用户名: 密码: 验证码:
基于声发射信号的集成建模技术及其在颗粒检测中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在气固流化床反应器中,流化床层的传递特性参数、反应效果与流化状态均受到流化床内颗粒的性质及运动状态的影响,而颗粒的性质又是随着反应过程的进行而变化的,在一些特殊的合成反应过程中,床层内物料的粒度、料层高度的波动会严重影响反应进程,因而研究流化床反应器的流体力学行为并实现物料特征参数的在线检测有着非常重要的意义。类似地,搅拌釜式反应器也是化工过程最常用的设备,很多化学产品如颗粒型过碳酸钠等均是在间歇釜式反应器中合成得到的。这类反应过程的显著特点就是反应器内部的物料特征,如颗粒的粒度或者物料的浓度,均会随着时间的推移而不断地发生变化,而目前的传统方法尚难以对这种动态变化的颗粒粒度与物料浓度进行在线测量。
     利用被动声发射信号检测反应器内物料的特征参数具有检测灵敏、安全高效、不侵入流场、实时在线的优点。本文以声发射信号作为测量流化床或搅拌釜内物料特征参数的媒介,通过小波或小波包对声发射信号进行时频多尺度分析,由分解结果构建一种多元自变量的模式,采用一些现代的数据处理方法和建模技术,为化工过程的一些物理量,如物料的粒度、固含率(也称为浓度,下同)建立软测量模型。应用这些模型,可以通过声发射信号,实现对流化床或搅拌釜内物料粒度或浓度的软测量,算法不仅明确,而且精度高,具有重要的学术意义和应用价值。具体开展了以下几个方面的研究工作,并取得了相应的成果。
     1)系统回顾了颗粒特征参数的测量方法,声发射技术用于颗粒特征参数检测的现状及其在化工过程中的研究进展,声发射信号的处理方法。
     2)介绍了小波分析和小波包分析的基本理论,并应用相关理论实现对声发射信号的多尺度分解与重构。讨论了声发射信号的小波及小波包去噪算法、最优小波包分解等信号处理技术。介绍了现代集成建模技术,并以声发射信号为媒介,用于检测流化床或搅拌釜内颗粒的特征参数。
     3)通过小波分析、主成分分析和神经网络,建立了声发射信号与流化床颗粒平均粒度的量化关系。将采集到的声发射信号进行小波分析(waveletanalysis,WLA)或小波包分析(waveletpacket analysis,WLPA),获得低频细节信号与高频细节信号的能量,构建能量模式。主成分分析(Principal ComponentsAnalysis,PCA)用于消除变量之间的复相关性,并可减少变量个数,然后以得到的主成分作为神经网络的输入,以颗粒平均粒度作为网络的输出,建立回归的多层前向神经网络(Multi-Layer Feed Forward Neural Network,MLFN)模型,并讨论了影响模型精度的一些影响因素。实验结果表明,所建立的基于Sym8小波分解与主成分分析的多层前向神经网络(Sym8 WLA-PCA-MLFN)模型能实现对颗粒粒度的软测量,精度很高。
     对声发射信号用Haar小波包二尺度分解,得到四维能量模式。进而建立基于Haar小波包分解的径向基神经网络(Radical Base Function Neural Network)模型(Haar WLPA-RBFN)或者与主成分分析集成的径向基神经网络模型(HaarWLPA-PCA-RBFN),二种模型都能取得较好的计算精度。所采用的正则化RBFN模型构造方便,只需要确定一个参数即可。
     4)建立了利用声发射信号对搅拌釜内颗粒粒度进行分类的识别模型,首先对声发射信号用sym2小波包二尺度分解,以细节信号的能量构造模式样本,实施标准差标准化后用于判别分析,以逐步判别分析方法和马氏统计量对变量进行检验和筛选。所用判别分析方法有贝叶斯(Bayes)方法和马氏距离(Mahalanobis distance,MDis)方法。在搅拌釜转速与浓度一定的条件下,所建立的Sym2 WLPA-Bayes或Sym2 WLPA-MDis模型可根据声发射信号,对搅拌釜内的物料粒度实现正确的分类。
     在转速与物料的粒度组成一定条件下,应用该模型也可以正确地对釜内物料浓度进行分类。
     5)提出Sym2 WLPA-PCA-LSSVM的模型,用于多种粒度、多种物料浓度条件下,根据声发射信号对搅拌釜内物料浓度或粒度分类。讨论了预报精度的一些影响因素。所提出的Sym2 WLPA-PCA-LSSVM的分类模型,应用于搅拌釜内物料浓度与粒度分类时,其预报与自检精度均优于Sym2 WLPA-PCA-MDis判别分析法。
     Sym2 WLPA-PCA-LSSVM模型也可以用于流化床粒度检测,预报结果也具有很高的精确度。
     基于LSSVM的模型适合于个体数量较小的样本,并且不存在神经网络的过拟合与欠学习问题,具有较好的应用前景。
     6)对缺少先验知识的数据集,常采用聚类分析,进行前导性研究,本章对不同条件下的声发射信号数据进行了聚类分析,从中得到一些颇有意义的启示。例如,在物料浓度与其它工艺参数一定的条件下,声发射信号能量模式的空间分布结构按平均粒度清晰地聚类,说明可以用一般的统计方法建立声发射信号能量模式与颗粒平均粒度之间的分类模型。
     采用Sym2小波包对声发射信号进行二尺度分解,从细节信号求出标准化的能量模式,谱系聚类结果表明,在浓度一定条件下,能量模式与搅拌釜内物料粒度有较好的对应关系。类似地,粒度一定时,聚类结果也能近似地反映出物料的浓度类别。
     针对两个相邻粒度范围之间没有清晰的分割边界,以及FCM聚类算法容易收敛到局部极小,提出Sym2 WLPA-GA-FCM聚类算法,应用于搅拌釜声发射信号聚类分析,在粒度组成不变或浓度一定的条件下,基于GA-FCM的聚类分析结果能较好地反映声发射信号个体的类属。
     无论是谱系聚类还是GA-FCM算法,在对多种浓度与多种粒度的声发射信号进行聚类分析时,聚类结果难以反映声发射信号个体的实际浓度类属,表明统计分析方法难以由声发射信号能量模式建立釜内物料浓度的分类模型。
Hydrodynamics parameters of fluidization, behaviour of reaction and properties in fluidized bed reactors are strongly affected by the movement and characters of the particles. And the characters of the particles would change with the development of reaction process. Fluctuation of the layer height and the particle size has strongly effect on some buildingup reactions. It is therefore vital important to measure parameters on line and study on the hydromechanical behavior of the fluidized bed. Besides, batch stirrred-tank reactors are also common-used facility for synthesizing chemicals such as granular sodium percarbonate.The marked characteristic of these reaction processes is that the the characteristic parameters can not remain stationary, it would change dynamically according to the reaction conditions. Until now, it is still a challenge task to measure the particle size or concentration of such dynamic system on line by traditional method.
     To measure the characteristic parameters by passive acoustic emission (AE) signals is a novel measuring technology due to its sensitive, environmental security, non-contact, non-invasive and real-time online features.This dissertation centered on how to measure the average particle size or solid concentration(also named as concentration) by asessing the AE signals that originated from the fluidized bed or stirring vessel. The AE signals were firstly decomposed by wavelet (or wavelet packet). Energies had been extracted from the details and approximations of AE signals. Soft sensing model employecd with modern data processing and modeling technology had finally been established for determining parameters such as the average particle size in a fluidized bed or concentration in a stirring vessel. These algorithms were not only unambiguous but also achieved high accuracy. There are significant applied cost and technical value to measure the particle size or concentration by AE signals by employing these soft sensing models. The dissertation centered on the following points and achieved corresponding achievements:
     1) Particle size measuring technology had been reviewed. The state of the arts of measuring characteristic parameters by AE signals as well as the processing method for AE signals had been discussed.
