用户名: 密码: 验证码:
耐温性相变材料微胶囊的制备及其熔喷纺丝应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着传统能源的日趋紧张,提高能源的使用率和开发新能源是21世纪一个重要的研究课题。由于相变材料微胶囊在相变过程中能够储存和释放热量,并使温度保持相对恒定,将其应用到纤维和纺织品中,可以提高人体热平衡的自我调节,使人体处于一个较为舒适的环境温度中。将相变材料胶囊化,就是一种有效的蓄热储能手段。本文通过原位聚合法和界面聚合法,分别采用两种具有代表性的聚合物(脲醛树脂和聚脲)为壳材,以性价比较高的工业级石蜡为相变材料,从乳化机理和成囊机理上指导微胶囊的合成过程,制备了两种具有较小粒径且分布均匀、较大蓄热能力、较高耐温性的相变材料微胶囊。通过分析对比,将脲醛树脂(UF)/低熔点石蜡微胶囊与高熔指PP共混铸带,研究了共混体系的流变性能和熔喷纺丝工艺,尝试生产了克重为80g/m2的熔喷保暖棉。论文的研究内容和成果主要包括以下五点。
     (1)以工业级低熔点石蜡为相变材料,尿素和甲醛为反应单体,采用两步法原位聚合制备UF/低熔点石蜡相变材料微胶囊。利用DSC、TG、SEM、FTIR、激光粒度分布仪等表征手段,探索了脲醛树脂的聚合原理和成囊机理,重点研究了芯壁材投料比、单体摩尔配比、预聚温度、预聚体滴加时间、酸化时间、固化反应温度等因素对微胶囊蓄热能力、粒径大小及分布、外观形貌和耐温性等品质的影响。研究发现适当增加预聚体中二羟甲基脲的比例,利于提高微胶囊的成囊率和蓄热能力;而一味增加芯壁材投料比例,并不能同步增加微胶囊的相变潜热;酸化阶段主要影响初期树脂对低熔点石蜡的富集能力,固化阶段则影响树脂的交联度和微胶囊的成囊率。当芯壁材投料比为1.5:1~1.8:1,甲醛与尿素摩尔比为1.8:1,预聚温度为60℃,预聚体滴加时间为30min,酸化时间为60min,固化反应温度为60℃左右时,合成了相变潜热为76J/g,相转变温度为27.4℃,体积平均粒径为4.5μm左右,耐220℃高温,外观形貌为近圆球状的UF/低熔点石蜡微胶囊。
     (2)研究了非离子型乳化剂、阴离子型乳化剂在合成UF/低熔点石蜡微胶囊过程中的作用机理,并就单独采用乳化剂苯乙烯马来酸酐共聚物钾盐(SMA)或辛烷基酚聚氧乙烯醚(OP-10)的含量、乳化剪切速度对乳化效果、微胶囊的蓄热能力、粒径、形貌进行了分析和讨论。利用OP-10较高的空间位阻作用和SMA对初期树脂较大的富集作用,采用SMA/OP-10复合乳化剂制得了均匀稳定的O/W乳液和较高成囊率的UF/低熔点石蜡微胶囊。较佳的制备条件是乳液体系的pH值为9,SMA与OP-10质量配比为4:1,SMA/OP-10复合乳化剂含量为低熔点石蜡质量的9%。
     (3)以低熔点石蜡为包裹对象,以环己烷为油相溶剂,甲苯-2,4-二异氰酸酯(TDI)为油相单体,乙二胺(EDA)为水相单体,通过界面聚合法制备了聚脲/低熔点石蜡微胶囊。提出了壳材生成速率取决于EDA向反应微环境(油相乳滴)界面扩散速率的观点,重点讨论了乳化剂的种类、OP-10的用量、乳化剪切速度、芯壁材投料比、EDA和TDI的摩尔配比、油水相比、乙二胺滴加速度、聚合反应温度等因素对乳化液滴和相变材料微胶囊性能的影响。当采用占乳液质量1.8%的OP-10为乳化剂,乳化剪切速度7000r/min,芯壁材投料比3:1~3.5:1,TDI与EDA摩尔比1:3,相比1:8,EDA滴加速度为2mL/min左右时,能够合成相变潜热为85J/g,相转变温度为28.7℃,耐210℃高温,体积平均粒径为7.5μm左右,外观形貌为圆球状的聚脲/低熔点石蜡微胶囊。
     (4)以高熔指PP为基材,以UF/低熔点石蜡微胶囊为功能添加物,采用微型锥型双螺杆挤出机共混铸带制得MicroPCMs/PP切片,采用高熔指熔体流动速率仪和毛细管流变仪,研究了MicroPCMs的添加比例、熔体温度、剪切速率等因素对共混体系的流变性能、表观黏度、非牛顿指数、结构黏度指数和黏流活化能的影响。采用12wt.%MicroPCMs的MicroPCMs/PP切片为原料,尝试生产了克重为80g/m2的熔喷保暖棉,并就其热性能和物理机械性能进行了分析讨论。研究发现MicroPCMs/PP共混体系具有明显的非牛顿假塑性流体行为,当微胶囊含量为12%时,共混体系的可纺性较好,所制得的熔喷保暖棉相变潜热为8.52J/g,相转变温度为28.2℃,其物理机械性能与纯PP熔喷保暖棉基本相当。
     (5)通过熔喷扩大试验获得的结果表明,本研究成果具有产业化应用前景。
With the traditional energy becoming more tense, it is very important to improve the energy efficiency and develop the new energy in the21st century. Phase change materials (PCMs) are the materials that can absorb, store and release large amount of thermal energy during the phase change process. And PCMs has been used to manufacture thermoregulated fibers and textiles to improve the thermal self-regulation of the wearer. Encapsulation is an effective means of energy storage. In this study, microencapsulated paraffin wax with urea-formaldehyde (UF) resins and polyurea shells were synthesized through in situ polymerization and interfacial polycondensation, respectively. The aim of this work was to guide the synthesis process from the emulsification mechanism and encysted mechanism in order to fabricate MicroPCMs with small particle size and uniform distribution, a large thermal storage capacity and heat resistance. Moreover, MicroPCMs and PP were blended using micro-twin-screw. The spinnability of this system was studied by capillary rheometer. At last, the melt-blown spinning process and produced80g/m2melt-blown warm cotton were investigated. The content and achievements of this thesis include the following five points.
