C S, Yang H F, Han D X, et al. Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing [J]. Biosens. Bioelectron.,2010,25 (5):1070-1074.
    [55]Wang K, Liu Q, Guan Q M, et al. Enhanced direct electrochemistry of glucose oxidase and biosensing for glucose via synergy effect of graphene and CdS nanocrystals [J]. Biosens. Bioelectron.,2011,26 (5):2252-2257.
    [56]Rafiee M A, Lu W, Thomas A V, et al., Graphene Nanoribbon Composites [J]. ACS Nano, 2010,4(12):7415-7420.
    [57]Liu L, Zhang Y L, Wang W L, et al. Nanosphere lithography for the fabrication of ultranarrow graphene nanoribbons and on-chip bandgap tuning of grapheme [J]. Adv. Mater., 2011,23 (10):1246-1251.
    [58]Qian H L, Negri F, Wang C R, et al. Fully conjugated tri(perylene bisimides):An approach to the construction of n-type graphene nanoribbons [J]. J. Am. Chem. Soc.,2008,130 (52): 17970-17976.
    [59]Cai J M, Ruffieux P, Jaafar R, et al. Atomically precise bottom-up fabrication of graphene nanoribbons [J]. Nature,2010,466 (7305):470-473.
    [60]Jiao L, Zhang L, Wang X, et al. Narrow graphene nanoribbons from carbon nanotubes [J]. Nature,2009,458 (7240):877-880.
    [61]Kosynkin D V, Higginbotham A L, Sinitskii A, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons [J]. Nature,2009,458 (7240):872-876.
    [62]Wu S, Lan X Q, Huang F F, et al. Selective electrochemical detection of cysteine in complex serum by graphene nanoribbon [J]. Biosens. Bioelectron.,2012,32 (1):293-296.
    [63]Shen X F, Cui Y, Pang Y H, et al. Graphene oxide nanoribbon and polyhedral oligomeric silsesquioxane assembled composite frameworks for pre-concentrating and electrochemical sensing of 1-hydroxypyrene [J]. Electrochim. Acta,2012,59:91-99.
    [64]Tang J, Hou L, Tang D P, et al. Magneto-controlled electrochemical immunoassay of brevetoxin B in seafood based on guanine-functionalized graphene nanoribbons [J]. Biosens. Bioelectron.,2012,38(1):86-93.
    [65]Shen J H, Zhu Y H, Yang X L, et al. Graphene quantum dots:emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices [J]. Chem. Commun.,2012,48 (31): 3686-3699.
    [66]Li L L, Wu G H, Yang G H, et al. Focusing on luminescent graphene quantum dots:current status and future perspectives [J]. Nanoscale,2013,5 (10):4015-4039.
    [67]Li L L, Ji J, Fei R, et al. A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots [J]. Adv. Funct. Mater.,2012,22 (14):2971-2979.
    [68]Xue Y, Zhao H, Wu Z, et al. Colorimetric detection of Cd2+ using gold nanoparticles cofunctionalized with 6-mercaptonicotinic acid and L-Cysteine [J]. Analyst,2011,136 (18): 3725-3730.
    [69]Wang Y, Hu X, Wang L, et al. A new acridine derivative as a highly selective'off-on' fluorescence chemosensor for Cd2+ in aqueous media [J]. Sens. Actuators B,2011,156 (1): 126-131.
    [70]Lu J J, Yan M, Ge L, et al. Electrochemiluminescence of blue-luminescent graphene quantum dots and its application in ultrasensitive aptasensor for adenosine triphosphate detection [J]. Biosens. Bioelectron.,2013,47:271-277.
    [71]Zhao J, Chen G F, Zhu L, et al. Graphene quantum dots-based platform for the fabrication of electrochemical biosensors [J]. Electrochem.Commun.,2011,13 (1):31-33.
    [72]Wang X D, Chen L J, Sun X R, et al. Electrochemical immunosensor with graphene quantum dots and apoferritin-encapsulated Cu nanoparticles double-assisted signal amplification for detection of avian leukosis virus subgroup [J]. Biosens. Bioelectron.,2013,47:171-177.
