用户名: 密码: 验证码:
钛合金表面B_4C/G激光合金化层的组织与耐磨性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于具有比强度高、耐热、耐腐蚀以及良好的低温性能等优点,钛及钛合金被广泛应用于航空航天、石油化工、机械、冶金、医疗等领域。但是钛合金硬度低、耐磨性差,不宜用于制造机械产品中的传动件,限制了钛合金更广泛的应用。因此,如何提高钛合金的表面硬度和耐磨性能,扩大其应用范围,引起了国内外材料领域研究人员的广泛关注。激光合金化技术因为处理效率高、工件变形小、制备出的涂层可与基体达到冶金结合,已成为钛合金表面强化与改性领域的研究热点之一。
     本课题采用激光合金化技术对在工业领域中应用最广泛的Ti-6A1-4V钛合金进行表面强化,在开放的氮气环境下采用B4C和石墨粉实现B-C-N多元复合激光合金化,制备出以TiC、TiN、TiB、TiB2、Ti(CN)等陶瓷硬质相为主要强化相,以TiAl、Ti3Al和Al3Ti等金属间化合物为辅助强化相的高硬度、耐磨陶瓷复合涂层。课题将粉末合金化与气体合金化相结合,通过对涂层材料的设计和制备工艺的调整来控制涂层中陶瓷相的种类、含量和分布特征,减轻涂层的脆化倾向;通过对涂层的化学成分、物相结构、微观组织、硬度及耐磨性的研究,揭示出激光合金化过程中陶瓷相的原位形成机制、合金化层的界面结构以及涂层的强化机制,阐明Ti粉和稀土氧化物Y203在基体相的凝固过程和陶瓷相的形成过程中的作用机制,揭示涂层成分-制备工艺-微观组织-性能之间的内在规律。
     研究表明,采用B4C陶瓷粉与石墨粉,在开放的氮气环境下对Ti-6A1-4V钛合金表面进行多元复合激光合金化,能够获得与基体具有牢固冶金结合的高硬度复合陶瓷涂层;涂层中含有TiC、TiN、TiB、TiB2、Ti(CN)和Ti3Al等多种原位生成的硬质强化相,这些强化相在熔池凝固过程中相间生长、相互牵制,有利于获得组织细小、致密的激光合金化层;涂层粉末成分、氮气压力及激光工艺参数均会影响合金化层的表面宏观质量和微观组织,本课题试验条件下,氮气压力值为0.4MPa,B4C与石墨粉的配比为2:1和1:1,激光比能E范围为3.8-5.7kJ-cm-2时,能够获得宏观表面平整,微观组织致密,无明显气孔及裂纹的合金化层。
     将Ti粉引入合金化粉末中,有利于合金化过程中熔池中原位反应的发生,生成更多TiC、TiN、TiB、TiB2、Ti(CN)等陶瓷强化相,使得合金化层硬度及耐磨性得到提高。但是当Ti含量过高时,过量的Ti残留在合金化层中,不利于合金化层整体硬度和耐磨性能的提高。研究表明,当Ti的添加量为30wt.%时,获得的合金化层硬度最高、耐磨性最好。
     稀土氧化物Y203对合金化层的微观组织具有明显细化的作用,激光合金化过程中,部分未熔化Y203可以作为凝固过程中的异质形核核心,部分Y203会分解为Y与02。Y作为表面活性元素,容易吸附在晶界或相界,阻碍晶界移动;Y还可以减小液态金属的表面张力和临界形核半径,提高形核率,有利于细化合金化层的组织。但是,过多的Y203会增加合金化层的脆性,不利于合金化层耐磨性能的提高。研究表明,添加1wt.%Y2O3时,可以获得耐磨性能最好的激光合金化层。
     在合金化材料中同时引入适量的Ti粉和Y203,在适宜的激光工艺参数下,可以制备出组织细小致密、硬度高、耐磨性优异的合金化层。研究表明,同时添加30wt.%Ti粉与1wt.%Y2O3的合金化层硬度约为Ti-6Al-4V合金基体硬度的4倍,并表现出较好的耐磨性。
     本课题利用激光合金化技术在Ti-6Al-4V合金表面制备出多元强化的复合陶瓷涂层,揭示了合金化过程中陶瓷相的原位形成机制、合金化层与基体相的界面结构,阐明了金属Ti粉与稀土氧化物Y203在合金化层中的作用机理,为激光合金化技术在钛合金机械传动件制备领域的应用提供理论依据。本课题研究可应用于航空航天、石油化工、汽车机械、海洋工业等领域钛合金零部件的制造及修复,延长零件的使用寿命,具有广阔的应用前景,一经应用,将会产生巨大的经济效益和社会效益。
Titanium and its alloys are extensively used in aerospace, metallurgy, mechanical and petrochemical industries owing to their special properties such as high strength, excellent corrosion and high-temperature resistance, perfect low-temperature property, etc.. Nevertheless, the application of titanium alloys under severe wear and friction conditions is highly restricted due to their poor tribological properties such as high friction coefficient and low hardness. Titanium and its alloys have been the focus materials of governments in the world. Therefore, how to improve the hardness and wear resistance of titanium alloys has caused extensive concern of the material research field. Laser alloying technique has become one of the focus studies in the surface strengthening and modification field of titanium alloys due to its high efficiency, few deformation, the metallurgical bonding between substrate and the alloying coating, etc..