     (1) MicroPCMs containing low melting point paraffin as phase change core were synthesized by two-step in situ polymerization which the urea and formaldehyde as a reactive monomer. The aggregation principle and encysted mechanism of UF resin were explored. We focused on the effects of the molar ratios of core and shell materials, the molar ratios of monomer, the prepolymerization temperature, the dropping speed of prepolymer, the acidification time and the curing temperatures on the heat storage capacity, the particle size and distribution, the morphology and heat resistance of MicroPCMs. It was found that increasing the proportion of dimethylol urea was helpful to improve the encysted rate and the heat storage capacity. The acidification stage mainly affected the enrichment capacity of UF resin to lowing melting point paraffin. It was also found that the curing stage mainly affected the crosslinking degree of UF resin and the encysted rate of MicroPCMs, respectively. The results showed that the formaldehyde and urea in the ratio of1.8:1, the prepolymerization temperature at60℃, the core and shell material in the ratio of1.5:1~1.8:1, the dropping time of prepolymer for30min, the acidification time for60min, the curing temperature at60℃were the chosen conditions for the synthesis of MicroPCMs. Under the conditions, the appearance of MicroPCMs was nearly spherical with the latent heat of76J/g, the phase transition temperature of27.4℃, the volume average particle diameter of4.5μm and with220℃heat resistance.
     (2) The action mechanism of non-ionic emulsifiers and anionic emulsifiers in the synthesis process of UF/low melting point paraffin MicroPCMs was researched. And along with the contents of emulsifier styrene-maleic anhydride copolymer (SMA) potassium salts or sim alkylphenol polyoxyethylene ether (OP-10), the effects of emulsifying,shearing velocity on the emulsification, microencapsulation heat storage capacity, particle size, morphology were analyzed and discussed. Uniform and stable O/W emulsion and higher encysted rate of UF/low melting point paraffin MicroPCMs were obtained using SMA/OP-10combined emulsifier, this was attributed to high steric hindrance of OP-10and great enrichment of SMA to the resin in the initial process. The results showed that the optimum conditions were pH9of emulsion system, SMA and OP-10in the mass ratio of4:1and SMA/OP-10content of9wt.%low melting point paraffin.
     (3) Cyclohexane as the oil phase solvent,2,4-diisocyanatotoluene (TDI) as the oil phase monomer, ethylene diamine (EDA) as the water phase monomer, MicroPCMs with low melting point paraffin as core materials were fabricated via interfacial polymerization. The generation rate of shell materials depended on the diffusion rate of EDA to microenvironment (oil phase droplet). The influences of the type of emulsifier, the amount of OP-10, emulsion shear rate, the ratio of core and shell materials, the molar ratio of EDA and TDI on the emulsion droplets and MicroPCMs performance were investigated, and the influences of the ratio of oil and water, the dropping rate of EDA, the polymerization temperature were also discussed. The results illustrated that the optimum conditions were OP-10accounted for1.8wt.%of the emulsion, emulsion shear rate was7000r/min, the ratio of core and shell was3:1-3.5:1, the ratio of TDI and EDA was1:3, the ratio of water and oil was1:8, the dropping rate was2mL/min. Under the optimized conditions, the appearance of MicroPCMs was nearly spherical and the properties of MicroPCMs were the latent heat of85J/g, the phase transition temperature of28.7℃, the volume average particle diameter of7.5μm and with210℃heat resistance.
     (4) MicroPCMs/PP blends were prepared with high melt index PP as the substrate, UF/low melting point paraffin as the functional additives using a miniature conical twin-screw extruder. The effects of the content of MicroPCMs, melt temperature, shear rate on the rheological properties, the apparent viscosity, non-Newtonian index, structural viscosity index and flow activation energy of MicroPCMs/PP melts were studied by using high melt index melt flow rate meter and capillary rheometer. The80g/m2melt blown warm cotton was produced with the content of12wt.%MicroPCMs. Moreover, the thermal and mechanical properties were analyzed and discussed. The MicroPCMs/PP blends showed non-Newtonian pseudoplastic fluid behavior. When the MicroPCMs content was12wt.%, the melt had a good spinnability. The latent heat of obtained melt-blown warm cotton was8.52J/g, and the phase transition temperature was28.2℃. The mechanical properties of melt blown warm cotton compared with pure PP had not changed.
     The melt-blown expanding test results obtained show that the research achievement has industrial application prospect.