    [73]Liang M M, Fan K L, Pan Y, et al. Fe3O4 magnetic nanoparticle peroxidase mimetic-based colorimetric assay for the rapid detection of organophosphorus pesticide and nerve agent [J]. Anal. Chem.,2013,85 (1):308-312.
    [74]Sahin A, Dooley K, Cropek D M, et al. A dual enzyme electrochemical assay for the detection of organophosphorus compounds using organophosphorus hydrolase and horseradish peroxidase [J]. Sens. Actuators B,2011,158 (1):353-360.
    [75]Chauhan N, Narang J, Pundir C S, Immobilization of rat brain acetylcholinesterase on ZnS and poly(indole-5-carboxylic acid) modified Au electrode for detection of organophosphorus insecticides [J]. Biosens. Bioelectron.,2011,29 (1):82-88.
    [76]Wu S, Huang F F, Lan X Q, et al. Electrochemically reduced graphene oxide and Nafion nanocomposite for ultralow potential detection of organophosphate pesticide [J]. Sens. Actuators B,2013,177:724-729.
    [77]Wang K, Liu Q, Dai L N, et al. A highly sensitive and rapid organophosphate biosensor based on enhancement of CdS-decorated graphene nanocomposite [J]. Anal. Chim. Acta., 2011,695 (1-2):84-88.
    [78]Xu Z L, Shen Y D, Zheng W X, et al. Broad-specificity immunoassay for O,,O-Diethyl organophosphorus pesticides:application of molecular modeling to improve assay sensitivity and study antibody recognition [J]. Anal. Chem.,2010,82 (22):9314-9321.
    [79]Li H B, Li J, Xu Q, et al. Poly(3-hexylthiophene)/TiO2 nanoparticle-functionalized electrodes for visible light and low potential photoelectrochemical sensing of organophosphorus pesticide chlopyrifos [J]. Anal. Chem.,2011,83 (24):9681-9686.
    [80]Liu G D, Lin Y H, Biosensor based on self-assembling acetylcholinesterase on carbon nanotubes for flow injection/amperometric detection of organophosphate pesticides and nerve agents [J]. Anal. Chem.,2006,78(3):835-843.
    [81]Gu Z G, Yang S P, Li Z J, et al. An ultrasensitive electrochemical biosensor for glucose using CdTe-CdS core-shell quantum dot as ultrafast electron transfer relay between graphene-gold nanocomposite and gold nanoparticle [J]. Electrochim. Acta,2011,56(25):9162-9167.
    [82]Zhao W W, Ma Z Y, Yan D Y, et al. In situ enzymatic ascorbic acid production as electron donor for CdS quantum dots equipped TiO2 nanotubes:a general and efficient approach for new photoelectrochemical immunoassay [J].Anal. Chem.,2012,84(24):10518-10521.
    [83]Golub E, Pelossof G, Freeman R, et al. Electrochemical photoelectrochemical, and surface plsmon resonance detection of cocaine using supramolecular aptamer complexes and metallic or semiconductor nanoparticles [J]. Anal. Chem.,2009,81 (22):9291-9298.
    [84]Shen Q M, Zhao X M, Zhou S W, et al. ZnO/CdS hierarchical nanospheres for photoelectrochemical sensing of Cu2+[J]. J. Phys. Chem. C,2011,115 (36):17958-17964.
    [85]Li Y J, Ma M J, Yin G, et al. Phthalocyanine-sensitized graphene-CdS nanocomposites:an enhanced photoelectrochemical immunosensing platform [J]. Chem. Eur. J.,2013,19(14): 4496-4505.
    [86]Yan J J, Wang K, Liu Q, et al. One-pot synthesis of CdxZni.xS-reduced graphene oxide nanocomposites with improved photoelectrochemical performance for selective determination of Cu2+[J]. RSC Adv.,2013,3 (34):14451-14457.
    [87]Kovtyukhova N I, Ollivier P J, Martin B R, et al. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations [J]. Chem. Mater., 1999,11 (3):771-778.
