用户名: 密码: 验证码:
气流床气化炉排渣系统的数值模拟和检测方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气流床煤气化技术是我国煤炭清洁、高效转化的重要途径和发展方向之一。目前,由于气流床排渣系统故障而导致气化炉下渣口堵渣和水冷壁“烧坏”等问题制约气流床气化炉长期稳定运行。因此,有必要对气流床气化炉进行深入的研究。Shell煤气化技术在当今大规模煤气化技术中具有明显的竞争力,因此本文以Shell气化炉为例,首先通过有限单元法建立气流床气化炉水冷壁的温度计算模型,考察固态渣层的厚度、渣钉长度、渣钉的导热系数、水侧对流换热系数和气化炉炉膛的温度对水冷壁温度分布的影响,揭示“以渣抗渣”的机理。其次,以声发射技术为检测手段,对排渣系统中煤灰渣粘度、渣池排出的循环水(黑水)粘度、大块渣的生成和块渣堆积高度进行较为系统的研究,期望实现排渣系统的故障预警。论文的主要工作:
     1.利用有限单元法建立气化炉水冷壁的温度分布的计算模型,分析固态渣层厚度、渣钉长度、渣钉导热系数、气化炉近壁面温度和水侧对流换热系数对气化炉水冷壁温度的影响。发现,随着固态渣层厚度增加,固态渣层和液态渣层交界面的温度升高,渣钉的温度降低,水冷管温度和金属壁面的温度基本不变;随着渣钉长度的增加,固态渣层和液态渣层交界面的温度降低,渣钉温度增加,水冷管温度和金属壁面温度基本不变;随着渣钉导热系数增加,渣钉温度降低,水冷管温度升高,金属壁面温度降低;随着水侧对流换热系数的增加,水冷管温度、金属壁面温度和渣钉温度基本不变;随着气化炉近壁面温度增加,水冷管温度、金属壁面温度和渣钉温度随之增加。
     进一步分析得到,固态渣层和液态渣层共同组成水冷壁的主要热阻,隔绝水冷管,金属壁面和渣钉与液态渣层和气化炉内部反应气体的直接接触,保证其不受气化炉内部气化反应腐蚀、不受高温烧蚀、不受熔渣磨蚀,达到“以渣抗渣”的目的;渣钉主要起到支撑固态渣层和导热的作用;
     2.建立羧甲基纤维素(CMC)—水体系的粘度预测模型,期望对液态熔渣的粘度实现在线检测。对液态流体流动产生的声信号进行快速傅里叶变换,分析发现声信号主频位移随粘度的增加而增加,进而建立煤灰渣的粘度预测模型,即f=αΔf+b,其中Δf为气化炉内声发射信号频率谱图特征峰的主频位移,α和b为拟合参数,由预测模型得到的检测结果与真实值的相关系数为0.979,平均相对偏差为5.47%,交叉验证误差均方根为0.074,验证该粘度预测模型的准确性。
     3.建立蔗糖水溶液的粘度预测模型,期望对黑水的粘度实现在线检测。对流体流动产生的声信号进行小波分析和R/S分析,发现声波特征信号频段能量随流体粘度呈现规律性的变化,以流体撞击壁面产生信号特征区域的声能量值为特征参数,建立蔗糖水溶液粘度的预测模型,由预测模型得到的检测结果与真实值的相关系数为0.970,平均相对偏差为11.9%,交叉验证误差均方根为1.228。
     4.基于声发射技术,提出气化炉内大块渣生成的判据,即当渣池壁面处声信号的能量和方差出现突变时,即能量E>1.5E0,方差S>1.2S0,表明此时气化炉内有大块渣的生成。以水-玻璃珠体系为例,与目测法相比,声发射技术检测大块渣生成时刻的结果最大误差不超过2s,表明该方法能比较好的检测气化炉内大块渣生成。
     5.利用声发射技术,基于气化炉壁面产生声发射信号的机理,结合能量、方差和频谱分析等处理手段,揭示声波信号特征频段能量沿渣池高度的规律性变化,提出声波法测量渣池块渣堆积高度的方法,即声信号的特征频度能量值的第一次发生阶跃变化所对应的测量高度即为块渣堆积高度。以水-玻璃珠体系,声发射技术检测块渣堆积高度的结果与目测法的结果平均相对误差为3.94%,表明该方法能较好地检测渣池的块渣堆积高度。
The entrained flow coal gasification technology become one of the important means and directions in clean coal and coal conversion technology in our country. Blocking slag and water wall "burn out" by failure of slag discharge restrict long term stable operation of entrained flow gasifier. So it is necessary to research into the entrained flow gasifier. In today's large-scale coal gasification technology shell coal gasification technology has significant competitive. Therefore this article take shell coal gasification technology as the example, Firstly, an entrained flow gasifier wall model is established by finite element method. The effect of the thickness of solid slag, slag nail length, the thermal conductivity of slag nail, the water-side heat transfer coefficient and the temperature of the gasifier furnace on temperature distribution were investigated, to study the working principle of "the slag resists the slag". Secondly, make a relatively systemic research about the coal-ash viscosity, black water (circulating water from slag pool), criterion of big slag generation and stack height of slag, using acoustic emission (AE), expectation early-warning of Fault in the gasifier. The innovative results can be summarized as follows:
     1. An entrained flow gasifier wall temperature distribution model is established by finite element method, the effect of the thickness of solid slag, slag nail length, the thermal conductivity of slag nail, the water-side heat transfer coefficient and the temperature of the gasifier furnace on temperature distribution were investigated. When the thickness of solid slag increases, the temperature at the interface between solid slag and liquid slag increases, the temperature of slag nail decreases, the temperature of water