引文
1.杨益,王昱蘅.相变材料的特性及伪装应用探析.材料导报,2011,25(4),118-121
    2. Sharma S.D., Kazunobu S. Latent heat storage materials and system review. Journal of Green Energy,2005,2(1),1-56
    3. Telkes M., Raymond E. Storing solar heat in chemicals-a report on the Dover house. Heating and Ventilating,1949,46(1),80-86
    4. Pauken M., Emis N. Thermal energy storage technology developments. AIP Conference Proceedings,2007,880,412-420
    5. Khudhair A.M., Farid M.M. A review on energy conservation in building applications with thermal storage by latent heat using phase change materials. Energy Conversion and Management,2004,45(2),263-275
    6. Sar A., Alkan C., Karaipekli A. Microencapsulated n-octacosane as phase change material for thermal energy storage. Solar Energy,2009,83(10),1757-1763
    7. Zhang Q., Agbossou A., Feng Z.H. Solar micro-energy harvesting based on thermoelectric and latent heat effects. Part Ⅱ:Experimental analysis. Sensors and Actuators A:Physical,2010,163(1),284-290
    8. Athenitis A.K., Liu C., Hawes D., et al. Investigation of the thermal performance of a passive solar test-room with wall latent heat storage. Building and Environment,1997,32(5),405-410
    9.陈春明,陈中华,曾幸荣.细乳液聚合法制备正十二醇/聚合物相变纳米胶囊及其性能研究.功能材料,2011,42(11),2112-2115
    10.邹黎明,杨金波,郑兴.蓄热、调温微胶囊相变材料的制备及其表征.合成纤维,2007,25(5),15-18
    11.单新丽,工建平,刘妍.内烯酸共聚物囊壁的正十八烷微胶囊的制备和性能表征.物理化学学报,2009,25(12),2590-2596
    12.姜勇,丁恩勇,黎国康.聚乙二醇/二醋酸纤维素相变材料的组成与储能性能间的关系.高分子学报,2000,53(6),681-687
    13.杨帆,方贵银,邢琳.微胶囊相变蓄能技术研究现状与进展.低温与超导,2006,34(5),386-389
    14. Choi K., Chung H., Lee B., et al. Clothing temperature changes of phase change material-treated warm-up in cold and warm environments. Fibers and Polymers, 2005,6(4),343-347
    15. Ren Y.J., Ruckman J.E. Condensation in three-layer waterproof breathable fabrics for clothing, Int. J. Clothing Sci. Tech.2004,16 (3),335-347
    16. Koca A., Oztop H.F., Koyun T., et al. Energy and energy analysis of a latent heat storage system with phase change material for a solar collector. Renewable Energy, 2008,33(4),567-574
    17. Mhike W., Focke W.W., Mofokeng J.P., et al. Thermally conductive phase-change materials for energy storage based on low-density polyethylene, soft Fischer-Tropsch wax and graphite. Thermochimica Acta,2012,527(23),75-82
    18. Risch S.J. Encapsulation:Overview of uses and techniques. In Encapsulation and Controlled Release of Food Ingredients,1995,35(5),1-7
    19. Alkan C. Enthalpy of melting and solidification of suffocated paraffin as phase change materials for thermal energy storage. Thermochimica Acta,2006,451(1-2), 126-130
    20. Silva L.S., Rodriguez J.F., Romero M., et al. Microencapsulation of PCMs with a styrene-methyl methacrylate copolymer shell by suspension-like polymerization. Chemical Engineering Journal,2010,157(1),216-222
    21. Agyenim F., Hewitt N., Eames P., et al. A review of materials heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renewable and Sustainable Energy Reviews,2010,14(2),615-628
    22. Sarier N., Onder E. Thermal insulation capability of PEG-containing polyurethane foams. Thermochimica Acta,2008,475(1-2),15-21
    23. Constantinescu M., Dumitrache L., Constantinescu D., et al. Latent heat nanocompositebuilding materials. European Polymer Journal,2010,46(12), 2247-2254
    24. Su J.F., Wang S.B., Zhang Y.Y. Physicochemical properties and mechanical characters of methanol-modified melamine-formaldehyde (MMF) shell microPCMs containing paraffin. Colloid Polymer Science,2011,289(2),111-119
    25. Chen L., Xu L.L., Shang H.B., et al. Microencapsulation of butyl stearate as a phase change material by interfacial polycondensation in a polyurea system. Energy Conversion and Management,2009,50(3),723-729
    26. Zalba B., MaMarin J., Cabeza L.F., et al. Review on thermal energy storage with phase change materials, heat transfer analysis and applications. Applied Thermal Engineering,2003,23(3),251-283
    27. Tyagi V.V., Buddhin D. PCM thermal storage in buildings:a state of art. Renewable and Sustainable Energy Reviews,2007,11(6).1146-1166
    28. Agbossou A., Zhang Q., Sebald G., et al. Solar energy harvesting based on thermoelectric and latent heat effects. Part I:theoretical analysis. Sensors and Actuators A:Physical,2010,163(1),277-283
    29. Miltenburg J.C.V. Fitting the heat capacity of liquid n-alkanes:new measurements of n-heptadecane and n-octadecane. Thermochimica Acta,2000,343(1-2),57-62
    30. Liu Z.R., Chung D.D.L. Calorimetric evaluation of phase change materials for use as thermal interface materials. Thermochimica Acta,2001,366(2),135-147
    31.张仁元.相变材料与相变储能技术.北京:科学出版社,2009,125-126
    32. Sarier N., Onder E. Organic phase change materials and their textile applications: An overview. Thermochimica Acta,2012,540(20),7-60
    33. Yoshizawa H., Kamio E., Hirabayashi N., et al. Membrane formation mechanism of cross-linked polyurea microcapsules by phase separation method. Journal of Microencapsulation,2004.21(3).241-249
    34. Cho J.S., Kwon A., Cho C.G. Microencapsulation of octadecane as a phase change material by interfacial polymerization in an emulsion system. Colloid Polymer Science,2002,280(5),260-266