    [88]Gong J M, Wang X Q, Li X, et al. Highly sensitive visible light activated photoelectrochemical biosensing of organophosphate pesticide using biofunctional crossed bismuth oxyiodide flake arrays [J]. Biosens. Bioelectron.,2012,38 (1):43-49.
    [89]Pardo-Yissar V, Katz E, Wasserman J, et al. Acetylcholine esterase-labeled CdS nanoparticles on electrodes:photoelectrochemical sensing of the enzyme inhibitors [J]. J. Am. Chem. Soc.,2003,125 (3):622-623.
    [90]张霞,曹艳平,季萍.水中毒死蜱和甲基毒死蜱的GC-ECD测定方法[J].中国卫生检验杂志,2010,20(7):1656-1659.
    [91]Wdyanathan V G, Villalta P W, Sturla S, Nucleobase-dependent reactivity of a ouinone metabolite of pentachlorophenol [J]. J. Chem. Res. Toxicol.,2007,20 (6):913-919.
    [92]Zheng W, Wang X,Yu H, et al. Global trends and diversity in pentachlorophenol levels in the environment and in humans:a meta-analysis [J]. Environ. Sci. Technol.,2011,45 (11): 4668-4675.
    [93]Yuan S, Peng D H, Hu X L, et al. Bifunctional sensor of pentachlorophenol and copper ions based on nanostructured hybrid films of humic acid and exfoliated layered double hydroxide via a facile layer-by-layer assembly [J]. Anal. Chim. Acta,2013,785 (27):34-42.
    [94]Leblanc Y G, Gilbert R, Hubert J, Determination of pentachlorophenol and its oil solvent in wood pole samples by SFE and GC with postcolumn flow splitting for simultaneous detection of the species [J]. Anal. Chem.,1999,71 (1):78-85.
    [95]Mapes J P, Mckenzie K D, McClelland L R, et al. Penta RIScTM soil—A rapid, on-site screening test for pentachlorophenol in soil [J]. Bull. Environ. Contam. Toxicol.,1992,49(3): 334-341.
    [96]Reyzer M L, Brodbelt J S, Analysis of fire ant pesticides in water by solid-phase microextraction and gas chromatography/mass spectrometry or high-performance liquid chromatography/mass spectrometry [J]. Anal. Chim. Acta,2001,436(1):11-20.
    [97]Gervais G, Brosillon S, Laplanche A, et al. Ultra-pressure liquid chromatography-electrospray tandem mass spectrometry for multiresidue determination of pesticides in water [J]. J. Chromatogr. A,2008,1202(2):163-172.
    [98]Banimuslem H, Hassan A, Basova T, et al. Copper phthalocyanine/single walled carbon nanotubes hybrid thin films for pentachlorophenol detection [J]. Sens. Actuators, B,2014, 190:990-998.
    [99]Guo H Q, Fan J, Guo Y H, A fluorimetric method for the determination of trace pentachlorophenol, based on its inhibitory effect on the redox reaction between the improved Fenton reagent and rhodamine B [J]. Luminescence,2007,22 (5):407-414.
    [100]Privett B J, Shin J H, Schoenfisch M H, Electrochemical Sensors [J] Anal. Chem.,2008,80 (12):4499-4517.
    [101]Ding L, Bond A M, Zhai J P, et al. Utilization of nanoparticle labels for signal amplification in ultrasensitive electrochemical affinity biosensors:A review [J]. Anal. Chim. Acta,2013, 797:1-12.
    [102]Liu R, Wu D, Feng X, et al. Bottom-Up Fabrication of Photoluminescent Graphene Quantum Dots with Uniform Morphology [J]. J. Am. Chem. Soc.,2011,133 (39): 15221-15223.
    [103]Lu J, Yeo P S E, Gan C K, et al. Transforming C6o molecules into graphene quantum dots [J]. Nat. Nanotechnol.,2011,6:247-252.
    [104]Zhu S J, Zhang J H, Qiao C Y, et al. Strongly green-photoluminescent graphene quantum dots for bioimaging applications [J]. Chem. Commun.,2011,47 (24):6858-6860.