     2) Theory on wavelet or waveletpacket analysis as well as AE signal decomposing, denoising and reconstructing had been introduced. Algorithm on how to denoise AE signals by classic wavelet or wavepacket had also been discussed. State of the ats of modern modeling technique and its application in characteristic parameters determining by AE signals had been reviewed.
     3) Average particle size measuring technology in a model fluidized bed by passive AE signals had been proposed by principal component analysis, neural networks and wavelet (wavepacket) decomposing. The relationship between acoustic emission signals and average particle size had been established. The AE signals originated by various particle sizes were decomposed by wavelet analysis (WLA) or wavepacket analysis (WLPA). Energies, the summations of absolute wavelet coefficients of detail signals and approximation signals, were used as recognition pattern. Principal components analysis (PCA) had been used to eliminate the complex relativity and the number of variables. A multi-layer feed forward neural network (MLFN) for regression had been established, in which the principal components were used as inputs of the neural networks and the average particle size was used as output. Factors such as the type of the wavelet or the decomposed level that influence on the prediction accuracy had been investigated. The results showed that the Sym8 WLA-PCA-MLFN model achieved high accuracy on average particle size regression by acoustic emission signals.
     Four-dimensional energy pattern had been finally obtained after the original AE signals had been 2-level decomposed by Haar waveletpacket. Both the radical base function neural network based on Haar waveletpacket analysis and principal components analysis (Haar WLPA-PCA- RBFN) and the Haar WLPA-RBFN model achieved high accuracy when they were used to predict the average particle size in a model fluidized bed. The regularization radical base neural networks can be constructed easily due to only one parameter is needed.
     4) Models had been propounded for classifying average particle size in a stirring vessel by acoustic emission signals. The AE signals had been 2-level decomposed by Sym2 WLP. Standardized energy pattern had been obtained after the absolute coefficients of the detail signals were summed. The variables had been selected and verified by stepwise discriminate analysis and mahalanobis statistic. The Sym2 WLPA-Bayes model or the Sym2 WLPA-MDis model achieved high accuracy when they were used to classify the average particle size in a stirring vessel according to the AE signals on condition that the concentration and rotating rate remained changeless.
     It could also be used to predict the concentration of a stirring vessel on condition that the rotating speed and the average particle size remained changless.
     5) A Sym2 WLPA-PCA-LSSVM (least square support vectors machine) model had been proposed for classifying the average particle sizes or concentrations according to the AE signals originated from multi-concentrations and multi-particle sizes of a stirring vessel. Factors that influence on the precision had been discussed. The accuracy of prediction as well as validation of this Sym2 WLPA-PCA-LSSVM model is superior to discriminant analysis model of the Sym2 WLPA-PCA-MDis.
     The Sym2 WLPA-PCA-LSSVM model could also achieve high accuracy when it was applied to measure the average particle size of the fluidized bed.
     The LSSVM model is suitable even if the number of the individual of a training set is not large enough. It had no bearing up on the problem of "overfitting" or "lack of study".
     6) On condition that the relationship between AE signals and concentration or average particle size in a stirring vessel was unclear, Cluster analysis was often needed to the datasets that lack of prior knowledge. Meaningful revelations had been obtained through cluster analysis. For example, there was clear cluster structure between average particle size and energy pattern of AE signals on condition that the concentration and other parameters remain changeless. Statistical method was therefore suitable for relating AE signals and average particle size in a stirring vessel.
     AE signals had been firstly 2-level decomposed by waveletpacket of Sym2, standard energies obtained from the detail signals were used for cluster analysis. Results of hierarchical clustering showed there was good relationship between energies and the average particle sizes on condition that the concentration remained changeless. Similarly, Results of hierarchical clustering also indicated that the energies had relationship with the concentrations if the average particle size and other parameters remained changeless.
     There wasn't distinguishable boundary between two adjacent average particle sizes, and the FCM algorithm often converged to local minima, A Sym2 WLPA-GA-FCM algorithm had been proposed for clustering AE signals. Clustering results based on GA-FCM algorithm were in agreement with practical class if the average particle size or the concentration remained changeless.
     Neither hierarchical clustering nor GA-FCM clustering analysis showed there was clear relationship between the AE signals and the concentrations if the AE signals had been originated from multi-concentration and multi-particle size. This indicated that the relationship between the AE signals and the concentrations could not be classified by statistical methods.
引文
[1]胡松青,李琳,郭祀远,蔡妙颜,现代颗粒粒度测量技术,现代化工,2002,22(1):58-61
    [2]陈甘棠,王樟茂,多相流反应工程,杭州:浙江大学出版社,1996,1-57
    [3]侯琳熙,声波测量和流化床聚合反应器多尺度结构的研究,浙江大学博士学位论文,杭州:浙江大学,2005
    [4]http://baike.baidu.com/view/206038.htm
    [5]Celis M T,Forgiarini A,Bricennoc M I,Luis H.Garcia-Rubiob,et.al.,Spectroscopy measurements for determination of polymer particle size distribution,Colloids and Surfaces A:Physicochemical and Engineering Aspects,2008,331,91-96.
    [6]Kail N,Marquardt W,Briesen H,Estimation of particle size distributions from focused beam reflectance measurements based on an optical model,Chemical Engineering Science 2009,64:984-1000
    [7]Greaves D,Boxall J,Mulligan J,et.al.Measuring the particle size of a known distribution using the focused beam reflectance measurement technique,Chemical Engineering Science,2008,63,5410-5419
    [8]Schneider C L,Neumann R,Souza A S,Determination of the distribution of size of irregularly shaped particles from laser diffractometer measurements,Int.J.Miner.Process.2007,82:30-40
    [9]Choia H,Leea W,Kimb S,et.al.Optimum refractive index of poly-component particulate systems for measurement of particle size distribution by laser diffraction method analyzer,Materials Chemistry and Physics,2009,117,18-22.
    [10]Ziemann P J.Particle mass and size measurement using mass spectrometry.Trends in Analytical Chemistry,1998,17(1):322-328
    [11]曾凡,胡永平,矿物加工颗粒学,徐州:中国矿业大学出版社,1995,45-46
    [12]Beck M.S.,Green R.G.,Plaskowski A.B.,Stott A.L.,Capacitance measurement applied to a pneumatic conveyor with very low solids loading,Measurement Science and Technology 1990,1:561-564.
    [13]Xu L,Weber A P,Kasper C,Capacitance-based concentration measurement for gas-particle system with low particles loading,Flow Measurement and Instrumentation 2000,11:185-194
    [14]林海波,孔春林,黄卫星,气固循环流化床提升管颗粒速度和浓度的测量技术,四川轻化工学院学报,2002,15(4):28-33
    [15]Shukla A.Prakash A.Ultrasonic technique to determine particle size and concentrationin slurry systems,Chemical Engineering Science 2006,61:2468-2475
    [16]Manish Ranjan,SureshDhaniyala,A novel electrical-mobility-basedi nstrument for total number concentration measurements ofultrafineparticles.Aerosol Science,2009,40:439-450
    [17]Boyd J R,Varley J,The uses of passive measurement of acoustic emissions from chemical engineering processes,Chemical Engineering Science,2001,56:1749-1767
    [18]Wentzell P D,Lee O,Wade A P.Comparison of pattern recognition descriptors for chemical acoustic emission analysis.Journal of Chemometrics,1991,5:389-403.
    [19]Wentzell P D,Wade A P.Chemical acoustic emission analysis in the frequency domain.Analytical Chemistry,1989,61,2638-2642.
    [20]Zukowski W.Acoustic e!ects during the combustion of gaseous fuels in a bubbling fuidized bed.Combustion and Flame,1999,117:629-635.
    [21]Pandit A B,Varley J,Thorpe R B,Davidson J F.Measurement of bubble size distribution:An acoustic technique.Chemical Engineering Science,1992,47(5),1079-1089.