    35. Sharma A., Tyagi V.V., Chen C.R., et al. Review on thermal storage with phase change materials and applications. Renewable and Sustainable Energy Reviews, 2009,13(2),318-345
    36.王学晨,张兴祥.环己烷对相变材料微胶囊结构与性能的影响.天津工业大学学报,2004,23(4),6-10
    37. Sar A. Form-stable paraffin/high density polyethylene composites as solid-liquid phase change material for thermal energy storage:preparation and thermal properties. Energy Conversion and Management,2004,45(13-14),2033-2042
    38. Petri R.J., Claar T.D., Ong E.T. High-temperature salt/ceramic thermal storage phase-change media. Intersociety energy conversion engineering conference.1983, 4(18),1769-1774
    39. Farid M.M., Khudhair A.M.. Razack S.A.K., et al. A review on phase change energy storage:materials and applications. Energy Conversion and Management, 2004,45(9-10),1597-1615
    40. Zhao C.Y., Zhang G.H. Review on microencapsulated phase change materials (MEPCMs):Fabrication, characterization and applications. Renewable and Sustainable Energy Reviews,2011,15(8),3813-3832
    41. Zhang X.X., Fan Y.F., Tao X.M., et al. Crystallization and prevention of supercooling of microencapsulated n-alkanes. Journal of Colloid and Interface, 2005,281(2),299-306
    42. Boh B., Knez E., Staresinic M. Microencapsulation of higher hydrocarbon phase change materials by in situ polymerization. Journal of Microencapsulation,2005, 22(5),715-735
    43. Salavn F., Devaux E., Bourbigot S. Preparation of multinuclear microparticles using a polymerization in emulsion process. Journal of Applied Polymer Science, 2008,107(2),2444-2452
    44. Sarier N., Onder E. The manufacture of microencapsulated phase change materials suitable for the design of thermally enhanced fabrics. Thermochimica Acta,2007, 452(2),149-160
    45. Jang Y.B., Wang D.J., Zhao T. Preparation, characterization, and prominent thermal stability of phase-change microcapsules with phenolic resin and n-hexadecane core. Journal of Applied Polymer Science,2007,104(5),2799-2806
    46. Su J.F., Wang L.X., Ren L. Synthesis of polyurethane microPCMs containing n-octadecane by interfacial polycondensation:Influence of styrene-maleic anhydride as a surfactant. Colloids and Surfaces A:Physicochemical Aspects, 2007,299(1-3),268-275
    47. Kwon J.Y., Kim H.D. Preparation and application of polyurethane-urea microcapsules containing phase change material. Fibers and Polymers,2006,7(1), 12-19
    48. Zhang G.H., Bon S.A.F. Synthesis, characterization and thermal properties of novel nanoencapsulated phase change materials for thermal energy storage. Solar Energy,2012,86(5),1149-1154
    49. Alkan C., Sar A., Karaipekli A., et al. Preparation, characterization and thermal properties of microencapsulated phase change material for thermal energy storage. Solar Energy Materials and Solar Cells,2009,93(1),143-147
    50. Chaiyasat P., Ogino Y., Suzuki T., et al. Preparation of divinylbenzene copolymer particles with encapsulated hexadecane for heat storage application. Colloid and Polymer Science,2008,286(1),217-223
    51. Yang R., Xu H., Zhang Y. Preparation, physical property and thermal physical property of phase change microcapsule slurry and phase change emulsion. Solar Energy Material and Solar Cells,2003,80(4),405-416
    52. Rao Y., Frank D., Prter S., et al. Convective heat transfer characteristics of microencapsulated phase change material suspensions in minichannels. Heat Mass Transfer,2007,44(7),175-186
    53. Taguchi Y., Yokoyama H., Kado H. Preparation of PCM microcapsules by using oil absorbable polymer particles. Colloids and Surfaces A:Physciochemitry Engineering Aspects,2007,301(1-3),41-47
    54. Han N., Zhang X.X., Wang X.C. Fabrication, structures and properties of acrylonitrile/methyl acrylate copolymers and copolymers containing microencapsulated phase change materials. Journal of Applied Polymer Science, 2007,103(5),2776-2781
    55. Regin A.F., Solanki S.C., Saini J.S. Heat transfer characteristics of thermal energy storage system using PCM capsules:A review. Renewable and Sustainable Energy Reviews,2008,12(9),2438-2458
    56. Mondal S. Phase change materials for smart textiles-An overview. Applied Thermal Engineering,2008,28(11-12),1536-1550
    57.袁彦超,容敏智,章明秋.三聚氰胺-甲醛树脂包裹环氧树脂微胶囊的制备及表征.高分子学报,2008(5),472-480
    58. Hawlader M.N.A., Uddin M.S., Khin M.M. Microencapsulated PCM thermal-energy storage system. Applied Energy,2003,74(1-2),195-202
    59. Baranov A.V., Zheleznov K.N. Influence of n-alkanes on hardening and selected properties of gelatin shells of microcapsules. Russian Journal of Applied Chemistry,2002,75(9),1506-1509
    60. Shan X.L., Wang J.P., Zhang X.X., Wang X.C. Formaldehyde-free and thermal resistant microcapsules containing n-octadecane. Thermochim. Acta,2009(494), 104-109
    61. Song Q., Li Y., Xing J., Hu J.Y., Marcus Y Thermal stability of composite phase change material microcapsules incorporated with silver nano-particles. Polymer, 2007,48(11),3317-3323
    62. Abderrahmen R., Gavory C., Chaussy D., et al. Industrial pressure sensitive adhesives suitable for physicochemical microencapsulation. International Journal of Adhesion and Adhesives,2011,31(7),629-633
    63. Gharsallaoui A., Roudaut G., Chambin O., et al. Applications of spray-drying in microencapsulation of food ingredients:an overview. Food Research International, 2007,40(9),1107-1121