     In this paper, laser alloying technique was carried out for surface strengthening of Ti-6A1-4V titanium alloy, which is widely used in industry. During the laser alloying process, B4C and graphite powder were preset on the surface of titanium alloy under open nitrogen atmosphere to realize B-C-N multi-component alloying. Laser powder alloying and laser gas alloying techniques were combined to form composite ceramic laser alloying coatings including ceramic hard phases TiC, TiN, TiB, TiB2, Ti(CN) and intermetallic compound such as TiAl, TisAl and Al3Ti, etc., which is beneficial to apparently increase the hardness and wear resistance of the coating. The type, content and distribution characteristics of ceramic phases in the coating were controlled through designing of coating materials and adjustment of preparation technology to improve the comprehensive properties of the coating. Through the research on the chemical composition, phase structure, microstructure, hardness and wear resistance of laser alloying coatings, the in situ formation mechanism of ceramic phases, the interface structure and the coating's strengthening mechanism were revealed in the paper. The strengthening mechanism of titanium and rear earth oxide Y2O3during the solidification process of substrate and the formation process of ceramic phases were also discussed. Through the study, the inherent connection among chemical composition, preparation technology, micro-structure and property was revealed.
     Series research results indicated that multi-component ceramic coating can be formed on the surface of titanium alloy during laser alloying process when B4C and graphite powder was used under open nitrogen atmosphere. The laser alloying coating has a perfect metallurgical bonding to the substrate. In situ formed hard strengthening phases such as TiC, TiN, TiB, T1B2, Ti(CN) and Ti3AI etc. grew alternately and restrained each other mutually during the solidification of the melting pool, which is conductive to obtain perfect laser alloying coatings with fine and uniform structures. The composition, nitrogen atmosphere and laser parameters apparently affect the macro surface quality and microstructure of the alloying coatings. Under the experimental condition in this paper, laser alloying coatings with smooth surface, compacted microstructures and no apparent poles or cracks were formed under the following parameters:nitrogen atmosphere was0.4MPa, the weight ratio were2:1and1:1, the laser specific energy E was3.8~5.7kJ·cm"2.
     In order to enhance the hardness and wear resistance of laser alloying coatings, Ti was added into the alloying powders, which was beneficial to the in situ formation of more ceramic phases such as TiC, TiN, TiB and T1B2in the melton pool during the alloying process. However, too much Ti had a negative influence on increasing the properties of alloying coatings due to the existence of solid solution of excessive Ti. Research results indicated that the addition of30wt.%Ti was the most optimal to form an alloying coating with high hardness and perfect wear resistance.
     The addition of rear earth oxide Y2O3showed apparent refining effect on the microstructure of laser alloying coatings. During laser alloying process, a portion of unmelted Y2O3acted as the heterogeneous nucleation cores during solidification process and the other portion of Y2O3decomposed into Y and O2. As a surface active element, Y was easy to absorb in the grain or phase boundary to restrict the movement of boundaries. Moreover, Y also reduced the surface tension and critical nucleation radius so that nucleation was stimulated, causing the refining of the microstructure. However, too much Y2O3was easy to cause the brittleness of alloying coatings, which will reduce the wear resistance. Research revealed that, the laser alloying coating showed the best wear resistance when lwt.%Y2O3was added in to alloying powder.
     The addition of moderate metallic Ti powder and rear earth oxide Y2O3was beneficial to form alloying coatings with compacted structures, high hardness and perfect wear resistance. Research results indicated that the hardness of alloying coating with30wt.%Ti and1wt.%Y2O3addition is three times higher than that of the substrate. In this study, laser alloying technique was used on Ti-6A1-4V titanium alloy to form multi-component strengthening ceramic coatings. The in situ reaction mechanism of ceramic phases in laser alloying process, the interface structure between the alloying coating and the substrate, the function mechanism of Ti and Y2O3in the coatings were illustrated.
     This research provided essential experimental and theoretical basis for the preparation field of titanium alloy mechanical transmission parts. The research is beneficial to promote the application of laser alloying technique in the fields of aerospace, military and petrochemical industries, etc.. The laser alloying technique studied in this paper has a wide application scope and enormous economic profits due to the obvious effects on improving the hardness and wear resistance of components and parts used in different fields.
引文
1. 商国强,朱知寿,常辉等.超高强度钛合金研究进展.稀有金属,2011,35(2):286-291.
    2. 张文毓.高性能低成本钛合金研究进展.航空制造技术,2011,(5):75-76.
    3. 杨冬雨,付艳艳,惠松骁等.高强高韧钛合金研究与应用进展.稀有金属,2011,35(4):575-580.