cooled tube and metal wall unchanged; when slag nail length increases, the temperature at the interface between solid slag and liquid slag decreases, the temperature of slag nail increases, the temperature of water cooled tube and metal wall unchanged; when the thermal conductivity of slag nail increases, the temperature of slag nail decreases, the temperature of water cooled tube increases, the temperature of metal wall decreases; when the water-side heat transfer coefficient increases, the temperature of water cooled tube, metal wall and slag nail increases; when the temperature of the gasifier furnace increases, the temperature of water cooled tube metal wall and slag nail unchanged.
     According to results, solid slag and liquid slag comprise the main thermal resistance of water wall, seclude water cooled tube, metal wall and slag nail from high temperature gas in the gasifier, ensure them not to be high temperature corrosion, high temperature corrosion ablative and high temperature fretting corrosion, to achieve "the slag resists the slag".
     2. The viscosity prediction models for Carboxymethylcellulose(CMC)-water system are obtained, desire to on-line inspection for viscosity of liquid slag. A characteristic frequency band of acoustic emission (AE) signals, was obtained by using wavelet transform. Then it was observed that the energy of AE signals at dominant frequency changed regularly with increasing fluid viscosity. A new method for building prediction model of viscosity was presented based on this regular behavior, that isμ=aΔf+b, whichΔfis displacement of dominant frequency, a and b is fitting parameters, this new method show that the correlation coefficient(r), average relative deviation (ARD) and root mean square error of cross validation (RMSECV) between actual viscosity and predictive values obtained by prediction model, were 0.979, 5.47% and 0.074, respectively. It is concluded that multi-scale analysis of AE is feasible for predicting fluid viscosity.
     3. The viscosity prediction models for sucrose-water system are obtained, desire to on-line inspection for viscosity of circulating water from slag pool. A characteristic frequency band of acoustic emission (AE) signals was obtained by using wavelet transform and Hurst analysis. Then it was observed that the energy of AE signals at different frequencies changed regularly with increasing black water viscosity. A new method for building prediction model of black water viscosity was presented based on this regular behavior. This new method was verified by the aqueous sucrose solutions system in a stirred vessel, which showed that the correlation coefficient(r), average relative deviation (ARD) and root mean square error of cross validation (RMSECV) between actual viscosity and predictive values obtained by prediction model, were 0.970,11.9% and 1.228. respectively. It is concluded that multi-scale analysis of AE is feasible for predicting black water viscosity.
     4. A criterion for the generation of large slag is presented based on acoustic emission (AE), namely the curve of energy and variance appears spike means that the generation of large slag, namely, energy E>1.5Eo, variance S>1.2S0, the average absolute relative deviation (AARD) is 0.34% when compared with ones by the method of visual observation. So this criterion cans detection the generation of large slag.