    64.徐军,万贤,张冰清等.石蜡/P(MMA-co-AA)核壳结构相变蓄能微胶囊的制备.高分子学报,2009(11),1154-1156
    65. Salaun F., Devaux E., Bourbigot S., et al. Thermoregulating response of cotton fabric containing microencapsulated phase change materials. Thermochimica Acta, 2010,506(1-2),82-93
    66. Salaiin F., Devaux E., Bourbigot S., et al. Development of phase change materials in clothing, Part I:formulation of microencapsulated phase change. Textile Research Journal,2010,80(3),195-205
    67. Su J.F., Wang S.B., Zhou J.W., et al. Fabrication and interfacial morphologies of methanol-melamine-formaldehyde (MMF) shell microPCMs/epoxy composites. Colloid Polymer Science,2011,289 (2),169-177
    68. Li M.G., Zhang Y., Xu Y.H., et al. Effect of different amounts of surfactant on characteristics of nanoencapsulated phase-change materials. Polymer Bulletin, 2011,67(1),541-552
    69. Choi J.K., Lee J.G., Kim J.H. Preparation of microcapsules containing phase change materials as heat transfer media by in-situ polymerization. Journal of Industrial and Engineering Chemistry,2001,7(6),358-362
    70. Zhang X.X., Fan Y.F., Tao X.M., et al. Fabrication and properties of microcapsules and nanocapsules containing n-octadecane. Materials Chemistry and Physics, 2004,88(2-3),300-307
    71. Fan Y.F., Zhang X.X., Wang X.C., et al. Super-cooling prevention of microencapsulated phase change material. Thermochimica Acta,2004,413(1-2), 1-6
    72. Rao Y., Lin G., Luo Y., et al. Preparation and thermal properties of micro-encapsulated phase change material for enhancing fluid flow heat transfer. Heat Transfer-Asian Research,2007,36(1),28-37
    73. Xuan Y.M., Huang Y., Li Q. Experimental investigation on thermal conductivity and specific heat capacity of magnetic microencapsulated phase change material suspension. Chemical Physics Letters,2009,479(4-6),264-269
    74. Yuan Y.C., Rong M.Z., Zhang M.Q. Preparation and characterization of microencapsulated polythiol. Polymer,2008,49(10),2531-2541
    75. Li W., Zhang X.X., Liu C.F. Fabrication and Characterization of Microencapsulated Phase Change Material with Large Diameter Range. Polymer-Plastics Technology and Engineering,2010,49(1),90-94
    76. Erkan G., Sariisik M., Pazarlioglu N.K. Microencapsulation of terbinafine via in situ polymerization of melamine-formaldehyde and their application to cotton fabric. Journal of Applied Polymer Science.2010,118(3),3707-3714
    77. Salaiin F., Devaux E., Bourbigot S., et al. Application of contact angle measurement to the manufacture of textiles containing microcapsules. Textile Research Journal,2009,79(13),1202-1212
    78.叶玉花,刘成岑,窦涛.一种致密的相变储能微胶囊的制备与表征.应用化学,2007,24(11),1318-1321
    79.宋健,陈磊,李效军.微胶囊化技术及应用.北京:化学工业出版社,2001,57-58
    80. Wagh S.J., Dhumal S.S., Suresh A.K. An experimental study of polyurea membrane formation by interfacial polycondensation. Journal of Membrane Science,2009,328(1-2),246-256
    81. Yang R., Zhang Y., Wang X., et al. Preparation of n-tetradecane containing microcapsules with different shell materials by phase separation method. Solar Energy Materials and Solar Cells,2009,93(10),1817-1822
    82. Pascu O., Garcia-Valls R., Giamberini M. Interfacial polymerization of an epoxy resin and carboxylic acids for the synthesis of microcapsules. Polymer International,2008,57(8),995-1006
    83. Sanchez L., Sanchez P., Antonio de Lucas, et al. Microencapsulation of PCMs with a polystyrene shell. Colloid Polymer Science,2007,285(1),1377-1385
    84. Onder E., Sarier N., Cimen E. Encapsulation of phase change materials by complex coacervation to improve thermal performances of woven fabrics. Thermochimica Acta,2008,467(1-2),63-72
    85. Kumano H., Saito A., Okawa S., et al. Study of direct contact melting with hydrocarbon mixtures as the PCM. International Journal of Heat and Mass Transfer,2005,48(15),3212-3220
    86. Bryant Y.G., Colvin D.P. Fabric with reversible enhanced thermal properties. US 5,366,807,1994
    87. Nelson G. Application of microencapsulation in textiles. International Journal of Pharmaceutics,2002,242(1-2),55-62
    88. Cox R. Synopsis of the new thermal regulating fiber Outlast. Chemical Fibers International,1998,48(6),475-476,478-479
    89. Pause B. Development of heat and cold insulating membrane structures with phase change material. Journal of Industrial Textiles,1995,25(7),59-68
    90. Gao C., Kuklane K., Holmer I., Cooling vests with phase change materials:the effectsof melting temperature on heat strain alleviation in an extremely hot environment. European Journal of Applied Physiology,2011,111(3),1207-1216
    91. Farid M.M., Khudhair A.M., Razack S.A.K., et al. A review on phase change energy storage:materials and applications. Energy Conversion and Management. 2004,45(9-10),1597-1615
    92. Cai Y.B., Ke H.Z., Lin L., et al. Preparation, morphology and thermal properties of electrospun fatty acid eutectics/polyethylene terephthalate form-stable phase change ultra fine composite fibers for thermal energy storage. Energy Conversion and Management,2012,64(2),245-255
    93.Hartmann M.H. Stable phase change materials for use in temperature regulating synthetic fibers, fabrics and textiles. US 6,689,466 B2,2004