    4. 张维平,赵玉兰,李廷举.钛合金表面激光熔覆的研究进展.表面技术,2007,36(5):68-70.
    5. 田永生,陈传忠,王德云,雷廷权.钛合金的激光表面处理研究进展.金属热处理,2005,30(8):29-34.
    6. Du B S, Paital Sameer R, Dahotre Narendra B. Synthesis of TiB2-TiC/Fe nano-composite coating by laser surface engineering. Optics & Laser Technology.2013,45(0):647-653.
    7. Tian Y S, Chen C Z, Huo Q H, Lei T Q, Wang D Y. Laser surface alloying of pure titanium with TiN-B-Si-Ni mixed powders. Applied surface science,2005,250(1):223-227.
    8. 李贵江,许长庆,孟丹,穆志宏.材料表面激光合金化研究进展.铸造技术,2008,29(8):1136-1139.
    9. Dutta Majumdar J, Manna I. Laser material processing. International Materials Reviews, 2011,56(5-6):341-388.
    10. Li J, Yu Z S, Wang H P. Wear behaviors of an (TiB+TiC)/Ti composite coating fabricated on Ti6A14V by laser cladding. Thin Solid Films,2011,519(15):4804-4808.
    11. Yang Z L, Ouyang J H, Liu Z G, Liang X S. Wear mechanisms of TiN-TiB2 ceramic in sliding against alumina from room temperature to 700℃. Ceramics International,2010,36(7): 2129-2135.
    12. Neidhardt J, Czigany Z, Sartory B, Tessadri R, Mitterer C. Wear-resistant Ti-B-N nanocomposite coatings synthesized by reactive cathodic arc evaporation. International Journal of Refractory Metals and Hard Materials,2010,28(1):23-31.
    13.张楠,孟庆森,陈少平等.电场激活压力辅助法原位合成TiC-TiB2-NiTiAlTi复合材料.功能材料,2009,41(9):1497-1500.
    14. Senthil Selvan J, Subramanian K, Nath A K, Harish Kumar, Ramachandra C, Ravindranathan S P. Laser boroniding of Ti-6A1-4V as a result of laser alloying with pre-placed BN. Materials Science and Engineering:A,1999,260(1-2):178-187.
    15. Guo B G, Zhou J S, ZhangS T, Zhou H D, Pu Y P, Chen J M. Tribological properties of titanium aluminides coatings produced on pure Ti by laser surface alloying. Surface and Coatings Technology,2008,202(17):4121-4129.
    16. Tian Y S, Zhang Q Y, Wang D Y, Chen C Z. Analysis of the growth morphology of TiB and the microstructure refinement of the coatings fabricated on Ti-6Al-4V by laser boronizing, Crystal Growth & Design,2008,8(2):700-703.
    17.王文焱,徐晶,谢敬佩,王爱华.TiC含量对激光合金化层组织和耐磨性的影响.金属热处理,2010,35(5):34-37.
    18. Saleh A F, Abboud J H, Benyounis K Y. Surface carburizing of Ti-6Ai-4V alloy by laser melting. Optics and Lasers in Engineering,2010,48(3):257-267.
    19. Guo C, Zhou J S, Zhao J R, Guo B G, Yu Y J, Zhou H D, Chen J M. Microstructure and friction and wear behavior of laser boronizing composite coatings on titanium substrate. Applied Surface Science,2011,257(9):4398-4405.
    20. Langelier B C, Esmaeili S. In-situ laser-fabrication and characterization of TiC-containing Ti-Co composite on pure Ti substrate. Journal of Alloys and Compounds,2009,482(1): 246-252.
    21. Tian Y S, Chen L X, Chen C Z. Microstructures of composite coatings fabricated on Ti-6Al-4V by laser alloying technique. Crystal Growth & Design,2006,6(6):1059-1513.
    22. Tian Y S, Chen C Z, Chen L B, Chen L X. Study on the microstructure and wear resistance of the composite coatings fabricated on Ti-6A1-4V under different processing conditions. Applied Surface Science,2006,253(3):1494-1499.
    23. Tian Y S, Chen C Z, Wang D Y, Huo Q H, Lei T Q. Analysis of growth mechanism of dendritic titanium carbides produced by laser alloying of pure titanium with graphite powder. Surface Review and Letters,2005,12(1):41-45.
    24. Tian Y S, Chen C Z. Microstructures and wear properties of in situ formed composite coatings produced by laser alloying technique. Materials Letters,2007,61(3):635-638.
    25. Tian Y S, Chen C Z, Chen L X, Huo Q H. Wear and oxidation resistance of composite coatings fabricated on T1-6A1-4V by laser alloying with nitrogen and silicon. Journal of Physics D:Applied Physics,2005,38(23):4217-4221.
    26. Osterle W, Klaffke D, Griepentrog M, Grossb U, Kranzb I, Knabeb C. Potential of wear resistant coatings on Ti-6A1-4V for artificial hip joint bearing surfaces. Wear,2008,264(7): 505-517.