     5. A characteristic frequency band of acoustic emission (AE) signals, which represented the impact of the slag on the wall, was obtained by using wavelet transform and Hurst analysis. Then it was observed that the energy of AE signals at different frequencies changed regularly with increasing the height of slag pool, namely the height of the first step change in the characteristic energy curve is the stack height. Take water-glass beads for example, the average absolute relative deviation (AARD) is 3.94% when compared with ones by the method of visual observation. So this criterion cans detection the stack height.
引文
[1]Higman C., Van der Burgt M. Gasification [M]. Gulf Professional Publishing, 2003.
    [2]高恒.煤气化技术现状、发展及产业化应用[J].煤化工,2009,(01):37-39.
    [3]武利军,周静.煤气化技术进展[J].洁净煤技术,2002,8(001):31-34.
    [4]沈纲轮,宋世权.煤气化技术现状和展望[J].上海煤气,2009,(01):1-5+18.
    [5]田红,蔡九菊,王爱华,王连勇,刘汉桥.固定床煤气化过程机理模型综述[J].工业加热,2005,34(2):1-4.
    [6]田红,蔡九菊,王爱华,王连勇,刘汉桥.固定床煤气化过程机理模型综述[J].工业加热,2005,(02):1-4.
    [7]乌晓江.高灰熔点煤高温、加压气流床气化实验研究与数值模拟[D].上海理工大学,2007.
    [8]黄戒介,房倚天,王洋.现代煤气化技术的开发与进展[J].燃料化学学报,2002,(05):385-391.
    [9]武利军,周静,刘璐,李爽凯.煤气化技术进展[J].洁净煤技术,2002,(01):31-34.
    [10]许世森,张东亮,任永强.大规模煤气化技术.2006,北京:化学工业出版社.
    [11]夏鲲鹏,陈汉平,王贤华,张世红,高斌,刘德昌.气流床煤气化技术的现状及发展[J].煤炭转化,2005,28(004):69-73.
    [12]Fixed and entrained flow gasifiers-examples [J]. Oil Gas-European Magazine, 2009,35(1):31-32.
    [13]Slezak A., Kuhlman J. M., Shadle L. J., Spenik J., Shi S. P. Cfd simulation of entrained-flow coal gasification:Coal particle density/size fraction effects [J]. Powder Technology,2010,203(1):98-108.
    [14]于广锁牛苗任梁钦锋于遵宏.气流床水煤浆气化技术的应用现状及开发进展[J].煤化工,2004,(03).
    [15]徐京磐,鲍礼堂.流化床和气流床气化技术综述(上) [J].小氮肥设计技术,2002,23(1):1]-22.
    [16]牛苗任于广锁马波于遵宏.气流床干煤粉气化的技术进展[J].煤化工,2004,(01).
    [17]戢绪国.Shell干粉气化技术综述[J].全国煤气化技术通讯,2007,5:24-28.
    [18]Zheng L. G., Furinsky E. Comparison of shell, texaco, bgl and krw gasifiers as part of igcc plant computer simulations [J]. Energy Conversion and Management, 2005,46(11-12):1767-1779.
    [19]Linke A., Vogt E. V. Shell-koppers entrained flow pressure gasification of coal [J]. Chemie Ingenieur Technik,1980,52(9):742-745.
    [20]亢万忠,李晓黎.壳牌粉煤气化技术的引进与消化[J].大氮肥,2009,32(004):217-221.
    [21]汪寿建.Shell煤气化技术进展及发展趋势[J].煤化工,2004,32(1).
    [22]Yun Y., Yoo Y. D. Comparison of syngas and slag from three different scale gasifiers using australian drayton coal [J]. Journal of Industrial and Engineering Chemistry,2005,11(2):228-234.
    [23]张宗飞,汤连英,章卫星,赵涛.壳牌煤气化装置的运行现状与展望[J]. CHEMICAL FERTILIZER DESIGN,2010,48(3).
    [24]作者不详.壳牌煤气化在中国的应用.in 2010年中国国际煤炭大会.2010,出版者不详:中国北京.
    [25]国家能源局能源节约和科技装备司.我国引进shell煤气化装置运行情况[DB/OL]. http://chinaneast.xinhuanet.com/jszb/2009-07/09/content_17053293.htm,2009.