    [105]Dong Y Q, Li G L, Zhou N N, et al. Graphene Quantum Dot as a Green and Facile Sensor for Free Chlorine in Drinking Water [J]. Anal. Chem.,2012,84 (19):8378-8382.
    [106]Ran X, Sun H J, Pu F, et al. Ag Nanoparticle-decorated graphene quantum dots for label-free, rapid and sensitive detection of Ag+ and biothiols [J]. Chem. Commun.,2013,49 (11): 1079-1081.
    [107]Qu Z B, Zhou X G, Gu L R, et al. Boronic acid functionalized graphene quantum dots as a fluorescent probe for selective and sensitive glucose determination in microdialysate [J]. Chem. Commun.,2013,49 (84):9830-9832.
    [108]Peng J, Gao W, Gupta B K, et al. Graphene quantum dots derived from carbon fibers [J]. Nano Lett.2012,12 (2):844-849.
    [109]Liu Y, Yu Y X, Zhang W D, Carbon quantum dots-doped CdS microspheres with enhanced photocatalytic performance [J]. J. Alloys Compd.,2013,569:102-110.
    [110]Sun H J, Wu L, Gao N, et al. Improvement of Photoluminescence of Graphene Quantum Dots with a Biocompatible Photochemical Reduction Pathway and Its Bioimaging Application [J]. ACS Appl. Mater. Interfaces,2013,5 (3):1174-1179.
    [111]Wang C L, Zhang H, Lin Z, et al. Cationic Ligand Protection:A Novel Strategy for One-Pot Preparation of Narrow-Dispersed Aqueous CdS Spheres [J]. Langmuir,2009,25 (17): 10237-10242.
    [112]Dong Y Q, Shao J W, Chen C Q, et al. Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid [J]. Carbon,2012, 50 (12):4738-4743.
    [113]Guo S J, Wen D, Zhai Y M, et al. Platinum Nanoparticle Ensemble-on-Graphene Hybrid Nanosheet:One-Pot, Rapid Synthesis, and Used as New Electrode Material for Electrochemical Sensing [J]. ACS Nano,2010,4 (7):3959-3968.
    [114]Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide [J]. Carbon,2007,45 (7):1558-1565.
    [115]Chen M L, He Y J, Chen X W, et al. Quantum-Dot-Conjugated Graphene as a Probe for Simultaneous Cancer-Targeted Fluorescent Imaging, Tracking, and Monitoring Drug Delivery [J]. Bioconjugate Chem.,2013,24 (3):387-397.
    [116]Akhavan O, Choobtashani M, Ghaderi E, Protein Degradation and RNA Efflux of Viruses Photocatalyzed by Graphene-Tungsten Oxide Composite Under Visible Light Irradiation [J]. J. Phys. Chem. C,2012,116(17):9653-9659.
    [117]Hu Y W, Wang K K, Zhang Q X, et al. Decorated graphene sheets for label-free DNA impedance biosensing [J]. Biomaterials,2012,33 (4):1097-1106.
    [118]Jin Y C, Qian J, Wang K, et al. Fabrication of multifunctional magnetic FePc@Fe3Q4/reduced graphene oxide nanocomposites as biomimetic catalysts for organic peroxide sensing [J]. J. Electroanal. Chem.,2013,693:79-85.
    [119]Wang X F, Zhou Y, Xu J J, et al. Signal-on electrochemiluminescence biosensors based on CdS-carbon nanotube nanocomposite for the sensitive detection of choline and acetylcholine [J]. Adv. Funct. Mater.,2009,19 (9):1444-1455.
    [120]李小桥,官琼,王林,等.气相色谱法检测牛奶中五氯苯酚残留量[J].华南农业大学学报,2012,33(2):253-255.
    [121]Zhao W W, Yu P P, Shan Y, et al. Exciton-plasmon interactions between CdS quantum dots and Ag nanoparticles in photoelectrochemical system and its biosensing application [J]. Anal. Chem.,2012,84 (14):5892-5897.