    27. Peng X M, Xia C Q, Ma K, Dai X Y. Interaction of TC4 titanium alloy with NiCrAlY coating after vacuum heat treatment. Materials Chemistry and Physics,2008,107(1):158-163.
    28. Ceschini L, Lanzoni E, Martini C, Prandstraller D, Sambogna G. Comparison of dry sliding friction and wear of Ti6A14V alloy treated by plasma electrolytic oxidation and PVD coating. Wear,2008,264(1-2):86-95.
    29.张毅斌,邵军,撒世勇,李德强,王大伟.钛合金表面抗氧化改性技术.钛工业进展,2009,26(1):16-19.
    30.姜海涛,邵忠财,魏守强.钛合金表面处理技术的研究进展.电镀与精饰.2010,32(10):15-20.
    31.刘道新,唐宾,陈华等.钛合金表面离子束增强沉积MoS2基膜层及其性能. 中国有色金属报,2001,11(3):454-460.
    32.蔡殉.等离子体基离子注入技术发展及其应用.机械工人,2005,4:33-35.
    33.胡正琼,张颖.钛合金的离子束改性.北京航空航天大学学报,1998,24(5):596-598.
    34. Xia L F, Ji H B, Sun M R, Sun Y, Ma X X, Structure and frictional characteristics of T1-6A1-4V plasma-based ion implanted with nitrogen then acetylene. Wear,1999,225: 835-842.
    35.王东生,黄因慧,田宗军,刘志东,朱军,陈劲松.激光重熔对喷射电沉积纳米镍涂层组织与性能的影响.中国激光,2008,35(1):142-146.
    36. Xue Y, Wang H M. Microstructure and wear properties of laser clad TiCo/Ti2Co intermetallic coatings on titanium alloy. Applied surface science,2005,243(1):278-286.
    37. Jian L N, Wang H M. Microstructure and wear behaviours of laser-clad Cr13Ni5Si2-based metal-silicide coatings on a titanium alloy. Surface Coating Technology,2005,192(2): 305-310.
    38.张永忠,金具涛,黄灿,石力开.钛合金表面激光熔覆原位钛基复合材料涂层.材料热处理学报,2010,31(3):121-124.
    39. Meng Q W, Geng L, Ni D R. Laser cladding NiCoCrAlY coating on Ti-6A1-4V. Material Letters,2005,59(22):2774-2777.
    40. Deng C, Wang Y, Zhang Y P, Gao J S. In situ laser coating of calcium phosphate on TC4 surface for enhancing bioactivity. Journal of Iron and Steel Research,2007,14(3):74-79.
    41. Schulz U, Peters M, Bach F W, Tegeder G. Graded coatings for thermal, wear and corrosion barriers. Material Science and Engineering A,2003,362(1-2):61-80.
    42.王慧萍,李军,张光钧,戴建强,奚文龙.钛合金表面激光熔覆TiC复合涂层显微组织的研究.机械制造,2009,47(11):40-42.
    43. Man H C, Leong K H, Ho K L. Process monitoring of powder pre-paste laser surface alloying. Optics and Lasers in Engineering.2008,46(10):739-745.
    44.郭丽环.材料表面的激光合金化.大连大学学报,2003,24(2):16-18.
    45. Yang S, Su Y P, Huang W D, Zhou Y H. Microstructure characteristics of Cu-Mn alloys during laser surface remelting. Material Science and Engineering A,2004,386(1-2): 367-374.
    46.慕伟意,李争显,杜继红,奚正平.钛合金表面微弧氧化耐磨和耐蚀膜层的研究进展.钛工业进展,2010,(6):1-5.
    47.李哲,秦林,马连军,范爱兰,张万祯,唐宾等Ti-6A1-4V表面等离子合金层中渗Mo的扩散系数.中国有色金属学报,2010,20(6):1137-1142.
    48.李秀燕Ti6A14V合金表面双层辉光离子渗Mo及Mo-N共渗改性层的组织结构及性能研究.太原理工大学博士学位论文,2003.
    49. Liu X P, Ge P L, You K, Wang Z X, He Z Y. Plasma Alloying of TiAl with Niobium and Its Wear Resistance. Rear Metal Materials and Engineering.2011,40(11):1891-1896.
    50.张高会,张平则,潘俊德,徐重.钛合金双层辉光无氢渗碳.有色金属,2004,56(1):4-6.
    51.张平则,徐重,张高会,张艳梅,吴红艳,姚正军.纯钛及Ti-6A1-4V双层辉光离子渗Mo. 南京航空航天大学学报,2005,37(5):582-586.
    52. Qin L, Tian L H, Fan A L, Tang B, Xu Z. Fatigue behavior of surface modified Ti-6A1-4V alloy by double glow discharge plasma alloying. Surface and Coatings Technology,2007, 201(9-11):5282-5285.
    53.郑维能,张新位,高红核.加弧辉光离子无氢渗碳在钛合金表面上的应用研究.首都师范大学学报(自然科学版),2004,25(2):31-34.