    94. Sarier N., Onder E., Ozay S., et al. Preparation of phase change material-montmorillonite composites suitable for thermal energy storage. Thermochimica Acta,2011,524(1-2),39-46
    95. Gao X.Y., Han N., Zhang X.X., et al. Melt-processable acrylonitrile-methylacrylate copolymers and melt-spun fibers containing MicroPCMs. Materials Science,2009,44(3),5877-5884
    96. Kim J., Cho G. Thermal storage/release, durability and temperature sensing properties of thermostatic fabrics treated with octadecane-containing microcapsules. Textile Research Journal,2002,72(1),1093-1098
    97. Kim E.Y., Kim H.D. Preparation and property of microencapsulated octadecane with waterborne polyurethane. Journal of Applied Polymer Science,2005,96(5), 1596-1604
    98. Shin Y., Yoo D-I., Son K. Development of thermoregulating textile materials with microencapsulated phase change materials (PCM). Ⅱ. Preparation and application of PCM microcapsules. Journal of Applied Polymer Science,2005,96(6), 2005-2010
    99. Shin Y.. Yoo D-I., Son K. Development of thermoregulating textile materials with microencapsulated phase change materials (PCM). IV. Performance properties and hand of fabrics treated with PCM microcapsules. Journal of Applied Polymer Science.2005,97(3).910-915
    100. Salver. Phase change materials incorporated throughout the structure of polymer fibers. US 5,885,475,1999
    101. Jiang M.J., Song X.Q., Ye G.D., et al. Preparation of PVA/paraffin thermal regulating fiber by in situ microencapsulation. Composites Science and Technology,2008,68(10-11),2231-2237
    102. Chen C.Z., Wang L., Huang Y. Electrospinning of thermo-regulating ultrafine fibers based on polyethylene glycol/cellulose acetate composite. Polymer,2007, 48(18),5202-5207
    103. Salyer. Method for preparing polyolefin composites containing a phase change material. US 4.908,166.1990
    104. Zhang X.X., Wang X.C., Tao X.M., et al. Energy storage polymer/MicroPCMs blended chips and thermo-regulated fibers. Journal of Materials Science,2005. 40(14).3729-3734
    105. Zhang X.X, Wang X.C., Tao X.M., et al. Structures and properties of wet spun thermo-regulated polyacrylonitrile-vinylidene chloride fibers. Textile Research Journal,2006,76(3),351-359
    106.李佳佳,陆艺超,叶光斗.纺丝原液原位合成相变材料微胶囊制备石蜡/PVA储能纤维.复合材料学报,2012,3(29),79-85
    1. Jin Z.G., Wang Y.D., Liu J.G. Synthesis and properties of paraffin capsules as phase change materials. Polymer,2008,49,2903-2910
    2. Yang G.H., Tan Y.S., Han Y.Z. Increasing the shell thickness by controlling the core size of zeolite capsul cataly application in iso-paraffin direct synthesis. Catalysis Communications,2008,9,2520-2524
    3. Su J.F., Wang X.Y., Dong H. Influence of temperature on the deformation behaviors of meiamine-formoldehyde microcapsules cotaining phase change material. Materials Letters,2012,84,158-161
    4. Su J.F., Wang X.Y., Dong H. Micromechanical properties of melamine-formaldehyde microcapsules by nanoindentation:Effect of size and shell thickness. Materials Letters,2012,89,1-4
    5. Yang R., Zhang Y., Wang X. Preparation of n-tetradecane-containing microcapsules with different shell materials by phase separation method. Solar Energy Materials & Solar Cells,2009,93,1817-1922
    6.李伟,张兴祥,王建平等.相变材料微胶囊的制备及提纯.高分子材料科学与工程,2008,24(4),144-146
    7.王学晨,张兴祥,张晓春.pH值对正十八烷微胶囊合成与性能的影响.应用化学,2005,22(9),942-945
    8. Wang J.P., Zhang X.X., Wang X.C. Preparation, characterization and permeation kinetics description of calcium alginate macro-capsules containing shape-stabilize phase change materials, Renew. Energ,2011,36(11),2984-2991
    9.余飞,陈中华,曾幸荣.正十二醇相变储热微胶囊的制备与表征.高分子材料科学与工程,2009,25(6),135-138
    10.任晓亮,王立新,任丽.原位聚合法制备相变储热微胶囊.功能材料,2005,36(11),1722-1724
    11.Salaiin F., Devaux E., Bourbigot S. Influence of process parameters on microcapsules loaded with n-hexadecane prepared by in situ polymerization. Chemical Engineering Journal,2009,155,457-465
    12. Pan X.M., York D., Preece J.A. Size and strength distributions of melamine-formaldehyde microcapsules preparedby membrane emulsification. Powder Technology,2012,227,43-50
    13. Su J.F., Schlangen E. Synthesis and physicochemical properties of high compact microcapsules containing rejuvenator applied in asphalt. Chemical Engineering Journal,2012,198-199,289-300
    14. Zhang X.X., Fan Y.F., Tao X.M., et al. Fabrication and properties of microcapsules and nanocapsules containing n-octadecane. Materials Chemistry and Physics,2004,88,300-307
    15. Fan Y.F., Zhang X.X., Wang X.C., et al. Super-cooling prevention of microencapsulated phase change material. Thermochimica Acta,2004,413,1-6
    16.李爱萍,阚成友,杜奕.脲醛树脂合成反应过程的FTIR研究.物理化学学报,2006,22(7),873-877
    17. Zhang X.X., Tao X.M., Yick K.L., et al. Structure and thermal stability of microencapsulated phase-change materials. Colloid Polymer Science,2004, 282(4),330-336
    18.刘星,汪树军,刘红研.原位聚合制备三聚氰胺脲醛树脂石蜡微胶囊及性能.化工学报,2006,57(12),2991-2995
    19.于翔,陈尔强,朱诚身,何素琴,刘文涛.利用小角/广角X射线散射联用及维相关函数分析研究聚(ε-己内酯)片晶的形态.高分子学报,2010(9),1136-1142
    20. Marand H., Hoffman J.D. Determination of the fold surface free energy and the equilibrium melting temperature for Alpha-Phase poly(Pivalolactone) crystals. Macromolecules,1990,23,3682-3687