    [122]Zhang X R, Zhao Y Q, Li S G, et al. Photoelectrochemical biosensor for detection of adenosine triphosphate in the extracts of cancer cells [J]. Chem. Commun.,2010,46 (48): 9173-9175.
    [123]Kai Y, Wang R, Zhang J D, A photoelectrochemical biosensor for o-aminophenol based on assembling of CdSe and DNA on TiO2 film electrode [J]. Biosens. Bioelectron.,2014,53: 301-304.
    [124]Tu W, Lei J, Wang P, et al. Photoelectrochemistry of free-base-porphyrin-functionalized zinc oxide nanoparticles and their applications in biosensing [J]. Chem. Eur. J.,2011,17 (34): 9440-9447.
    [125]Wang G L,Yu P P, Xu J J, et al. A Label-Free Photoelectrochemical Immunosensor Based on Water-Soluble CdS Quantum Dots [J]. J. Phys. Chem. C,2009,113 (25):11142-11148.
    [126]Schubert K, Khalid W, Yue Z, et al. Quantum-dot-modified electrode in combination with NADH-dependent dehydrogenase reactions for substrate analysis [J]. Langmuir,2010,26 (2): 1395-1400.
    [127]Zhang X R, Xu Y P, Yang Y Q, et al. A New Signal-On Photoelectrochemical Biosensor Based on a Graphene/Quantum-Dot Nanocomposite Amplified by the Dual-Quenched Effect of Bpyridinium Relay and AuNPs [J]. Chem. Eur. J.,2012,18 (51):16411-16418.
    [128]Zeng X X, Ma S S, Bao J C, et al. Using graphene-based plasmonic nanocomposites to quench energy from quantum dots for signal-on photoelectrochemical aptasensing [J]. Anal. Chem.2013,85 (24):11720-11724.
    [129]Wang G L, Xu J J, Chen H Y, et al. Label-free photoelectrochemical sensor for α-fetoprotein detection based on TiO2/CdS hybrid [J]. Biosens. Bioelectron.,2009,25 (4):791-796.
    [130]Stoll C, Kudera S, Parak W J, et al. Quantum dots on gold:Electrodes for photoswitchable cytochromec electrochemistry [J]. Small,2006,2(6):741-743.
    [131]Tang L H, Zhu Y H, Yang X L, et al. Self-assembled CNTs/CdS/dehydrogenase hybrid-based amperometric biosensor triggered by photovoltaic effect [J]. Biosens. Bioelectron.,2008,24(2):319-323.
    [132]Zhao Y, Lisdat F, Parak W J, et al. Quantum-Dot-Based Photoelectrochemical Sensors for Chemical and Biological Detection [J]. ACS Appl. Mater. Interfaces,2013,5 (8),2800-2814.
    [133]Dai H, Xu H, Lin Y, et al. A highly performing electrochemical sensor for NADH based on graphite/poly(methylmethacrylate) composite electrode [J]. Electrochem. Commun.,2009,11 (2):343-346.
    [134]Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis [J]. Chem. Rev.,1995,95 (1):69-96.
    [135]陈雁君,卢英华,闫慧芳,等.人血清中甲基对硫磷的气相色谱测定[J].中国卫生检验杂志,2005,15(1):42-47.
    [136]Liu Y, Yang S L, Ni W F, Simple, rapid and green one-step strategy to synthesis of graphene/carbon nanotubes/chitosan hybrid as solid-phase extraction for square-wave vottammetric detection of methyl parathion [J]. Colloids Surf., B,2013,108:266-270.
    [137]Du D, Ye X P, Zhang J D, et al. Cathodic electrochemical analysis of methyl parathion at bismuth-film-modified glassy carbon electrode [J]. Electrochim. Acta,2008,53 (13): 4478-4484.
    [138]Kok F N, Hasirci V, Determination of binary pesticide mixtures by an acetylcholinesterase-choline oxidase biosensor [J]. Biosens. Bioelectron.,2004,19 (7): 661-665.
    [139]Wang M, Li Z, Nano-composite ZrO2/Au film electrode for voltammetric detection of parathion [J]. Sens. Actuators B,2008,133 (2):607-612.