    54.屠振密,朱永明,李宁,胡会利,曹立新.钛及钛合金表面处理技术的应用及发展.表面技术,2009(6):76-78.
    55.钟敏霖,范培迅.激光纳米制造技术的应用(邀请论文).中国激光,2011,38(6):1-10.
    56. Li L, Hong M H, Schmidt M, Zhong M L, Malshe A, Huis in'tVeld B, Kovalenko V. Laser nano-manufacturing-state of the art and challenges. C1RP Annals-Manufacturing Technology, 2011,60(2):735-755.
    57.信世堡.钛合金表面处理技术的新进展(下).表面工程资讯.2009(03):4-5.
    58. Chen X K, Wu G, Wang R, Guo W T, Yang J P, Cao S Z, Wang Y L, Han W H. Laser nitriding of titanium alloy in the atmosphere environment. Surface and Coatings Technology.2007, 201(9-11):4843-4846.
    59. Hamad A R, Abboud J H, Shuaeib F M, Benyounis K Y. Surface hardening of commercially pure titanium by laser nitriding:Response surface analysis. Advances in Engineering Software,2010,41(4):674-679.
    60. Man H C, Cui Z D, Yue T M, Cheng F T. Cavitation erosion behavior of laser gas nitrided Ti and Ti6A14V alloy. Materials Science and Engineering:A:2003,355 (1-2):167-173.
    61.付现桥,韩彬,王勇,李鹏.TA2表面激光氮化处理的研究.应用激光,2011,31(3):219-223.
    62.付现桥,韩彬,王勇,李鹏.TA2表面激光气体氮化组织结构和耐蚀性研究.中国激光,2011,38(4):94-99.
    63. Perez P. Influence of nitriding on the oxidation behaviour of titanium alloys at 700℃. Surface and Coatings Technology,2005,191(2-3):293-302.
    64.张春华,王丹,张松,王强,张扬,刘常升.钛合金表面激光气体氮化及其HA复合涂 层的制备.沈阳工业大学学报,2009,30(6):654-657.
    65.陈红兵,罗启泉.钛合金的激光气体氮化研究.激光杂志,1997,18(3):32-36.
    66. Yilbas B S, Sunar M, Gasem Z, Abdul Aleem B J. Laser gas assisted nitriding and tin coating of Ti-6A1-4V alloy:Experimental and numerical investigation of mechanical properties. Journal of materials processing technology,2009,209:1199-1208.
    67. Yilbas B S, Shuja S Z. Laser treatment and PVD TiN coating of Ti-6A1-4V alloy. Surface and Coatings Technology.2000,130(2):152-157.
    68. Filip R. Laser nitriding of the surface layer of Ti6A14 V titanium alloy. Archives of Materials Science and Engineering.2008,30(1):25-28.
    69.何利舰,张晓农.钛及钛合金的表面处理技术新进展.上海金属.2005,27(3):39-45.
    70.王华明,郭淑平,史岗,何秀丽.钛合金激光气体合金化表面改性新技术研究.航空工程与维修,1997(2):6-7.
    71. Reis A G, Reis D A P, Neto C M, Barboza M J R, Onoro J. Creep behavior and surface characterization of a laser surface nitrided Ti-6A1-4V alloy. Materials Science and Engineering:A,2013,577:48-53.
    72.戴景杰,谷晓妹,庄蕾.钛及钛合金的激光表面改性研究现状.电焊机,2010,40(11):85-90.
    73. Zhao N Q, Man H C, Cui Z D, Yang X J. Structure and wear properties of laser gas nitrided NiTi surface. Surface and Coatings Technology,2006,200(16):4879-4884.
    74. Yilbas B S, Karatas C, Uslan, Keles O, Usta I Y, Ahsan M. CO2 laser gas assisted nitriding of Ti-6A1-4V alloy. Applied Surface Science,2006,252(24):8557-8564.
    75.陈晖,凌人蛟.工业纯钛TA2激光气体氮化表面硬度的研究.热加工工艺.2007,36(10):59-61.
    76. Yu H J, Sun F J, Zhang J. Laser and plasma nitriding of titanium using CW-CO2 laser in the atmosphere. Current Applied Physics.2009,9(1):227-233.
    77. Man H C, Zhao N Q, Cui ZD. Surface morphology of a laser surface nitrided and etched Ti-6A1-4V alloy. Surface and Coatings Technology,2005,192(2-3):341-346.
    78. Dutta Majumdar J. Laser gas alloying of Ti-6A1-4V. Physics Procedia,2011,12:472-477.
    79. Abboud J H, Fidel A F, Benyounis K Y. Surface nitriding of Ti-6Al-4V alloy with a high power CO2 laser. Optics & Laser Technology,2008,40(2):405-414.
    80. Sathish S, Geetha M, Pandey N D, Richard C, Asokamani R. Studies on the corrosion and wear behavior of the laser nitrided biomedical titanium and its alloys. Materials Science and Engineering:C.2010,30(3):376-382.
    81.叶宏,李晖,闫忠琳.激光表面合金化裂纹的研究.机械设计与制造工程.2001,30(3):60-61.