    [26]盛新.Shell煤气化技术及其在大化肥装置的应用[J].大氮肥,2007,(06):415-419.
    [27]张彦民,侯刘涛.壳牌气化炉垮渣事故的原因及处理[J]. CHEMICAL FERTILIZER DESIGN,2010,48(3).
    [28]林伟宁,梁钦锋,刘海峰,于广锁,龚欣.水冷壁气化炉变工况温度及热应力分析[J].化工学报,2009,(010):2568-2575.
    [29]贡文政,段合龙,梁钦锋,刘海峰,于遵宏.气流床气化炉水冷壁结渣特性的实验研究[J].煤炭转化,2006,29(004):21-24.
    [30]段志广.Shell煤气化装置运行总结[J].中氮肥,2010,(004):18-20.
    [31]郭会敏,刘红宇.壳牌气化炉渣口堵的原因及预防[J].大氮肥,2008,(05):356.
    [32]吴玉新.气流床煤气化炉数值模拟及颗粒—涡团作用建模研究[D].清华大学,2007.
    [33]苏智彬.气化炉水冷壁温度数值模拟[J].锅炉技术,2006,37(006):36-39.
    [34]盛春红.膜式水冷壁温度场分布的数值计算[J].热能动力工程,1998,13(001):61-65.
    [35]李志宏,刘文铁.膜式水冷壁壁温影响因素的数值分析[J].热能动力工程,2003,18(002):173-176.
    [36]袁宏宇,王辅臣,代正华,于遵宏.气化炉复合炉衬传热计算的有限元分析[J].煤炭学报,2004,29(B10):108-111.
    [37]袁宏宇,瞿海根,任海平,王辅臣,于遵宏.气流床气化炉熔渣沉积模拟实验研究[J].华东理工大学学报:自然科学版,2005,31(003):393-397.
    [38]徐赢,林伟宁,梁钦锋,刘海峰,于遵宏.水冷壁气化炉熔渣表面形态的几何特性[J].化工学报,2007,58(012):3122-3127.
    [39]Song W, Tang L, Zhu X, Wu Y, Zhu Z, Koyama S. Flow properties and rheology of slag from coal gasification [J]. Fuel,2010,89(7):1709-1715.
    [40]Reid WT, Cohen P. The flow characteristics of coal ash slags in the solidification range [J]. Jour. Eng. Power, Trans. ASME Series A,1944,66:83.
    [41]Watt JD, Fereday F. The flow properties of slags formed from the ashes of british coals, part 1, viscosity of homogeneous liquid slags in relation to slag composition [J]. Journal of the Institute of Fuel,1969,42:99-103.
    [42]Sage WL, McIlroy JB. Relationship of coal ash viscosity to chemical composition [J]. Combustion,1959,31(5):41-48.
    [43]Nowok JW, Hurley JP, Stanley DC. Local structure of a lignitic coal ash slag and its effect on viscosity [J]. Energy & Fuels,1993,7(6):1135-1140.
    [44]Hurley JP, Watne TM, Nowok JW. The effects of atmosphere and additives on coal slag viscosity [J]. PREPRINTS OF PAPERS-AMERICAN CHEMICAL SOCIETY DIVISION FUEL CHEMISTRY,1996,41:691-694.
    [45]刘升,郝英立.气流床气化炉壁面熔渣行为模拟[J].工程热物理学报,2009,(10):1745-1748.
    [46]牛苗任梁钦锋于广锁王辅臣于遵宏.气流床气化炉压力波动信号的r/s分析[J].燃烧科学与技术,2005,(05).
    [47]张志文,郭庆华,于广锁,于遵宏,代松涛,李兴龙.多喷嘴气化炉气体浓度及撞击火焰高度分析[J].煤炭转化,2008,(01).
    [48]许建良,代正华,李巧红,李伟锋,刘海峰,王辅臣,于遵宏.气流床气化炉内颗粒停留时间分布[J].化工学报,2008,(01).
    [49]宋文佳,唐黎华,朱学栋,吴勇强,荣用巧,朱子彬.Shell气化炉中灰渣的熔融特性与流动特性[J].化工学报,2009,(07).
    [50]廖敏,郭庆华,梁钦锋,袁海平,倪建军,于广锁.气化条件下煤灰高温物相变化及其对粘度的影响[J].中国电机工程学报,2010, v.30;No.352(17):45-50.