    [22]Katherine Albion,Lauren Briens,Cedric Briens,et.al.Detection of oversized material in a hydrotransport slurry pipe using a non-invasive acoustic method,Powder Technology,2009,190:361-371
    [23]Cody G D,Goldfarb D J,Storch Jr G V,Norris A N,Particle granular temperature in gas fluidized beds,Powder Technology,1996,87(3):211-232
    [24]Cody G D,Bellows R J,Goldfarb D J,Wolf H A,Storch Jr GV.A novel non-intrusive probe of particle motion and gas generation in the feed injection zone of the feed riser of a fluidized bed catalytic cracking unit,Powder Technology,2000,110(1-2):128-142
    [25]Hiroyuki Tsujimoto,Toyokazu Yokoyama,Huang C C,et.al.Monitoring particle fluidization in a fluidized bed granulator with an acoustic emission sens-or,Powder technology,2000,113(1):88-96
    [26]李宇龙,模式识别在反应器内颗粒粒径声波法检测中的应用研究,浙江大学硕士学位论文,浙江杭州,2007
    [27]Matero S,Poutiainen S,Leskinen J,et.al.The feasibility of using acoustic emissions for monitoring of fluidized bed granulation,Chemometrics and Intelligent Laboratory systems,2009,97:75-81
    [28]黄正梁,王靖岱,阳永荣,声波的多尺度分解与搅拌釜中浆液浓度的测量,化工学报,2006,157(19):2062-2067
    [29]陈德钊,多元数据处理,北京:化学工业出版社,1998
    [1]Belchamber R M,Betteridge D,CoIlihs M P et.al.Quantitative Study of Acoustic Emission from a Model Chemical Process,Anal.Chem.1986,58,7873-7877
    [2]Wade A P,Sibbal D B,Bailey M N,et al.An analyticla perspective on acoustic emission,Analytical Chemistry,1991,63(9) 497-507
    [3]Wentzell P D,Wade A P.Chemical Acoustic Emission Analysis in the Frequency Domain,Anal.Chem.1989,61(23):2638-2642
    [4]Tsuguo Sawada,Yohichi Gohshi.Acoustic Emission from Phase Transition of Some Chemicals,Anal.Chem.1985,57(8):1743-1745
    [5]Hansmann H.Application of Acoustic Emission Analysis on Adhesion and Structural Problems of Organic and Metallic Coatings,Ind.Eng.Chem.Prod.Res.Dev.1985,24(2):252-257
    [6]Shiro Sbimada,Yuji Katsuda,Michio Inagaki,Phase Transition of KNO_3 Monitored by Acoustic Emission Technique and the Healing Effect on the γ→αTransition,J.Phys.Chem.1993,97(34):8803-8807
    [7]Muthupandian Ashokkumar,Mark Hodnett,Bajram Zeqiri,et.al.Acoustic Emission Spectra from 515 kHz Cavitation in Aqueous Solutions Containing Surface-Active Solutes,J.AM.CHEM.SOC.2007,129:2250-2258
    [8]王靖岱,蒋斌波,阳永荣等,声波的多尺度解析与气固流化床故障检测,化工学报,2005,57(7):1561-1564
    [9]Wang J,Cao Y,Jiang X,Yang Y.Agglomeration Detection by Acoustic Emission (AE) Sensors in Fluidized Beds.Ind.Eng.Chem.Res.2009,48(7),3466-3473
    [10]阳永荣,侯琳熙,王靖岱等,声波的多尺度分解与颗粒粒径分布的实验研究,自然科学进展,2005,15(3):380-384
    [11]李宇龙,模式识别在反应器内颗粒粒径声波法检测中的应用研究,浙江大学硕士学位论文,浙江杭州,2007
    [12]黄正梁,王靖岱,阳永荣,声波的多尺度分解与搅拌釜中浆液浓度的测量,化工学报,2006,57(9):2062-2067
    [13]Ren Congjing,Jiang Xiaojing,Wang Jingdai,et.al.Determination of Critical Speed for Complete Solid Suspension Using Acoustic Emission Method Based on Multiscale Analysis in Stirred Tank,Ind.Eng.Chem.Res.2008,47(15):5323-5327
    [14]曹翌佳,王靖岱,阳永荣,声波信号多尺度分解与固体颗粒质量流率的测定,化工学报,2007,58(6):1404-1409
    [15]Giordano M,Calabro A,Esposito C,et.al.An acoustic-emission characterization of the failure modes in polymer-composite materials,Composites Science and Technology 1998,58:1923-1928.
    [16]Pappas Y Z,Markopoulos Y P,Kostopoulos V,Failure mechanisms analysis of 2D carbon/carbon using acoustic emission monitoring,NDT&E International 1998,31:157-163.
    [17]Guerjouma R E,Baboux J C,Ducret D,et.al.Non-destructive evaluation of damage and failure of fiber reinforced polymer composites using ultrasonic waves and acoustic emission,Advanced Engineering Materials,2001,3:601-608.
    [18]Ativitavas N,Fowler T,Pothisiri T.Acoustic emission characteristics of pultruded fiber reinforced plastics under uniaxial tensile stress,in:Proceedings of European WG on AE,Berlin,2004,447-454.
    [19]Magalhaes A G,Moura M F,Application of acoustic emission to study creep behaviour of composite bonded lap shear joints,NDT&E International,2005,38:45-52.
    [20]Bohse J,Damage analysis of polymer matrix composites by acoustic emission testing,in:Proceedings of European WG on AE,Berlin,2004:339-348.
    [21]Kambara T,Kanai Y,Kojima T M.et.al.Acoustic emission from fast heavy-ion irradiation on solids,Nuclear Instruments and Methods in Physics Research B,2000,164-165:415-419
    [22]Zhong Cao,Bin-Feng Wang,Ke-Min Wang,et.al.Chemical acoustic emissions from gas evolution processes recorded by a piezoelectric transducer,Sensors and Actuators B 1998,50:27-37.
    [23]Menon A K,Boutaghou Z E,Time-frequency analysis of tribological systems-part Ⅰ:implementation and interpretation,Tribology International,1998,31(9):501-510
    [24]Leung A K,Chau F,Gao J,A review on applications of wavelet transform techniques chemical analysis:1989-1997,Chemometrics and Intelligent Laboratory Systems 1998,43:165-184
    [25]Joung-Man Park,Wae-Gyeong Shin,Dong-Jin Yoon.A study of interfacial aspects of epoxy-based composites reinforced with dual basalt and SiC fibres by means of the fragmentation and acoustic emission techniques,Composites Science and Technology,1999,59(3):355-370
    [26]Zhong Cao,Bin-Feng Wang,Ke-Min Wang,et.al.Chemical acoustic emissions from gas evolution processes recorded by a piezoelectric transducer,Sensors and Actuators B:Chemical,1998,50(1):27-37
    [27]Lauren Briens,Rachel Smith,Cedric Briens,Monitoring of a rotary dryer using acoust ic emissions,Powder Technology,2008,181(2):115-120
    [28]Wavelet transform of acoustic emission signals in failure of model composites,Engineering Fracture Mechanics,2002,69,(6):717-728
    [29]张平,刘时风,庚荣生,沈功田,小波变换在声发射检测中的应用,无损检测,2002,24(4):181-185
    [30]Wang X H,Zhu C M,Mao H L.et.al.Wavelet packet analysis for the propagation of acoustic emission signals across turbinerunners,NDT&E International,2009,42:42-46
    [31]龚斌,金文,李兆南等,基于小波变换的金属材料声发射特性研究,石油化工高等学校学报,2008,21(1):87-91
    [32]Ni Q Q,Iwamoto M.Wavelet transform of acoustic emission signals in failure of model composites,Engineering Fracture Mechanics,2002,69:717-728.
    [33]Hamstad M A,O'Gallagher A,Gary J.A wavelet transform applied to acoustic emission signals:part 1:source identification,Journal of Acoustic Emission 2002,20:39-61.
    [34]Piotrkowski R,Gallego A,Castro E,et.al.Ti and Cr nitride coating/steel adherence assessed by acoustic emission wavelet analysis,NDT&E International 38(2005)260-267.