    21. Hoffman J.D., Davis G.T., Lauritzen J.I. Crystalline and Noncrystalline Solids. In Treatise on solid state chemistry, Hannay N B, Ed. Plenum Press:New York,1976, 3,152-160
    22. Sina S., Said N. A computational thermodynamics approach to the Gibbs-Thomson effect. Materials science and engineering,2007,443,178-184
    23. Park B.D., Jeong H.W. Hydrolytic stability and crystallinity of cured urea-formaldehyde resin adhesives with different formaldehyde/urea mole ratios. International Journal of Adhesion & Adhesives,2011,31,524-529
    24. Fan C.J., Zhou X.D. Influence of operating conditions on the surface morphology of microcapsules prepared by in situ polymerization. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2010,363,49-55
    25. Raveendran Nair B., Joseph Francis D. Kinetic and mechanism of urea-formaldehyde rection. Polymer,1983,24(5),626-630
    26. Ueda N., Ohta R., Togawa Y. Phase Transition of Microcapsule Membranes Induced by pH Changes. Polymer Gels and Networks,1995,3,135-143
    27. Wang R.G., Li H.Y., Hu H.L., He X.D., Liu W.B. Preparation and Characterization of self-healing microcapsules with poly(urea-formaldehyde) grafted epoxy functional group shell. Journal of Applied Polymer Science,2009, 113,1501-1506
    1.宋健,陈磊,李效军.微胶囊化技术及应用(第1版).北京:化学工业出版社.2001,74-75
    2. Yoshizawa H., Kamio E., Hirabayashi N., Jacobson J., Kitamura Y. Membrane formation mechanism of cross-linked polyurea microcapsules by phase separation method. Microencapsulation,2004,21(3),241-249
    3. Zhang X.X., Tao X.M., Yick K.L., Wang X.C. Structure and thermal stability of microencapsulated phase-change materials. Colloid Polym. Sci.,2004,282(2), 330-336
    4.潘祖仁.高分子化学(第四版).北京:化学工业出版社,2007,145-148
    5. Rampurna P., Gullapalli B., Sheth B. Influence of an optimized non-ionic emulsifier blend on properties of oil-in-water emulsions. Eur. J. Pharmacol.,1999, 48,233-238
    6. Dutschk V., Chen J., Petzold G., Vogel R., Clausse D., Ravera F. The role of emulsifier in stabilization of emulsions containing colloidal alumina particles. Colloids Surf., A,2012,413,239-247
    7.周磊,曹立新,苏革,柳伟,韩冰.乳化剂对原位聚合法制备微胶囊的影响.功能材料,2009,40(5),755-762
    8.刘星,汪树军,刘红研.MUF/石蜡的微胶囊制备.高分子材料科学与工程,2006,22(2),235-238
    9. Zhang H.Z., Wang X.D. Fabrication and performances of microencapsulated phase change materials based on n-octadecane core and resorcinol-modified melamine-formaldehyde shell. Colloids Surf., A,2009,332,129-138
    10.袁文辉,刘都树,李莉.微胶囊相变材料的制备与表征.华南理工大学学报(自然科学版),2007,35(7),46-51
    11.Ignac C. Microemulsion polymerization of styrene in the presence of a cationic emulsifier, Adv. Colloid Interface Sci.,2001,92,195-233
    12. Chern C.S. Emulsion polymerization mechanisms and kinetics. Prog. Polym. Sci., 2006,31,443-486
    13. Hong K., Park S. Melamine resin microcapsules containing fragrant oil:Synthesis and characterization. Mater. Chem. Phys.,1999,58,128-131
    14.陈春明,陈中华,曾幸荣.细乳液聚合法制备正十二醇/聚合物相变纳米胶囊 及其性能研究.功能材料,2011,42(11),2112-2115
    15. Chen L.J., Lin S.Y., Huang C.C., Chen E.M. Temperature dependence of critical micelle concentration of polyoxyethylenated non-ionic surfactants. Colloids Surf., A,1998,135,175-181
    16. Hiroyuki K., Naomichi H., Tsutomu K., Hironao O. Effects of core material, operating temperature and time on microencapsulation by in situ polymerization method. Adv. Powder Technol,2002,13(4),377-394
    17. Yuan L., Gu A.J., Liang G.Z. Preparation and properties of poly(urea-formaldehyde) microcapsules filled with epoxy resins. Mater. Chem. Phys.,2008,110,417-425
    18. Fan C.J., Zhou X.D. Influence of operating conditions on the surface morphology of microcapsules prepared by in situ polymerization. Colloids Surf, A,2010,363, 49-55
    19. Salaun F., Devaux E., Bourbigot S., Rumeau P. Influence of process parameters on microcapsules loaded with n-hexadecane prepared by in situ polymerization. Chem. Eng. J.,2009,155,457-465
    20. Park S.J., Shin Y.S., Lee J.R. Preparation and Characterization of Microcapsules Containing Lemon Oil. J. Colloid Interface Sci.,2001,241,502-508
    1. Qiu X.L., Li W., Song G.L. Microencapsulated n-octadecane with different methylmethacrylate-based copolymer shells as phase change materials for thermal energy storage. Energy,2012,1(36),188-199
    2. Fujiwara M., Shiokawa K., Kubota T. Direct encapsulation of proteins into calcium silicate microparticles by water/oil/water interfacial reaction method and their responsive release behaviors. Mater. Sci. Eng., C,2012,8(32),2484-2490
    3. Wei J., Li Z.Z., Liu L. Preparation and characterization of novel polyamide paraffin MEPCM by interfacial polymerization technique. J. Appl. Polym. Sci., 2013,6(127),4588-4593
    4. Tatiya P.D., Hedaoo R.K., Mahulikar P.P. Novel polyurea microcapsules using dendritic functional monomer:synthesis, characterization, and its use in self-healing and anticorrosive polyurethane coatings. Ind. Eng. Chem. Fundam, 2013,4(52),1562-1570
    5. Trojer M.A., Li Y., Abrahamsson C. Charged microcapsules for controlled release of hydrophobic actives. Part Ⅰ:encapsulation methodology and interfacial properties. Soft Matter.,2013,3(4),763-772