    [51]Browning G. J., Bryant G. W., Hurst H. J., Lucas J. A., Wall T. F. An empirical method for the prediction of coal ash slag viscosity [J]. Energy & Fuels,2003, 17(3):731-737.
    [52]Li P., Qin Q., Yu Q. B., Du W. Y. Feasibility study for the system of coal gasification by molten blast furnace slag, in Manufacturing science and engineering, pts 1-5, Jiang Z.,Zhang C. L., Editors.2010, Trans Tech Publications Ltd:Stafa-Zurich. p.2347-2351.
    [53]Simbeck D. Gasification opportunities in alberta [J]. Gasification Technologies sponsored by Alberta Government and GTC,2007.
    [54]Browning GJ, Bryant GW, Hurst HJ, Lucas JA, Wall TF. An empirical method for the prediction of coal ash slag viscosity [J]. Energy & Fuels,2003,17(3):731-737.
    [55]Bryers R.W. Fireside slagging, fouling, and high-temperature corrosion of heat-transfer surface due to impurities in steam-raising fuels [J]. Progress in Energy and Combustion Science,1996,22(1):29-120.
    [56]李小宇,李广宇,许世森,曹子栋.液态排渣煤气化炉炉内灰渣的流动和换热研究[J].中国电机工程学报,2009,(014):12-17.
    [57]李继炳,汤永新,芦涛,李寒旭.皖北刘二煤在shell气流床气化过程中熔渣形成机理初探[J].化工时刊,2009,(05):42-46.
    [58]Suganuma N., Yamada T., Taguchi M. Slag discharge condition monitoring apparatus and method for monitoring slag discharge condition.2010, US Patent App.20,100/207,785.
    [59]Suganuma N., Yamada T., Taguchi M. Slag discharge condition monitoring apparatus and method for monitoring slag discharge condition.2008, Google Patents.
    [60]张晓欢.声发射信号的多尺度分析及在固—液体系中的应用[D].浙江大学,2007.
    [61]Duncanhewitt W. C, Thompson M.4-layer theory for the acoustic shear-wave sensor in liquids incorporating interfacial slip and liquid structure [J]. Analytical Chemistry,1992,64(1):94-105.
    [62]Nagy E., Landis E. N., Davids W. G. Acoustic emission measurements and lattice simulations of micro fracture events in spruce [J]. Holzforschung,2010,64(4): 455-461.
    [63]Jakoby B. Efficient semi-numerical analysis of acoustic sensors using spectral domain methods-a review [J]. Measurement Science & Technology,2008,19(5).
    [64]Avramescu V., Bostan C, Serban B., Georgescu I., Costea S., Varachiu N., Cobianu C, Ieee. Surface acoustic wave devices and their sensing capabilities, in Cas:2009 international semiconductor conference, vols 1 and 2, proceedings. 2009, Ieee:New York. p.27-36.
    [65]Melzak K., Tsortos A., Gizeli E. Use of acoustic sensors to probe the mechanical properties of liposomes. in Methods in enzymology liposomes, pt g.2009. p. 21-41.
    [66]侯琳熙,王靖岱,阳永荣,胡晓萍.气固流化床中声发生机理及在工业装置中的应用[J].化工学报,2005,(08):1474-1478.
    [67]陈玉华,刘时风.声发射信号的谱分析和相关分析[J].无损检测, 2002,24(009):395-399.
    [68]任聪静,王靖岱,张晓欢,阳永荣.利用声发射技术测量搅拌釜的淤浆悬浮高度[J].化工学报,2008,59(006):1383-1389.
    [69]王恩元,何学秋,刘贞堂,李忠辉.煤体破裂声发射的频谱特征研究[J].煤炭学报,2004,29(003):289-292.
    [70]刘勇.燃煤流化床声发射频谱域特征分析[J].燃烧科学与技术,1999,5(003):262-269.
    [71]张艾萍,田家玉.声发射技术在高压加热器泄漏监测中的应用[J].东北电力技术,1998,(002):46-48.
    [72]李美栓,辛丽.声发射技术在氧化膜破裂监测中的应用[J].腐蚀科学与防护技术,1997,9(002):144-152.