    [35]Lempel A,Ziv J.On the complexity of finite sequences.IEEE T rans.Inform.Theory, 1975,22:75-81.
    [36]黄轶伦,黄海,陈伯川,复杂性在气固流化床流型识别中的应用,高校化学工程学报2004,18(4):453-458
    [37]黄春燕,陈伯川,黄轶伦,甄玲,王晓萍,气固流化床流型特性及其识别的复杂性研究,化学反应工程与工艺,2001,17(3):291-296
    [38]陈伟,洪良斌,阳永荣,戎顺熙,加压流化床中差压脉动时间序列的复杂性,化工学报,1997,48(6):746-750
    [39]林萍,王晓萍,陈伯川,黄轶伦,近似熵的性质及其在气固流化床复杂性研究中的应用,高校化学工程学报,2004,18(3):281-286
    [40]陈伯川,黄春燕,甄玲,王晓萍,气固流化床压力信号时间序列复杂性特征研究,仪器仪表学报,2003,24(3)236-240
    [41]陈伯川,黄蓓,黄春燕,甄玲,三种复杂性测度在气固流化床压力脉动中的应用,高校化学工程学报,2002,16(4):415-420
    [42]黄蓓,陈伯川,黄轶伦,算法复杂性在气固流化床动力学的多尺度分析,化工学报,2002,53(12):1270-1275
    [43]黄春燕,陈伯川,甄玲,黄轶伦,涨落复杂性在气固流化床压力信号分析中的运用,仪器仪表学报,2001,22(3),增刊,69-70
    [44]陈欣,潘凯,统计能量分析在声屏障设计中的应用,噪声与振动控制,2008,4:126-128
    [45]张娟,严谨,吴光林,结合均值导纳法的声呐腔自噪声统计能量分析,中国舰船研究,2008,3(3):42-46
    [46]Renji k,Nair P S,Narayanan S.response of a plate to diffuse acoustic field using statistical energy analysis,Journal of Sound and Vibration,2002,254(3),523-539
    [47]Renjia K,Naira P S,Narayananb S.Acoustic response behaviour of panels mounted with equipment and its prediction using statistical energy analysis,Journal of Sound and Vibration,2006,289:851-870
    [48]孙延奎,小波分析及其应用,北京:机械工业出版社,2005
    [49]Barbara Burke.The mathematical microscope:waves,wavelets,and beyond.In M.Bartusiak,et al,editor,Apositron named Priscilla,Scientific Discovery at the Frontier,chapter 7,pages 196-235,National Academy Press,Washington DC,1994
    [50]Shao X G,Leung A K M,Chau F T,Wavelet:A New Trend inChemistry,Accounts of Chemical Research,2003,36(4):276-283
    [51]Daubechies I.Ten Lectures on Wavelets,SIAM,Philadelphia,PA,1992.
    [52]文成林,周华东,多尺度估计理论及其应用,北京:清华大学出版社,2002
    [53]赵巍,多尺度系统建模、估计与融合方法研究。西安:西北大学博士学位论文。2000
    [54]崔景泰著,程正兴译,小波分析导论,西安:西安交通大学,1995
    [55]Donald B.Percival,Andrew T.Walden,时间序列的小波分析方法(英文版),北京:机械工业出版社,2004
    [56]伯罗斯(Burrus,C.S.),拉米什.戈皮那思,郭海涛,小波与小波变换导论(英文版),北京:机械工业出版社,2005
    [57]Akansu A N,Smith M J T.Subband and Wavelet Transforms,Design and applications.Kluwer Academic Publishers,Boston,1996
    [58]Beylkin G,Coifman R R,Rokhlin V.Fast wavelet transforms and numerical algoritms I.communications on pure and applied mathematics,,1991,44:141-183
    [59]Cohen A,Daubechies I,Feauveau J C.Biorthogonol bases of compactly supported wavelets.Communicatin on Pure and Applied Mathematics,1992,45:485-560
    [60]Cohen A,Daubechies I,Vail P.Wavelets on the interval and fast wavelet transforms.Applied and computational Harmonic Analysis,1993,1(1):54-81
    [61]Charles K.Chui.An Introduction to Wavelets.Academic Press,San Diego,CA,1992.1,in the series:Wavelet analysis and its applications.
    [62]Charles K.Chui.Wavelets:A tutorial in theory and Applications.Academic Press,San Diego,CA,1992.2,in the series:wavelet analysis and its Applications.
    [63]Charles K.Chui.Wavelets:A Mathematical Tool for signal Analysis.SIAM,Philadilphia,1997
    [64]Coifman R R,Meyer Y,Wickerhauser M V.Wavelet analysis and signal processing.In M.B.Ruskai et al.,editor,Wavelets and Their Applications,Jones and Barlett,Boston,1992
    [65]F.Argoul,A.Arneodo,J.Elezgaray,G.Grasseau.,Wavelet transform of fractal aggregates,Physics letters A.,1989,135:327-336
    [66]Aldroubi A,Abry P,Unser I.Construction of biorthogonal wavelets starting from any two multiresolutions,preprint,1996
    [67]Akansu A N,Haddad R A.multiresolution signal decomposition,transforms,subands,and wavelets.Academic Press,Sandiego,CA,1992
    [68]Berger J,Coifman R R,Goldberg M J.Removing noise from music using local trigonometric bases and wavelet packets.Journal of the Audio Engineering Society,1994,42(10):808-817
    [69]Coifman R R,Donoho D L.Translation-invariant de-noising.In Anestis Antoniadis,editor,Wavelets and Statistics,Springer-Verlag,to appear 1995.Springer lecture notes.
    [70]Coifman R R,Majid F.Adapted waveform Analysis and Denoising.Technical Report,Yale University,New Haven,1994
    [71]飞思科技产品研发中心,小波分析理论与matlab7实现,北京:电子工业出版社。2005
    [72]张仁辉,杜民,小波分析在信号去噪中的应用,计算机仿真,2005,22(8):69-72
    [73]刘冲,史仪凯,赵江海,光纤法珀声发射传感器输出信号小波分析消噪处理,2008,30(5):276-279
    [74]马丽萍,石炎福,余华瑞,小波分析及其在化工信号分析处理中的应用及展望,化工进展,2005,24(2):147-153
    [75]姜长泓,王龙山,尤文,翟宁,初明,基于平移不变小波的声发射信号去噪研究,仪器仪表学报,27(6):608-610
    [76]Poornachandra S.Wavelet-based denoising using subband dependent threshold for ECG signals,Digital Signal Processing,2008,18(1):49-55
    [77]Zhao J,Cao Z,Zhou M,SAR image denoising based on wavelet-fractal analysis,Journal of Systems Engineering and Electronics,2007,18(1):45-48
    [78]Tiwari A K,Shukla K K.Implementation of generalized cross validation based image denoising in parallel virtual machine environment,Digital Signal Process.2004,14(2)38-157
    [79]Lu X,Liu H,Kang J,Cheng J,Wavelet frequency spectrum and its application in analyzing an oscillating chemical system,Analytica Chimica Acta,2003,484:201-210
    [80]Huang Y,Liu C,Zha X,Li Y.An enhanced feature extraction model using lifting-based wavelet packet transform scheme and sampling-importance-resampling analysis,Mechanical Systems and Signal Processing,2009,23(8):2470-2487
    [81]Hsu W Y,Lin C C,Ju M S,Sun Y N.Wavelet-based fractal features with active segment selection:Application to single-trial EEG data Journal of Neuroscience Methods,2007,163(1):145-160
    [82]Ding H,Ge H,Liu J.High performance of gas identification by wavelet transform-based fast feature extraction from temperature modulated semiconductor gas sensors Sensors and Actuators B:Chemical,2005,107(2):749-755
    [83]张同华,张慧萍,晏雄,小波分析在复合材料声发射信号特征研究中的应用,玻璃钢/复合材料,2007,1:46-48
    [84]Chen H.X.,Chua P.S.K.,Lim G.H.Adaptive wavelet transform for vibration signal modelling and application in fault diagnosis of water hydraulic motor,Mechanical Systems and Signal Processing,2006,20:2022-2045
    [85]Rafiee J.,Tse P.W.,Harifi A.,Sadeghi M.H.A novel technique for selecting mother wavelet function using an intelligent fault diagnosis system,Expert Systems with Applications,2009,36,4862-4875
    [86]Nikolaou N G,Antoniadis I A,Rolling element bearing fault diagnosis using wavelet packets,NDT & E International,2002,35:197-205
    [87]Wu J D,Liu C H,An expert system for fault diagnosis in internal combustion engines using wavelet packet transform and neural network,Expert Systems with Applications,2009,36:4278-4286
    [88]Bartels M,Lin W,Nijenhuis J,et.al.Agglomeration in fluidized beds at high temperatures:Mechanisms,detection and prevention,Progress in Energy and Combustion Science,2008,34:633-666
    [89]赵贵兵,阳永荣,侯琳熙,流化床声发射机理及其在故障诊断中的应用,化工学报,2001,52(11):941-943
    [90]Johnson M.Waveform based clustering and classification of AE transients in composite laminates using principal component analysis,NDT & E International,2002,35(6):367-376.