    [140]Li H, Wang Z H, Wu B W, et al. Rapid and sensitive detection of methyl-parathion pesticide with an electropolymerized, molecularly imprinted polymer capacitive sensor [J]. Electrochim. Acta,2012,62:319-326.
    [141]Xu S J, Liu Y, Wang T H, et al. Positive potential operation of a cathodic electrogenerated chemilum inescence immunosensor based on luminol and graphene for cancer biomarker detection [J]. Anal. Chem.,2011,83 (10):3817-3823.
    [142]Chiu M H, Wei W C, Zen J M, The role of oxygen functionalities at carbon electrode to the electrogenerated chemiluminescence of Ru(bpy)32+[J]. Electrochem.Commun.,2011,13 (6): 605-607.
    [143]Crespo G A, Mistlbergera G, Bakker E, Electrogenerated chemiluminescence triggered by electroseparation of Ru(bpy)32+ across a supported liquid membrane [J]. Chem. Commun., 2011,47 (42):11644-11646.
    [144]Wang Y, Lu J, Tang L H, et al. Graphene oxide amplified electrogenerated chemiluminescence of quantum dots and its selective sensing for glutathione from thiol-containing compounds [J]. Anal. Chem.,2009,81 (23):9710-9715.
    [145]Dennany L, Gerlach M, Carroll S O, et al. Electrochemiluminescence (ECL) sensing properties of water soluble core-shell CdSe/ZnS quantum dots/Nafion composite films [J]. J. Mater. Chem.,2011,21 (36):13984-13990.
    [146]Wang H J,Yuan R, Chai Y Q, et al. Bi-enzyme synergetic catalysis to in situ generate coreactant of peroxydisulfate solution for ultrasensitive electrochemiluminescence immunoassay [J]. Biosens. Bioelectron.,2012,37 (1):6-10.
    [147]Lei R, Xu X, X, F, et al. A method to determine quercetin by enhanced luminol electrogenerated chemiluminescence (ECL) and quercetin autoxidation [J]. Talanta,2008,75 (4):1068-1074.
    [148]Cheng Y F,Yuan R, Chai Y Q, et al. Highly sensitive luminol electrochemiluminescence immunosensor based on ZnO nanoparticles and glucose oxidase decorated grapheme for cancer biomarker detection [J]. Anal. Chim. Acta,2012,745:137-142.
    [149]Liu X Q, Niu W X, Li H J, et al. Glucose biosensor based on gold nanopartiele-catalyzed luminol electrochemiluminescence on a three-dimensional sol-gel network [J]. Electrochem. Commun.,2008,10(9):1250-1253.
    [150]Ye R H, Huang L Z, Qiu B, et al. Cathodic electrochemiluminescent behavior of luminol at nafion-nano-TiO2 modified glassy carbon electrode [J]. Luminescence,2011,26 (6): 531-535.
    [151]Chu H H, Yan J L, Tu Y F, Electrochemiluminescent detection of the hybridization of oligonucleotides using an electrode modified with nanocomposite of carbon nanotubes and gold nanoparticles [J]. Microchim Acta,2011,175 (3-4):209-216.
    [152]Zhu Y, Murali S, Stoller M D, et al. Carbon-based supercapacitors produced by activation of graphene [J]. Science,2011,332 (6037):1537-1541.
    [153]Li Y, Zhou W, Wang H, et al. An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes [J]. Nat. Nano,2012,7:394-400.
    [154]Tung V C, Chen L M, Allen M J, et al. Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors [J]. Nano Lett.,2009,9(5):1949-1955.
    [155]Dong X, Ma Y, Zhu G, Huang Y, et al. Synthesis of grapheme-carbon nanotube hybrid foam and its use as a novel three-dimensional electrode for electrochemical sensing [J]. J. Mater. Chem.,2012,22(33):17044-17048.
    [156]安镜如,林金明,陈曦,电化学发光研究及其在分析化学上的应用[J].分析化学,1991,19(11):1340-1346.