    82.李业欣.表面处理工艺对钛合金材料表面残余应力的影响.金属加工,2010,(13):16-18.
    83.张永康,周立春,任旭东,李杨,鲁金忠.激光冲击TC4残余应力场的试验及有限元分析.江苏大学学报(自然科学版).2009,30(1):10-13.
    84. Radziejewska J, Skrzypek S J. Microstructure and residual stresses in surface layer of simultaneously laser alloyed and burnished steel. Journal of Materials Processing Technology, 2009,209 (4):2047-2056.
    85.田永生.钛合金表面激光硼碳氮合金化层的组织结构与耐磨性能研究.山东大学博士学位论文,2006.
    86. Abboud J H. Effect of processing parameters on titanium nitrided surface layers produced by laser gas nitriding. Surface and Coatings Technology,2013,214:19-29.
    87.张立杰.材料表面的激光合金化.大众科技,2009,(11):111-112.
    88. Wang F, Mei J, Jiang H, Wu X. Laser fabrication of Ti6A14V/TiC composites using simultaneous powder and wire feed. Materials Science and Engineering:A,2007,445-446: 461-466.
    89. Tian Y S, Chen C Z, Chen L X, Huo Q H. Microstructures and wear properties of composite coatings produced by laser alloying of Ti-6A1-4V with graphite and silicon mixed powders. Materials Letters,2006,60(1):109-113.
    90. Tian Y S, Zhang Q Y, Wang D Y. Study on the microstructures and properties of the boride layers laser fabricated on Ti-6A1-4V alloy. Journal of materials processing technology, 2009,209(6):2887-2891.
    91. Tian Y S, Chen C Z, Chen L B, Liu J H, Lei T Q. Wear properties of alloyed layers produced by laser surface alloying of pure titanium with B4C and Ti mixed powders. Journal of Materials Science,2005,40(16):4387-4390.
    92.郭立新,刘荣祥,王亚明,周玉,雷廷权.钛合金表面激光重熔NiCrBSi+TiN涂层的组织研究.材料热处理学报,2009,30(2):134-137.
    93. Balla V K, Bhat A, Bose S, Bandyopadhyay A. Laser processed TiN reinforced Ti6A14V composite coatings. Journal of the Mechanical Behavior of Biomedical Materials,2012,6: 9-20.
    94. Das M, Balla V K, Basu D, Manna I, Sampath Kumar T S, Bandyopadhyay A. Laser processing of in situ synthesized TiB-TiN-reinforced Ti6A14V alloy coatings. Scripta Materialia,2012,66(8):578-581.
    95. Das M, Balla V K, Basu D, Bose S, Bandyopadhyay A. Laser processing of SiC-particle-reinforced coating on titanium. Scripta Materialia.2010,63(4):438-441.
    96. Blanco-Pinzon C, Liu Z, Voisey K, Bonilla F A, Skeldon P, Thompson G E, Piekoszewski J, Chmielewski A G. Excimer laser surface alloying of titanium with nickel and palladium for increased corrosion resistance. Corrosion Science.2005,47(5):1251-1269.
    97.张松,关祥楠,张春华,吴维锼,王茂才.激光反应合成TiCp/Ti复合材料涂层机理分析.焊接学报.2008,29(9):11-14.
    98.郭纯,周健松,安宇龙,俞友军,周惠娣,陈建敏.纯钛表面激光硼化及其摩擦学性能.材料科学与工程学报.2009,27(5):745-748.
    99.蔡定葆,张群莉,Mykola Anyakin, Ruslan Zhuk,任博,姚建华.基于BP神经网络算法的Ti-6Al-4V激光NiAl-VC合金化的工艺研究.应用激光.2013,33(01):18-23.
    100.易云杰,楼程华,郭士锐,张群莉,姚建华,沈红卫.激光表面合金化制备镍钛涂层的组织与性能.应用激光.2013,33(2):99-103.
    101. Fogagnolo J B, Rodrigues A V, Lima M S F, Amigo V, Caram R. A novel proposal to manipulate the properties of titanium parts by laser surface alloying. Scripta Materialia.2013, 68(7):471-474.
    102. Garcia I, Fuente J, Damborenea J J. (Ti,Al)/(Ti,Al)N coatings produced by laser surface alloying. Materials Letters.2002,53(1-2):44-51.
    103. Yilbas B S, Hashmi M S J. Laser treatment of Ti-6A1-4V alloy prior to plasma nitriding. Journal of Materials Processing Technology,2000,103 (2):304-309.
    104. Yilbas B S. Laser gas-assisted processing of carbon coated and TiC embedded T1-6A1-4V alloy surface. Applied Surface Science,2010,257:531-637.
    105.邹小斌,尹登科,谷建军.关于激光熔覆裂纹问题的研究.激光杂志,2010,31(5):44-45.
    106.匡建新,汪新衡,秦小平,朱航生等.激光熔覆Ti基WC增强复合涂层的裂纹研究.热加工艺,2010,39(14):110-112.