    [73]李兆南,龚斌,林木,殷天舟.压力管道泄漏声发射信号频谱特性实验研究[J].声学技术,2007,26(003):422-426.
    [74]WR B. The uses of passive measurement of acoustic emissions from chemical engineering processes [J]. Chemical Engineering Science,2001,56(5): 1749-1767.
    [75]唐玥祺,曹翌佳,王靖岱,阳永荣,蒋斌波,廖祖维.基于振动信号分析法的催化剂积炭量测量模型[J].化工学报,2011,(01):78-84.
    [76]Li X. A brief review:Acoustic emission method for tool wear monitoring during turning [J]. International Journal of Machine Tools and Manufacture,2002,42(2): 157-165.
    [77]张平,沈功田.小波变换在声发射检测中的应用[J].无损检测,2002,24(010):436-439.
    [78]邓扬,丁幼亮,李爱群.基于小波包分析的拉索损伤声发射信号特征提取[J].振动与冲击,2010,29(006):154-158.
    [79]金鑫,施展.基于小波的声发射信号参数提取方法[J]. CHINESE JOURNAL OF SCIENTIFIC INSTRUMENT,2006,27(zl).
    [80]田增国,陈翠梅.基于小波分析的声发射信号处理[J].工业安全与环保,2002,28(008):26-27.
    [81]李光海,刘时风.基于小波分析的声发射源定位技术[J].机械工程学报,2004,40(007):136-140.
    [82]赵贵兵,阳永荣,侯琳熙.流化床声发射机理及其在故障诊断中的应用[J]. JOURNAL OF CHIEMICAL INDUSTRY AND ENGINEERING (CHINA),2001, 52(11).
    [83]范琳琳.声发射技术在无损检测中的应用研究[D].哈尔滨理工大学,2010.
    [84]李录平,邹新元.小波变换在声发射信号特征参数检测中的应用[J].振动与冲击,2001,20(002):67-68.
    [85]陈顺云,杨润海.小波分析在声发射资料处理中的初步应用[J].地震研究,2002,25(004):328-334.
    [86]姜晓静,张晓欢,吕淼,王靖岱,阳永荣.声信号r/s分析与环管反应器中浆液质量浓度测量[J].浙江大学学报:工学版,2008,42(004):691-696.
    [87]徐龙炳,陆蓉.R/s分析探索中国股票市场的非线性[J].预测,1999,18(002):59-62.
    [88]卢艳,徐建华.中国区域经济发展差异的实证研究与r/s分析[J].地域研究与开发,2002,21(003):60-66.
    [89]Honig P. Principles of sugar technology. Vol. Ⅰⅱ [J]. Principles of sugar technology. Vol. Ⅲ.,1963.
    [90]王宏禹.非平稳随机信号分析与处理[J].1999.
    [91]孟凡卉.R/s分析[J].科技信息(学术研究),2008,19.
    [92]李仲来.煤气化技术综述[J].小氮肥设计技术,2002,(03):7-17.
    [93]许波.德士古煤气化装置运行问题探讨[J].煤化工,1999,(004):34-37.
    [94]马忠辉,孙秦,王小军,杨勇.热防护系统多层隔热结构传热分析及性能研究[J].宇航学报,2003,24(005):543-546.
    [95]李辉平,赵国群,牛山廷,栾贻国.基于有限元和最优化方法的淬火冷却过程反传热分析[J].金属学报,2005,41(002):167-172.
    [96]Seggiani M. Modelling and simulation of time varying slag flow in a prenflo entrained-flow gasifier [J]. Fuel,1998,77(14):1611-1621.
    [97]于广锁,牛苗任,王亦飞,梁钦锋,于遵宏.气流床煤气化的技术现状和发展趋势[J].现代化工,2004,(05):23-26.
    [98]Halstensen M., Esbensen K. New developments in acoustic chemometric prediction of particle size distribution-'the problem is the solution'[J]. Journal of Chemometrics,2000,14(5-6):463-481.
    [99]Bai D., Issangya AS, Grace JR. Characteristics of gas-fluidized beds in different flow regimes [J]. Industrial & Engineering Chemistry Research,1999,38(3): 803-811.
    [100]侯沛.Shell气化炉的工艺特点及现存问题[J]. MANAGEMENT,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700