    [157]Higginbotham A L, Kosynkin D V, Sinitskii A, et al. Lower-defect graphene oxide nanoribbons from multiwalled carbon nanotubes [J]. ACS Nano,2010,4 (4):2059-2069.
    [158]Cataldo F, Compagnini G, Patane G, et al. Graphene nanoribbons produced by the oxidative unzipping of single-wall carbon nanotubes [J]. Carbon 2010,48 (9):2596-2602.
    [159]Dong H F, Ding L, Yan F, et al. The use of polyethylenimine-grafted graphene nanoribbon for cellular delivery of locked nucleic acid modified molecular beacon for recognition of microRNA[J]. Biomaterials,2011,32 (15):3875-3882.
    [160]Wang K, Dai L N, Liu Q, et al. Electrodeposition of unsubstituted iron phthalocyanine nano-structure film in a functionalized ionic liquid and its electrocatalytic and electroanalysis applications [J]. Analyst,2011,136(20):4344-4349.
    [161]Shi M J, Cui H, Enhancement and inhibition by phenols and anilines on luminol electrochemiluminescence [J]. Acta Chimica Sinica,2007,65 (22):2555-2562.
    [162]McGarvey B D, High-performance liquid chromatographic methods for the determination of N-methylcarbamate pesticides in water, soil, plants and air [J]. J. Chromatogr. A,1993,642 (1-2):89-105.
    [163]Nunesa G S, Marcob M P, Ribeiroc M L, et al. Validation of an immunoassay method for the determination of traces of carbaryl in vegetable and fruit extracts by liquid chromatography with photodiode array and mass spectrometric detection [J]. J. Chromatogr. A,1998,823 (1-2):109-120.
    [164]Li Z Y, Wang M, Amperometry for pesticide residues [J]. Prog. Chem.,2007,19 (10): 1585-1591.
    [165]Walz I, Schwack W, Cutinase inhibition by means of insecticidal organophosphates and carbamates [J]. Eur. Food Res. Technol.,2007,225 (3-4):593-601.
    [166]Karube I, Nomura Y, Enzyme sensors for environmental analysis [J]. J. Mol. Catal. B: Enzym.,2000,10(1-3):177-181.
    [167]Lin S, Liu C C, Chou T C, Amperometric acetylcholine sensor catalyzed by nickel anode electrode [J]. Biosens. Bioelectron.,2004,20(1):9-14.
    [168]LiX H, Xie Z H, Min H, et al. Development of quantum dots modified acetylcholinesterase biosensor for the detection of trichlorfon [J]. Electroanalysis,2006,18 (22),2163-2167.
    [169]Du D, Wang M H, Cai J, et al. One-step synthesis of multiwalled carbon nanotubes-gold nanocomposites for fabricating amperometric acetylcholinesterase biosensor [J]. Sens. Actuators B,2010,143 (2):524-529.
    [170]Chauhan N, Pundir C S, An amperometric biosensor based on acetylcholinesterase immobilized onto iron oxide nanoparticles/multi-walled carbon nanotubes modified gold electrode for measurement of organophosphorus insecticides [J]. Anal. Chim. Acta,2011,701 (1):66-74.
    [171]Chauhan N, Pundir C S, An amperometric acetylcholinesterase sensor based on Fe3O4 nanoparticle/muki-walled carbon nanotube-modified ITO-coated glass plate for the detection of pesticides [J]. Electrochim. Acta,2012,67:79-86.
    [172]Razmin H, Mohammad-Rezaei R, Graphene quantum dots as a new substrate for immobilization and direct electrochemistry of glucose oxidase:Application to sensitive glucose determination [J]. Biosens. Bioelectron.,2013,41:498-504.
    [173]Kamin R A, Wilson G S. Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer [J]. Anal. Chem.,1980,52 (8): 1198-1205.
    [174]Hassan M A, Abdelsayed V, Rahman S A E, et al. Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media [J]. J. Mater. Chem.,2009,19 (23):3832-3837.