    107.李艳丽,黄旭仁,范兴.工艺参数对激光合金化层裂纹的影响.新技术新工艺,2010,(10):90-91.
    108.鲍瑞良.激光熔覆钴基合金及其复合涂层.山东大学硕士学位论文,2004.
    109.孟庆武,金晓鸥,耿林,张宝友.钛合金表面三种预涂材料的激光熔覆研究.材料科学与工艺,2006,14(3):233-235.
    110. Ni D R, Geng L, Zhang J, Zheng Z Z. Fabrication and tensile properties of in situ TiBw and TiCp hybrid-reinforced titanium matrix composites based on Ti-B4C-C. Materials Science and Engineering:A,2008,478(1-2):291-296.
    111. Abboud J H. Effect of processing parameters on titanium nitrided surface layers produced by laser gas nitriding. Surface and Coatings Technology,2013,214(0):19-29.
    112.李嘉宁.钛合金激光熔覆Ti-Al/陶瓷复合涂层组织结构与耐磨性的研究.山东大学博十学位论文,2012.
    113.孙荣禄,杨贤金.TC4钛合金激光熔覆TiC+M涂层组织和耐磨性能研究.材料热处理学报.2006,27(01):96-99.
    114. Emamian A, Corbin S F, Khajepour A. In-Situ Deposition of Metal Matrix Composite in Fe-Ti-C System Using Laser Cladding Process.2011.
    115.田浩,耿林,倪丁瑞,孟庆武.TC4合金表面激光熔覆B4C及B4C+Ti粉末涂层的微观组织.稀有金属材料与工程,2007,36(03):420-423.
    116. Meng Q W, Geng L, Zhang B Y. Laser cladding of Ni-base composite coatings onto Ti-6A1-4V substrates with pre-placed B4C+NiCrBSi powders. Surface and Coatings Technology,2006,200(16-17):4923-4928.
    117. Labudovic M, Kovacevic R, Kmecko I, Khan T I, Blecic D, Blecic Z. Mechanism of surface modification of the Ti-6A1-4V alloy using a gas tungsten arc heat source. Metallurgical and Materials Transactions A,1999,30(6):1597-1603.
    118.张春华,张松,文效忠,刘常升,才庆魁Ti6A14V合金的激光气体氮化.光电子激光,2004,15(8):946-950.
    119.王华明.TiAl合金激光气体合金化.金属学报,1997,33(9):917-920.
    120.杨玉玲,孙凤久,张多.大气气氛下Ti表面激光氮化及其温度场的计算.激光技术,2005,29(2):201-204.
    121.凌人蛟,邢力平,朱海.激光气体氮化对工业纯钛TA2表面硬度的影响.机械工程材料,2007,31(12):34-36.
    122. Tian Y S, Chen C Z, Li S T, Huo Q H. Research progress on laser surface modification of titanium alloys. Applied Surface Science,2005,242(1-2):177-184.
    123.李养良,徐明晗,彭西峰.多道搭接钛合金激光熔覆层组织与耐磨性研究.应用激光,2007,27(04):305-309.
    124.余菊美,冯向华,梁二军,晁明举.多道搭接对激光熔覆层组织及硬度的影响.激光杂志,2007,28(05):64-65.
    125.王剑彬,杨毅.激光直接快速成形金属零件过程中多道搭接的理论及实验研究.应用激光.2008,28(02):124-128.
    126.吴健.影响激光熔覆层品质的主要因素分析.机械制造与自动化,2004,33(4):52-56.
    127. Robinson J M, Van Brussel B A, De Hosson J T M, Reed R C. X-ray measurement of residual stresses in laser surface melted Ti-6A1-4V alloy. Materials Science and Engineering: A,1996,208(1):143-147.
    128.刘海青,刘秀波,孟祥军,郑晨,孙承峰,王明娣,齐龙浩.金属基体激光熔覆陶瓷基复合涂层的裂纹成因及控制方法.材料导报,2013,27(11):60-63.
    129. Li J, Yu Z S, Wang H P, Li M P. Microstructural characterization of titanium matrix composite coatings reinforced by in situ synthesized TiB+TiC fabricated on Ti6A14V by laser cladding. Rare Metals,2010,29(5):465-472.
    130. Ochonogor O F, Meacock C, Abdulwahab M, Pityana S, Popoola A P I. Effects of Ti and TiC ceramic powder on laser-cladded Ti-6A1-4V in situ intermetallic composite. Applied Surface Science,2012,263(0):591-596.
    131. Zhu Y Y, Li Z G, Huang J, Li M, Li R F, Wu Y X. Amorphous structure evolution of high power diode laser cladded Fe-Co-B-Si-Nb coatings. Applied Surface Science,2012,261(0): 896-901.
    132. Li R F, Li Z G, Huang J, Zhu Y Y. Dilution effect on the formation of amorphous phase in the laser cladded Ni-Fe-B-Si-Nb coatings after laser remelting process. Applied Surface Science, 2012,258(20):7956-7961.