    [91]王翰卿,颜学峰,钱锋,基于PCA.ANN组合学习方法建立PTA粒度模型,控制工程,2003,10(4):356-359
    [92]Tong F,XU X M,Luk B L,Liu K P.Evaluation of tile-wall bonding integrity based on impact acoustics and support vector machine,Sensors and Actuators A 2008,144:97-104
    [93]陈德钊,多元数据处理,北京:化学工业出版社,1998
    [94]成忠,PLSR用于化学化工建模的几个关键问题的研究,浙江大学博士学位论文,浙江:杭州,2005
    [95]Pearson T C,Cetin A E,Tewfik A H,Haft R P.Feasibility of impact-acoustic emissions for detection of damaged wheat kernels,Digital Signal Processing,2007,17(3):617-633
    [96]Bhat C,Bhat M.R.,Murthy C.R.L.,Acoustic emission characterization of failure modes in composites with ANN,Composite Structures,2003,61(3):213-220
    [97]Cheng-Chien Kuo,Artificial recognition system for defective types of transformers by acoustic emission,Expert Systems with Applications,2009,36(7):10304-10311
    [98]Yen G G,Lu H.Acoustic emission data assisted process monitoring ISA Transactions,2002,41(3):273-282
    [99]Ki-Bok Kim,Dong-Jin Yoon,Jung-Chae Jeong,Seung-Seok Lee,Determining the stress intensity factor of a material with an artificial neural network from acoustic emission measurements,NDT & E International,2004,37(6):423-429
    [100]Sasikumar T,RajendraBoopathy S,Usha K M,Vasudev E S,Failure strength prediction of unidirectional tensile coupons using acoustic emission peak amplitude and energy parameter with artificial neural networks,Composites Science and Technology,2009,69(7-8):1151-1155
    [101]Widodo A,Kim E Y,Son J D,et.al,Fault diagnosis of low speed bearing based on relevance vector machine and support vector machine Expert Systems with Applications,2009,36(3),Part 2:7252-7261
    [102]Yella S,Gupta N K,Dougherty M S.Comparison of pattern recognition techniques for the classification of impact acoustic emissions,Transportation Research Part C:Emerging Technologies,2007,15(6):345-360
    [103]Sun J,Rahman M,Wong YS,Hong G S,Multiclassification of tool wear with support vector machine by manufacturing loss consideration,International Journal of Machine Tools & Manufacture 44(2004) 1179-1187
    [104]Johnson M,Classification of AE transients based on numerical simulations of composite laminates,NDT&E International,2003,36:319-329
    [105]Marec A,Thomas J H,Guerjouma R El,Damage characterization of polymerbased composite materials:Multivariable analysis and wavelet transform for clustering acoustic emission data,Mechanical Systems and Signal Processing,2008,22:1441-1464
    [106]阳永荣,侯琳熙,杨宝柱等,中国专利,流化床反应器声波监测的装置和方法,专利号:200310113358.7
    [107]王靖岱,阳永荣,张晓欢等,中国专利,一种搅拌釜的操作参数的检测方法,专利号:200710156124.9
    [1]Mcculloch W S,Pitts W H,A logical calculus of the ideas immanent in nervous activity,Bull.Math.Biophysics,1943,5(1):115
    [2]Martin T H,Howard B D,Mark H B著,戴葵等译,神经网络设计,北京:机械工业出版社,2002
    [3]Hopfield J J,Neural Networks and Pysical Systems With Emergency Collective Comutational Abilities,Proc.Natl.Acad.Sci.USA,1982,79:2554-2558
    [4]Hopfield J J,Neurons with Graded Response Have Collective Comutational Abilities,Proc.Natl.Acad.Sci.USA,1984,81:3008-3092
    [5]王梦松,RBF神经元网络的研究及其在复杂化学信息处理中的应用,浙江大学硕士学位论文,2002
    [6]夏文文,自组织神经网络的新算法以及应用,江南大学硕士学位论文[D],无锡:江南大学,2008
    [7]Kohonen T.The self-organizing maps.Proceedings of the IEEE,1990,78(9):1464-1480
    [8]贺金戈,基于自组织神经网络的语音识别研究,桂林:广西大学,2006
    [9]易荣庆,李文辉,王铎,基于自组织神经网络的特征识别,吉林大学学报工学版,2009,39(1):148-153
    [10]韩力群,人工神经网络理论、设计及应用,北京:化学工业出版社,2007
    [11]周志华,曹存根,神经网络及其应用,北京:清华大学出版社,2004
    [12]Yao X,Evolving artificial neural networks,Proceeding of the IEEE,1999,87(9):1423-1447.
    [13]Liu Z,Wang C,Liu A,et al.,Evolving neural network using real coded genetic algorithm(GA)for multi spectral image classification,Future Generation Computer Systems,2004,20(7):1119-1129.
    [14]傅晓阳,郭晨,改进型遗传神经网络在模式分类中的应用,大连海事大学学报,2009,35(1):85-88.
    [15]Powell M J D,"Radial basis functions for multivariable interpolation:A review," in Algorithms for Approximation,Mason J C,Cox M G,Eds.Oxford,1987,143-167.
    [16]Powell M J D,"Radial basis function approximations to polynomials," in Proc.12th Biennial Numerical Analysis Conf.(Dundee),1987,223-241.
    [17]杨淑莹,模式识别与智能计算-matlab技术实现。北京:电子工业出版社,2008
    [18]Hummels D M,Ahemed W,Musavi M T.Adaptive Detection of small Sinusodial Signals in Non-Gaussian Noise using an RBF Neural Network.IEEE Trans on Neural Networks,1995,6(1):214-219
    [19]颜学峰,高维复杂模式识别的新方法,浙江大学博士学位论文,杭州:浙江大学,2002
    [20]侯琳熙,声波测量和流化床聚合反应器多尺度结构的研究,浙江大学博士学位论文,杭州:浙江大学
    [21]任聪静,舒伟杰,郑卫等,气固流化床反应器的多尺度分析方法研究,石油化工,2005,34(增刊)792-793
    [22]杨虎,马燮,陈虹,气固流化床中空隙率信号的小波分析,化学反应工程与工艺,2005:21(3)216-220
    [23]黄正梁,王靖岱,阳永荣,声波的多尺度分解与搅拌釜中浆液浓度的测量,化工学报,2006,57(9):2062-2067
    [24]阳永荣,侯琳熙,王靖岱等,声波的多尺度分解与颗粒粒径分布的实验研究,自然科学进展,2005,15(3):380-384
    [25]王靖岱,蒋斌波,阳永荣等,声波的多尺度解析与气固流化床故障检测,化工学报,2005,57(7):1561-1564
    [26]曹翌佳,王靖岱,阳永荣,声波信号多尺度分解与固体颗粒质量流率的测定,化工学报,2007,58(6):1404-1409
    [27]吉小军,施文康,张国伟,一种有效的声信号特征提取算法及应用,上海交通大学学报,2003,37(11):1732-1735
    [28]张宇波,基于信号处理的声音模式识别过程及方法研究,计算机仿真,2004,9,134-137
    [29]陈德钊,多元数据处理,北京:化学工业出版社,1998
    [30]Lu N,Wang F,Gao F,Combination Method of Principal Component and Wavelet Analysis for Multivariate Process Monitoring and Fault Diagnosis,Ind.Eng.Chem.Res.2003,42:4198-4207
    [31]Bakshi B R.Multiscale PCA with application to multivariate statistical process monitoring.AIChE J.1998,44(7):1596-1610
    [32]Nomikos P,MacGregor J F.Monitoring batch processes using multiway principal component analysis.AIChE J.1994,40:1361-1370.