    [175]Hong W J, Bai H, Xu Y X, et al. Preparation of gold nanoparticle/graphene composites with controlled weight contents and their application in biosensors [J]. J. Phys. Chem. C,2010, 114 (4):1822-1826.
    [176]He Y, Sheng Q, Zheng J, et al. Magnetite-graphene for the direct electrochemistry of hemoglobin and its biosensing application [J]. Electrochim. Acta,2011,56 (5):2471-2476.
    [177]Li L M, Du Z F, Liu S, et al. A novel nonenzymatic hydrogen peroxide sensor based on MnO2graphene oxide nanocomposite [J]. Talanta,2010,82 (5):1637-1641.
    [178]Lu Z S, Guo C X, Yang H B, et al. One-step aqueous synthesis of graphene-CdTe quantum dot-composed nanosheet and its enhanced photoresponses [J]. J. Colloid Interface Sci.,2011, 353 (2):588-592.
    [179]Xie Z X, Chen K Q, Duan W H, Thermal transport by phonons in zigzag graphene nanoribbons with structural defects [J]. J. Phys.:Condens. Matter.,2011,23 (31):315-302.
    [180]Sun C L, Chang C T, Lee H H, et al. Microwave-assisted synthesis of a core-shell MWCNT/GONR heterostructure for the electrochemical detection of ascorbic acid, dopamine, and uric acid [J]. ACS Nano,2011,5 (10):7788-7795.
    [181]Valentini F, Romanazzo D, Carbone M, et al. Modified screen-printed electrodes based on oxidized graphene nanoribbons for the selective electrochemical detection of several molecules [J]. Electroanalysis,2012,24(4):872-881.
    [182]Beecroft L L, Ober C K. Nanocomposite materials for optical applications [J]. Chem. Mater. 1997,9(6):1302-1317.
    [183]Josephson L, Tung C H, Moore A, et al. High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates [J]. Bioconj. Chem.1999,10(2):186-191.
    [184]Cheng F Y, Su C H, Yang Y S, et al. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications [J]. Biomaterials,2005,26(18):729-738.
    [185]Cao D, He P, Hu N, Electrochemical biosensors utilizing electron transfer in heme proteins immobilized on Fe3O4 nanoparticles [J]. Analyst,2003,128(10):1268-1274.
    [186]Kaushik A, Solanki P R, Ansari A A, et al. Iron oxide-chitosan nanobiocomposite for urea sensor [J]. Sens. Actuators, B,2009,138 (2):572-580.
    [187]Rawal R, Chawla S, Pundir C S. An electrochemical sulfite biosensor based on gold coated magnetic nanoparticles modified gold electrode [J]. Biosens. Bioelectron.,2012,31 (1): 144-150.
    [188]Hong R Y, Zhang S Z, Di G Q, et al. Preparation, characterization and application of Fe3O4/ZnO core/shell magnetic nanoparticles [J]. Mater. Res. Bull.,2008,43 (8-9): 2457-2468.
    [189]Liu Z, Wang J, Xie D H et al. Polyaniline-coated Fe3O4 nanoparticle-carbon-nanotube composite and its application in electrochemical biosensing [J]. Small,2008,4(4):462-466.
    [190]Kruusma J, Mould N, Jurkschat K et al. Single walled carbon nanotubes contain residual iron oxide impurities which can dominate their electrochemical activity [J]. Electrochem. Commun.,2007,9 (9):2330-2333.
    [191]Kassaee M Z, Motamedi E, Majdi M. Magnetic Fe3O4-graphene oxide/polystyrene: Fabrication and characterization of a promising nanocomposite [J]. Chem. Eng. J.,2011,172: 540-549.
    [192]Sun H M, Cao L Y, Lu L E Magnetite/reduced graphene oxide nanocomposites:one step solvothermal synthesis and use as a novel platform for removal of dye pollutants [J]. Nano Res.,2011,4 (6):550-562.
    [193]Dhakate S R, Chauhan N, Sharma S, et al. The production of multi-layer graphene nanoribbons from thermally reduced unzipped multi-walled carbon nanotubes [J]. Carbon, 2011,49 (13):4170-4178.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700