    133. Chen Y, Wang H M. Rapidly solidified MC carbide morphologies of a pulsed laser surface alloyed y-TiAl intermetallic with carbon. Scripta Materialia,2004,50(4):507-510.
    134. Li J N. Chen C Z, He Q S. Influence of Cu on microstructure and wear resistance of TiC/TiB/TiN reinforced composite coating fabricated by laser cladding. Materials Chemistry and Physics.2012,133(2-3):741-745.
    135.庄大明,刘家浚,朱宝亮,罗振壁,苗赫濯.干摩擦条件下Si3N4基和Ti(CN)基陶瓷对1Cr18Ni9Ti不锈钢的磨损机理.摩擦学学报,1996,16(03):2-10.
    136.田永生,陈传忠,王德云,雷廷权.激光表面合金化层内枝状碳化钛的生长模式.应用激光.2005,25(02):109-112.
    137.田永生,陈传忠,王德云,徐英,雷廷权.钛表面激光碳合金化与TiC生长分析.激光技术,2005,29(2):113-115.
    138.魏仑.激光熔覆镍基金属陶瓷涂层的研究.昆明理工大学硕士学位论文,2001.
    139. Wee J H. Effect of cerium addition to Ni-Cr anode electrode for molten carbonate fuel cells: Surface fractal dimensions, wettability and cell performance. Materials Chemistry and Physics.2007,101(2-3):322-328.
    140. Basu I, Al-Samman T. Triggering rare earth texture modification in magnesium alloys by addition of zinc and zirconium. Acta Materialia,2014,67(0):116-133.
    141. Rao H M, Rodriguez R I, Jordon J B, Barkey M E, Guo Y B, Badarinarayan H, Yuan W. Friction stir spot welding of rare-earth containing ZEK100 magnesium alloy sheets. Materials & Design,2014,56(0):750-754.
    142. Liu X B, Yu R L. Effects of La2O3 on microstructure and wear properties of laser clad γ/Cr7C3/TiC composite coatings on TiAl intermatallic alloy. Materials Chemistry and Physics, 2007,101(2-3):448-454.
    143. Ouyang J H, Nowotny S, Richter A, Beyer E. Laser cladding of yttria partially stabilized ZrO2(YPSZ) ceramic coatings on aluminum alloys. Ceramics International.2001,27(1): 15-24.
    144.赵栋,白蓉,晁明举,梁二军.Y2O3对多道搭接镍基碳化钨金属陶瓷激光熔覆层的影响.应用激光,2002,22(02):123-126.
    145. Hou Q Y, Huang Z Y, Gao J S. Effects of Y2O3 on the microstructure wear resistance of cobalt-based alloy coatings deposited by plasma transferred arc process, Rare Metals,2007, 26(2):103-109.
    146.安军,李宾.Y2O3含量对激光熔覆层组织和性能的影响.材料热处理技术,2009.38(6):86-88.
    147.杨尚磊,张文红,李法兵等.纳米Y2O3-Co基合金激光熔覆复合涂层的分析.焊接学报,2009,30(2):79-82.
    148.吴岸琪,刘其斌,孙桂祥,秦水介.Y2O3含量对40Cr钢激光表面合金化组织与性能的影响.材料热处理学报,2011,32(09):141-145.
    149. Li J N. Chen C Z, Wang D G. Li W. Microstructures and wear properties of YPSZ/CeO2 reinforced composites deposited by laser cladding. Composites:Part B,2012,43(3): 896-901.
    150. Xu P Q, Tang X H, Yao S, He J Q, Xu G X. Effect of Y2O3 addition on microstructure of Ni-based alloy+Y2O3/substrate laser clad. Journal of Materials Processing Technology,2008, 208(1-3):549-555.
    151. Li J N. Chen C Z. Wang D G. Surface modification of titanium alloy with laser cladding RE oxides reinforced Ti3Al-matrix composites. Composites Part B:Engineering,2012,43(3): 1207-1212.
    152. Guo B G, Zhou J S, Zhang S T, Zhou H D, Pu Y P, Chen J M. Microstructure and tribological properties of in situ synthesized TiN/Ti3Al intermetallic matrix composite coatings on titanium by laser cladding and laser nitriding. Materials Science and Engineering:A,2008, 480(1-2):404-410.
    153. Li J N, Chen C Z, Squartini T, He Q S. A study on wear resistance and microcrack of the Ti3Al/TiA+TiC ceramic layer deposited by laser cladding on Ti-6A1-4V alloy. Applied Surface Science,2010,257(5):1550-1555.
    154. Guo B G, Zhou J S, Zhang S T, Zhou H D, Pu Y P, Chen J M. Tribological properties of titanium aluminides coatings produced on pure Ti by laser surface alloying. Surface and Coatings Technology,2008,202(17):4121-4129.
    155. Djanarthany S, Viala J C, Bouix J. An overview of monolithic titanium aluminides based on Ti3Al and TiAl. Materials Chemistry and Physics,2001,72(3):301-319.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700