    [33]Chen J,Liu K C.On-line batch process monitoring using dynamic PCA and dynamic PLS models.Chemical Engineering Science.2002.57:63-75
    [34]Wise B M,Gallagher N B.The process chemometrics approach to process monitoring and fault detection.J.Process Control,1996,6:329-335
    [35]Wachs A,Lewin D R.Improved PCA methods for process disturbance and failure identification.A.I.Ch.E.Journal,1999,45:1688-1700.
    [36]Leea D S,Parka J M,Vanrolleghem P A.Adaptive multiscale principal component analysis for on-line monitoring of a sequencing batch reactor,Journal of Biotechnology,2005,116:195-210
    [37]Misra M,Yue H H,Qin S J.Ling,C.Multivariate process monitoring and fault diagnosis by multi-scale PCA.Comput.Chem.Eng.2002,26:1281-1287.
    [38]Motard R L,Joseph B.Wavelet Applications in Chemical Engineering;Kluwer Academic Publishers:Dordrecht,The Netherlands,1994
    [39]黄华江,实用化工计算机模拟-matlab在化学工程中的应用,北京:化学工业出版社,2004
    [40]任远,白广忱,径向基神经网络在近似建模中的应用研究计算机应用,2009,29(1),115-118
    [41]Ren Y,Bai G,A RBNN based response surface construction method for mechanical systems,Proceedings of 2007 International Symposium on Computer Science and Technology.Marietta:The American Scholars Press,2007,320-324.
    [1]Giordano M,Calabro A,Esposito C,et.al.An acoustic-emission characterization of the failure modes in polymer-composite materials,Composites Science and Technology 1998,58:1923-1928.
    [2]Pappas Y Z,Markopoulos Y P,Kostopoulos V,Failure mechanisms analysis of 2D carbon/carbon using acoustic emission monitoring,NDT&E International 1998,31:157-163.
    [3]R.El Guerjouma,J.C.Baboux,D.Ducret,N.Godin,P.Guy,S.Huguet,Y.Jayet,T.Monnier,Non-destructive evaluation of damage and failure of fiber reinforced polymer composites using ultrasonic waves and acoustic emission,Advanced Engineering Materials,2001,3:601-608.
    [4]Ativitavas N,Fowler T,Pothisiri T.Acoustic emission characteristics of pultruded fiber reinforced plastics under uniaxial tensile stress,in:Proceedings of European WG on AE,Berlin,2004,447-454.
    [5]Magalhaes A G,Moura M F,Application of acoustic emission to study creep behaviour of composite bonded lap shear joints,NDT&E International,2005,38:45-52.
    [6]Calabro A,Esposito C,Lizza A,et.al.Analysis of the acoustic emission signals associated to failure modes in CFRP laminates,in:ECCM,1997,8:425-432.
    [7]Barre S,Benzeggagh M L.On the use of acoustic emission to investigate damage mechanisms in glass-fiber reinforced polypropylene,Composites Science and Technology 1994,52:369-376.
    [8]Bohse J,Damage analysis of polymer matrix composites by acoustic emission testing,in:Proceedings of European WG on AE,Berlin,2004:339-348.
    [9]杨虎,马燮,陈虹,气固流化床中空隙率信号的小波分析,化学反应工程与工艺,2005,21(3)216-~220
    [10]黄正梁,王靖岱,阳永荣,声波的多尺度分解与搅拌釜中浆液浓度的测量,化工学报,2006,57(9):2062-2067
    [1l]阳永荣,侯琳熙,王靖岱等,声波的多尺度分解与颗粒粒径分布的实验研究,自然科学进展,2005,15(3):380-384
    [12]王靖岱,,蒋斌波,阳永荣等,声波的多尺度解析与气固流化床故障检测,化工学报,2005,57(7):1561-1564
    [13]曹翌佳,王靖岱,阳永荣,声波信号多尺度分解与固体颗粒质量流率的测定,化工学报,2007,58(6):1404-1409
    [14]李宇龙,模式识别在反应器内颗粒粒径声波法检测中的应用研究,浙江大学硕士学位论文,浙江杭州,2007
    [15]Ni Q Q,Iwamoto M.Wavelet transform of acoustic emission signals in failure of model composites,Engineering Fracture Mechanics 2002,69:717-728.
    [16]Ono K,Huang Q.Pattern recognition analysis of acoustic emission signals,in:Progress in Acoustic Emission Ⅶ,The Japanese Society for NDI,1994,pp.69-78.
    [17]Ramirez-Jimenez C,Papadakis N,Reynolds N.Identification of failure modes in glass/polypropylene composites by means of the primary frequency content of the acoustic emission events,Composites Science and Technology,2004,64:1819-1827.
    [18]Ferreira D B B,Da Silva R R,Rebello J M A,Siqueira M H S.Failure mechanism characterisation in composite materials using spectral analysis and the wavelet transform of acoustic emission signals,INSIGHT 2004,46(5):282-289.
    [19]De Groot P J,Wijnen P A M,Janssen R B F.Real time frequency determination of acoustic emission for different fracture mechanisms in carbon/epoxy composites,Composites Science and Technology 1995,55:405-412.
    [20]Hamstad M A,O'Gallagher A,Gary J.A wavelet transform applied to acoustic emission signals:part 1:source identification,Journal of Acoustic Emission,2002,20:39-61.
    [21]Gallego A,Gil J F,Vico J M,et.al.Coating adherence in galvanized steel assessed by acoustic emission wavelet analysis,Scripta Materialia 52(2005)1069-1074.
    [22]Suzuki H,Kinjo T,Hayashi Y,Takemoto M,Ono K.Wavelet transform of acoustic emission signals,Journal of Acoustic Emission 1996,14:69-84.
    [23]Loutas T H,Kostopoulos V,Ramirez-Jimenez C,Pharaoh M.Damage evolution in center-holed glass/polyester composites under quasi-static loading using time/frequency analysis of acoustic emission monitored waveforms,Composites Science and Technology 2006,66:1366-1375.
    [24]Qi G,Barhorst A,Hashemi J,G.Discrete wavelet decomposition of acoustic emission signals from carbon-fiber reinforced composites,Composites Science and Technology 1997,57:389-403.
    [25]Piotrkowski R,Gallego A,Castro E,et.al.Ti and Cr nitride coating/steel adherence assessed by acoustic emission wavelet analysis,NDT&E International,2005,38:260-267.
    [26]Finette S,Beleier A,Swindel W.Breast tissue classification using diagnostic ultrasound and pattern recognition techniques:Imethods of pattern recognition,Ultra Imaging,1983,5,55-70
    [27]杨健,杨静宇,叶晖,Fisher线性鉴别分析的理论研究及其应用,自动化学报,2003,29(4):48l-493
    [28]Sierra A.High-order Fisher's discriminant analysis,Pattern Recognition,2002,35:1291-1302.