    6. Su J.F., Wang X.Y., Wang S.B. Fabrication and properties of microencapsulated-paraffin/gypsum-matrix building materials for thermal energy storage. Energy Convers. Manage.,2012,55,101-107
    7. Cho J.S., Kwon A., Cho C.G. Microencapsulated of octadecane as a phase-change material by interfacial polymerization in an emulsion system. Colloid. Polym. Sci., 2002,280(3),260-266
    8. Zou G.L., Lan X.Z., Tan Z.C., et al. Microencapsulation of n-Hexadecane as a phase change material in Polyurea. Acta Phys.Pol., B,2004,20(1),90-93
    9. Malfliet A., Deferme G., Stappers L. Synthesis and characterization of composite coatings for thermal actuation. J. Electrochem. Soc.,2007,154(1),50-56
    10. Tseng Y.H., Fang M.H., Tsai P.S., Yang Y.M., Preparation of microencapsulated phase-change materials (MCPCMs) by means of interfacial polycondensation. J. Microencapsul.2005,22(1),37-46
    11. Su J.F., Wang L.X., Ren L., Synthesis of polyurethane microPCMs containing n-octadecane by interfacial polycondensation:influence of styrene-maleic anhydride as a surfactant, Colloid Surf. A.2007, (299),268-275
    12. Zhang H., Wang X., Fabrication and performances of microencapsulated phase change materials based on n-octadecane core and resorcinol-modified melamine-formaldehyde shell, Colloid Surf. A.2009,332(2-3),129-138
    13.谢建强,张岩,梁国正等.乳化剂对自修复微胶囊合成的影响.中国胶粘剂,2007,16(5),21-24
    14. Xu M.Y., Lin S.L., Pi P.H. Fabrication and Properties of microencapsulated phase change material containing paraffin by using different types of SMA as emulsifier. Journal of Shanxi University of Science and Technology,2010,3(28),17-21
    15.辛长征,王利娜,黄象安等.界面聚合法制备相变微胶囊的乳化效果.天津工业大学学报,2010,3(29),11-14
    16.曹同玉,刘庆普,胡金生.聚合物乳液合成原理性能及应用.北京:化学工业出版社,2007,165-174
    17. Su J.F., Ren L., Wang L.X. Preparation and mechanical properties of thermal energy storage microcapsules. Colloid Polym. Sci.,2005,284(2),224-228
    18. Chen W.B., Liu X.Y., Lee D.W. Fabrication and characterization of microcapsules with polyamide-polyurea as hybrid shell. J. Mater. Sci.,2012,4(47),2040-2044
    19. Ni P., Zhang M., Yan N. Effect of operating variables and monomers on the formation of polyurea microcapsules. J. Membr. Sci.,1995,103,51-55
    20. Tang Y.D., Ma Z.P., Lu S.F. Preparation and Characterization of Glycerol Modified Polyurea Microencapsulated Phase Change Material. Polym. Mater. Sci. Eng.,2012,5(28),140-142
    21.王立新,苏峻峰,任丽.相变储热微胶囊的研制.高分子材料科学工程,2005,21(1),276-279
    1. Kathryn C.D. Analysis of the melt-blown process and parameters. Journal of Textile and Apparel Technology and Management,2008,6,1-24
    2. Zhao B. Production of polypropylene melt-blown nonwoven fabrics:Part Ⅰ Numerical simulation and prediction of fiber diameter. Indian Journal of Fiber & Textile Research,2012,37,280-286
    3.郭燕坤,崔毅华,王新厚.熔喷非织造衣架型模头中聚合物流动数值模拟.纺织学报,2006,27(10),18-21
    4. Vinchier I., Moldenaers P., Mewis J. Relationship between rheology and morphology of model blends in steady shear flow. J. Rheol,1996,40(4),613-622
    5. Thcker C.L., Moldenaers P. Microstructure evolution in polymer blends. Annu Rev Fluid Mech,2002,34,177-184
    6. Sobha V.N., Zachariah O., Sabu T. Phase morphology development and melt rheological behavior in nylon 6/polystyrene blends. J. Appl. Polym. Sci.,2002,86 (14).3537-3546
    7. Rui Z., Christopher W., Macosko. Slip at polymer-polymer interfaces:Rheological measurements on coextruded multilayers. J. Rheol,2002,46(1),145-148
    8. Maiti S.N., Saroop U.K., Misra A. Studies on polyblends of poly(vinylchloride) and acrylonitrile-butadiene-styrene terpolymemr. Polym. Eng. Sci.,1992,32(1), 27-30
    9.金日光.高聚物流变学及其在加工中的应用.北京:化学工业出版社,1986,145-188
    10. Dennis L. Rheological Properties of Cosmetics and Toiletries. Maerials,1993, 31-33
    11.兰建武,吴大诚.聚醚酯嵌段共聚物熔体的流变性能.高分子学报, 2000,(2),50-54
    12.吴其哗,巫静安.高分子材料流变学.北京:高等教育出版社,2002,36-37
    13.梁伯润.高分子物理学.北京:中国纺织出版社,2000,263-265
    14.李笑喃,刘鹏波.聚丙烯熔体拉伸流变行为的研究.塑料工业,2007,35(3),45-47
    15.徐斌,董擎之.多元共混改性聚丙烯流变行为研究.中国塑料,2004,18(7),50-53
    16. Han C.D.,Van Deu Weghe T., Shet P., et al. Effects of Coupling Agents on the Rheological Properties, Process ability and Mechanical Properties of Filled PP. Polym. Eng. Sci.,1981,21(4),196-204
    17.Decher M.J., Halbach C.J., Nam C.H., et al. Stability resistance of shear thickening fluid (STF)-treated fabrics. Composites Science and Technology,2007, 67(3-4),565-578
    18. Rapeephun D., Pitt S. Melt rheology and extrudate swell of titanium(IV) oxide nanoparticle-filled isotactic polypropylene:Effects of content and surface characteristics. Polymer Testing,2008,27(4),951-956
    19. Yang S., Liu L., Jia Z.X., et al. Structure and mechanical properties of rare-earth complex La-GDTC modified silica/SBR composites. Polymer,2011,52, 2701-2710
    20.李伟,张兴祥,刘彩凤等.储热调温纤维及织物的制备研究进展.高分子材料科学与工程,2010,26(5),163-166
    21.何曼君,陈维孝,董西霞.高分子物理.上海:复旦大学出版社,1991,262-270
    22.蔡碧华.聚合物共混改性原理.四川:成都科技大学出版社,1991,77-78
    23. Morent R., De Geyter N., Leys C., Gengernbre L., Payen E. Comparison between XPS and FTIR analysis of plasma-treated polypropylene film surfaces. Surface and Interface Analysis,2008,40,597-600
    24.常丽,姜猛进,王斌等.聚丙烯腈/聚乙烯醇/石蜡储能纤维的制备及表征.合成纤维工业,2009,32(2),20-23

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700