    [29]Zhao W,Nandhakumar N.Linear discriminant analysis of MPF for face Recognition.Proc.International Conference on Pattern Recognition,Brisbane,Australia,1998:185-188.
    [30]Belhumeur P N,Hespanha J P,Kriegman D J.Eigenfaces vs Fisherfaces:recognition using class specific linear projection,IEEE TPAMI,1997,19(7):711-720.
    [31]Du Q,Ren H.Real-time constrained linear discriminant analysis to target detection and classification in hyperspectral imagery,Pattern Recognition,2003,36:1-12.
    [32]Ling Y,Yin X,Bhandarkar S M.Sirface vs.Fisherface:recognition using class specific linear projection,in:Image Processing,2003.ICIP 2003.Proceedings.2003 International Conference,2003,2:887-890
    [33]刘新伟,基于核判别分析的人脸识别算法,硕士学位论文,哈尔滨:哈尔滨理工大学,2008
    [34]陈德钊,多元数据处理,北京:化学工业出版社,1998:90-123
    [351段新国,王允诚,李忠权等,应用多组逐步判别分析优选油气层,大庆石油地质与开发,2007,26(1):68-71
    [361于秀林,任雪松,多元统计分析,北京:中国统计出版社,1999,101-149
    [37]卢文喜,李俊,于福荣等,逐步判别分析法在筛选水质评价因子中的应用,2009,39(1):26-130,吉林大学学报(地球科学版)
    [38]Sergios Theodoridis,Konstantinos Koutroumbas,Pattern recognition,second edition,李晶皎等译,北京:电子工业出版社,2004
    [39]Brunzell H,Erikcson J."Feature reduction for classification of multidimensional data,Pattern Recogniton,1988,33:1741-1748
    [40]侯琳熙,声波测量和流化床聚合反应器多尺度结构的研究[D],杭州:浙江大学博士学位论文,2005
    [41]Yong C,Zhao X,Tang S H,Population balance modelling for a continuous gas phase olefin,polymerisation reactor.J.Appl.Polym.Sci.1994,53:158-159
    [42]Huguet S,Godin N,Gaertner R,Salmon L,Villard D.Use of acoustic emission to identify damage modes in glass fibre reinforced polyester.Compost Sci Technol 2002;62:1433-44.
    [43]Groot D,Peter J,Wijnen,et.al.Real-time frequency determination of acoustic emission for different fracture mechanisms in carbon/epoxy composites.Composites science and technology,1995,55(4):405-412
    [44]Leach M F,Rubin G A,Williams J C,Particle size distribution characterization from acoustic emission,Powder technology,1978,19(1):157-167
    [45]Cody G D,Goldfarb D J,Storch Jr G V,Norris A N,Particle granular temperature in gas fluidized beds.Powder technology,1996,87:211-232
    [46]Hiroaki,Suzuki,TetsuoKinjo,et.al,Fracture-Mode Determination of glass-Fiber Composites by Various AE Processing.Progress in Acoustic Emission Ⅷ,The Japanese society for NDI,1996,47-52
    [47]Chen X,Chen D.Measuring Average Particle Size for Fluidized Bed Reactors by Employing Acoustic Emission Signals and Neural Networks,Chemical Engineering and Technology,2008,31(1):95-102
    [48]Kamala G,Hashemi J,Barhorst,et.al,Discrete-Wavelet analysis of acoustic emission during fatigue loading of carbon fiber reinforced composites.Journal of reinforced plastics and composites.2001,20(3):222-238
    [49]Bakshi B R,zhong H,Jinag P.Analysis of flow in gas liquid bubble columns using multi-resolution methods.Trans.Chem.1995,73:608-614
    [50]Lee,Sung D,Park,Moon J,Vanrolleghem,Peter A.Adaptive multiscale principal component analysis for on-line monitoring of a sequencing batch reactor Journal of Biotechnologv,2005,116(2):195-210
    [51]孙延奎,小波分析及应用[M],北京:机械出版社,2005:233-234
    [1]邓乃扬,田英杰,数据挖掘中的新方法-支持向量机,北京:科学出版社,2004
    [2]Vapnik V.The Nature of Statistical Learning Theory,Springer Verlag,1995
    [3]边肇祺,张学工等,模式识别,北京:清华大学出版社,2000。
    [4]Zhang M;,Li Z,Li W,Study on least squares support vector machines algorithm and its application,Tools with Artificial Intelligence,2005.ICTAI05.17th IEEE International Conference 2005:666-688
    [5]Niu D X,Li W,Cheng L M,Gu X H.Mid-term load forecasting based on dynamic least squares SVMS,Machine Learning and Cybernetics 2008International Conference,2008,2:800-804
    [6]Vong C.-M.,Wong P.-K.,Li Y.-P.,Prediction of automotive engine power and torque using least squares support vector machines and Bayesian inference,Eng.Appl.Artif.2006,19:277-287.
    [7]Zhang M,Wang X,Li W.Nonlinear System Identification using Least Squares Support Vector Machines,Neural Networks and Brain,2005.ICNN&B '05.International Conference,2005,1:414-418
    [8]Zhao L,Yang K.Application of Wavelet Packet Analysis and Improved LSSVM on Rotating Machinery Fault Diagnosis,Power Electronics and Intelligent Transportation System,2008.PELTS '08.Workshop 2008,2-3:261-265
    [9]Ge R M,D.U.G,Xu Y.Fault diagnosis using support vector machine with an application in sheet metal stamping operations,Mech.Syst.Signal Process.2004,18:143-159.
    [10]Liu R,Xu Y,Soft sensor based on least square support vector machine with limited memory for crystal particle size prediction in PTA purification process,Intelligent Control and Automation,WCICA 2008.7th World Congress,2008:2678-2681
    [11]Liu H,Guo Y;Zheng G.Image Denoising Based on Least Squares Support Vector Machines,Intelligent Control and Automation,WCICA 2006.The Sixth World Congress,1:4180-4184
    [12]Emre Comark,Ahmet Arslan,IbrahimTurkoglu,Adecision support system based on support vector machines for diagnosis of the heart valve diseases,Comput.Biol.Med.2007,37:21-27.
    [13]Tong F,XU X M,Luk B L,Liu K P.Evaluation of tile-wall bonding integrity based on impact acoustics and support vector machine,Sensors and Actuators A:Physical,2008,144(1):97-104
    [14]李字龙,模式识别在反应器内颗粒粒径声波法检测中的应用研究,杭州:淅江大学硕士学位论文,2007
    [15]张学工,关于统计学习理论与支持向量机,自动化学报,2000,26(1):32-42
    [16]Nello Cristianini,John Shawe-Taylor,支持向量机导论,北京:电子工业出版社,2006
    [17]Vapnik V,Levin E,Cun Y L,Measuring the VC Dimension of a Learning Machine,Neural Computation,1994,(6):851-876
    [18]Fletcher R.Practical methods of optimization.New York:John Wiley and Sons Inc,1987
    [19]Shevade S K,Keerthi S S,Bhattacharyya C,Murthy K R K.Improvements to the SMO algorithm for SVM regression.IEEE Tramsactions on Neural Networks,2000,11(5):1188-1193.
    [20]Aronszajn N.Theory of reproducing kemels,Trans.American Mathematical Soc.,1950,68:337-404.
    [21]Sch(o|¨)lkopf B,Smola A.Learning with Kernels.MIT Press,Cambridge,MA,2002.
    [22]Suykens J A K.Nonlinear modeling and support vector machines,IEEE Instrumentation and measurement technology conference,Budapest,Hungary,May 2001,287-294
    [23]Suykens J A K,Vandewalle J.Least squares support vector machine classifiers.Neural Processing Letters.1999,9:293-300.
    [24]Suykens J A K,Van Gestel T,De Brabanter J,De Moor B,Vandewalle J.Least squares support vector machines,Singapore:World Scientific Publishing Co.,Pte,Ltd.,2002.
    [25]苟博,黄贤武,支持向量机多类分类方法,数据采集与处理,2006,21(3):334-339.
    [26]Suykens J A K,Vandewalle J.Multiclass Least Squares Support Vector Machines[C],in Proc.of the International Joint Conference on Neural Networks (IJCNN'99),Washington DC,USA,Jul.1999,CD-ROM
    [27]牛兴霞,杨奎河,基于支持向量机的多类分类研究,信息技术,2006,30(11):19-23
    [28]黄勇,郑春颖,宋忠虎.多类支持向量机算法综述.计算技术与自动化,2005,24 (4):61-63.
    [29]夏建涛,何明一,支持向量机与纠错编码相结合的多类分类算法,西北工业大学学报,2003,21(4):443-448
    [30]唐发明,王仲东,陈绵云,支持向量机多类分类算法研究,控制与决策,2005,20(7):746-749,754
    [31]郑勇涛,刘玉树,支持向量机解决多分类问题研究,计算机工程与应用,2005,41(23):190-192.
    [32]崔永超,张浞,王永华,基于支持向量机的软测量建模方法的应用,南京工业大学学报,2007,29(3)99-102,271
    [33]阎威武,朱宏栋,邵惠鹤,基于最小二乘支持向量机的软测量建模,系统仿真学报,2003,15(10):1494-1496
    [34]刘志刚,李德仁,秦前清,史文中,支持向量机在多类分类问题中的推广,计算机工程与应用,2004,40(7):10-13,65.
    [35]Zhang M,Li Z,Li W.Study on least squares support vector machines algorithm and its application,Proceedings of the 17th IEEE International Conference on Tools with Artificial Intelligence(ICTAI'05),2005:686-688.
    [36]Zhao Ying,Kwoh Chee Keong.Fast leave-one-out evaluation and improvement on inference for Ls-SVMs,ICPR'04,2004,3:494-497
    [37]Cai X,Li J,Ouyang X,Zhao Z.In-line measurement of particle size and concentration with light fluctuation method,China Particuology,2004,2(2):89-91
    [38]虞科,程冀宇,一种基于最小二乘支持向量机算法的近红外光谱判别分析算法,分析化学,2006,34(4):561-564
    [39]陶少辉,陈德钊,胡望明,LSSVM过程建模中超参数选取的梯度优化算法,2007,58(6),1514-1517
    [40]Zhang X,Fei S,Fault diagnosis of power transformer based on support vector machine with genetic algorithm,Expert Systems with Applications,2009,36,11352-11357
    [1]Takagi T,Sugeno M.Fuzzy Identification of Systems and its Application to Modeling and Control,IEEE Transactions on Systems,Man,and Cybernetics,1985,15(1):116-132.
    [2]Feng G,Cao S,Rees N,Chak C.Design of Fuzzy Control Systems with Guaranteed Stability,Fuzzy Sets Sys.1997,85,1-10.
    [3]Ma X,Sun Z,He Y.Analysis and Design of Fuzzy Controller and Fuzzy Observer,IEEE Trans.Fuzzy Sys,1998,6(1):41-51.
    [4]Simon D,Kalman Filtering of Fuzzy Discrete Time Dynamic Systems,Applied Soft Computing,2003,3:191-207.
    [5]Chen G,Xie Q,Shieh L.Fuzzy Kalman Filtering,J.Inform.Sci.,1998,109:197-209
    [6]Nise,Norman S.Control Systems Engineering,Fourth edition,John Wiley and Sons,Inc.,2004.
    [7]Passino K M,Yurkovich S.Fuzzy Control,Addison-Wesley Longman,Menlo Park,CA,1998.
    [8]陈德钊,多元数据处理,北京:化学工业出版社,1998,60-88
    [9]Sergios T,Konstantinos K(著),李晶皎等译,Pattern recognition(second edition),北京:电子工业出版社,2004
    [10]高新波,模糊聚类分析及其应用,西安:西安电子科技大学出版社,2004
    [11]Zekri M,Sadri S,Sheikholeslam F.Adaptive fuzzy wavelet network control design for nonlinear systems,Fuzzy Sets and Systems,2008,159:2668-2695
    [12]Bezdek J C,Pattern Recognition with fuzzy objective function algorithms.New York:Plenum Press,1981
    [13]Ho D,Zhang P A,Xu J.Fuzzy wavelet networks for function learning,IEEE Trans.Fuzzy Systems 2001,9:200-211.
    [14]Park J H,Park G T,Kim S H,Moon C J.Direct adaptive self-structuring fuzzy controller for nonaffine nonlinear system,Fuzzy Sets andSystems 2005,153,429-445.
    [15]Nounou M N,Nounou H N,Multiscale fuzzy system identification,Journal of Process Control,2005,15:763-770
    [16]Trauwaert E,Kaufman L,Rousseeuw P.Fuzzy clustering algorithms based on the maximum likelihood principle.Fuzzy sets and system,1991,85(42):213-227
    [17]Kamel M S,Selim S Z,A threshold fuzzy c-means algorithm for semifuzzy clustering.Pattern Recognition,1991,24(9):825-833
    [18]仲蔚,俞金寿,基于模糊c均值聚类的多模型软测量建模,2000,26(1),83-85
    [19]任正云,李平,王占山等,模糊c均值聚类在萃取精馏塔软测量中的应用,抚顺石油学院学报,2001,21(1):68-72
    [20]Kurita T,An efficient agglomerative clustering algorithm using a heap,pattern recgnition,1991,24,205-209
    [21]Boberg J,Salakoski T."General formulation and evaluation of agglomerative clustering methods with metric and non-metric distances",pattern recgnition,1993,26(9):1395-1406
    [22]Frigui H,Krishnapuram R.clustering by compitive agglomeration,pattern recgnition,1997,30(7):1109-1119
    [23]Gowda Chidananda K,Ravi T V.Divisive clustering of symbolic objects using the concepts of both similarity and dissimilarity,pattern recgnition,1995,28(8):1277-1282
    [24]徐雷,一种聚类新算法:模糊退火法,模式识别与人工智能,1989,1:11-16
    [25]Klein R W,Dubes R C.Experiments in projection and clustering by simulated annealing,pattern reconition,1989,22(2):213-220
    [26]Asultan K S,Selim S.A global algorithm for the fuzzy clustering problem,pattern recgonition,1993,26(9):1357-1361
    [27]Li Wenhua,et.al.,ANN-based fuzzy c-means clustering algorithms,ISYI'94,Beijing,China,1994
    [28]刘健庄,谢维信,黄建军,李文化,聚类分析的遗传算法方法,电子学报,1995,23(11):81-83
    [29]刘建庄,谢维信,硬聚类与模糊聚类的结合-双层FCM快速算法,模糊系统与数学,1992,2(6):77-85
    [30]宋娇,葛临东,一种遗传模糊聚类算法及其应用,计算机应用2008,28(5):1197-1199.
    [31]Saha S,Bandyopadhyay S,A new point symmetry based fuzzy genetic clustering technique for automatic evolution of clusters,Information Sciences 2009,1793230-3246
    [32]Gan G,Wu J,Yang Z.A genetic fuzzy k-Modes algorithm for clustering categorical data,Expert Systems with Applications,2009,36(2),Part 1,1615-1620
    [33]Dong Y Y,Zhang Y J,Chang C L,Multistage random sampling genetic-algorithmbased fuzzy C-means clustering algorithm,in:Proceedings of the Third International Conference on Machine Learning and Cybernetics,Shanghai,2004,pp.2069-2073.
    [34]Kuo R J,Kuo Y P,Chen Kai-Ying.Developing a diagnostic system through integration of fuzzy case-based reasoning and fuzzy ant colony system,Expert Systems with Applications,2005,28(4),783-797
    [35]Hong T P,Tung Y F,Wang S L,Wu M T,Wu Y L An ACS-based framework for fuzzy data mining,Expert Systems with Applications,2009,36(9):11844-11852
    [36]Cai W,Chen S,Zhang D.Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation,Pattern Recognition,2007,40(3):825-838

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700